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Final 2013WT2, Problem 3

We have

∇f = (fx, fy) = (6kxy − 6x, 3kx2 + 3y2 − 6y).

Solving for ∇f = (0, 0), we have that fx = 0 implies that 6x(ky − 1) = 0, which
gives two cases:

(1) Case x = 0: then fy = 3y2 − 6y so fy = 0 implies that 3y(y − 2) = 0, i.e.,
either y = 0 or y = 2. So this case yields the critical points (0, 0) and (0, 2).
For the second derivative test we have

(1)
fxx = (6kxy−6x)x = 6ky−6, fxy = (6kxy−6x)y = 6kx, fyy = (3kx2+3y2−6y)y = 6y−6,

and therefore

D = fxxfyy − (fxy)2 = (6ky − 6)(6y − 6)− (6kx)2 = 36[(ky − 1)(y − 1)− k2x2].

Hence
(a) At (0, 0) we have fxx = −6 and D = 36, so (0, 0) is a local maximum;

and
(b) at (0, 2) we have fxx = 12k − 6 and D = 36(2k − 1), so when k = 1/2

then fxx = D = 0 so the critical point is indeterminate; when k > 1/2
then fxx > 0 and D > 0 so the point is a local maximum; and when
k < 1/2 then D < 0 so the point is a saddle.

(2) Case ky = 1, i.e., y = 1/k: here we have

fy = 3kx2 + 3y2 − 6y = 3kx2 + 3/k2 − 6/k,

so fy = 0 implies that 3kx2 = 6/k − 3/k2 so x2 = 2/k2 − 1/k3 so

x = ±
√

2/k2 − 1/k3 = ±
√

2− 1/k /k.

So if k = 1/2 we have x = 0, y = 2, which was covered above. If k < 1/2,
then there are no real values of x. If k > 1/2, then there are the two x
values above to check. Since

fxx = (6kxy−6x)x = 6ky−6, fxy = (6kxy−6x)y = 6kx, fyy = (3kx2+3y2−6y)y = 6y−6,
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for ky = 1 we have fxx = 0. So

D = fxxfyy − (fxy)2 = −36k2x2 < 0,

so y = 1/k and x = ±
√

2− 1/k /k are saddles.

Final 2012WT1, Problem 3

By the chain rule we have

Gt =
∂G

∂t
=

∂

∂t
F (γ + s, γ − s,At)

= Fx(γ+s)t+Fy(γ−s)t+Fz(At)t = Fx·0+Fy·0+FzA = AFz = AFz(γ+s, γ−s,At).
(It is important to remember that F , Fz, etc. are being evaluated at the point
(x, y, z) = (γ+s, γ−s,At); it is a bit cumbersome to put this everywhere.) Similarly,

Gγ = Fx(γ+s)γ+Fy(γ−s)γ+Fz(At)γ = Fx+Fy = Fx(γ+s, γ−s,At)+Fy(γ+s, γ−s,At).
Similarly

Gγγ = (Gγ)γ = [Fx(γ+s, γ−s,At)]γ+[Fy(γ+s, γ−s,At)]γ = [Fxx+Fxy]+[Fyx+Fyy]

Similarly

Gs = Fx − Fy, Gss = Fxx − Fxy − Fyx + Fyy.

Hence

Gγγ +Gss = 2Fxx + 2Fyy = 2Fz,

by the equation for F . Since Gt = AFz, we have Gt = Gγγ +Gss iff 2Fz = AFz,
which holds if A = 2.

Problem 34, Section 14.7

We need to find the min/max of f(x, y) = xy2 in the region D described by the
inequalities x ≥ 0, y ≥ 0, and x2 + y2 ≤ 3.

We have

∇f = (fx, fy) = (y2, 2xy).

So if ∇f = (0, 0) we have fx = 0 and therefore y = 0. But y is never 0 in the
interior of D (i.e., for x > 0, y > 0, and x2 + y2 < 3, where y must be positive).
Hence ∇f is never zero in the interior of D, and it suffices to check the values of f
on the boundary of D.

On the boundary where x = 0 or y = 0 we have that f = xy2 = 0. On the
boundary where x2 + y2 = 3 (and both x and y are non-negative) we have

f = xy2 = x(3− x2),

and x ranges from 0 to
√

3. So aside from the values where f = 0, the only
other possible min/max values of f occur for the function g(x) = x(3 − x2) with

x ∈ (0,
√

3): since

g′(x) = (3x− x3)′ = 3− 3x2,

we have g′(x) = 0 for x = ±1; since we only are considering x ∈ (0,
√

3), g′ = 0
there only for x = 1; furthermore g(1) = 1 · (3− 12) = 2.

So the only possibly min/max values of f(x, y) in D are the values 0 and 2; hence
0 is the minimum value of f , and 2 is the maximum value of f .
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