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Final 2013WT2, Problem 2(a)

At t = 0 we have (x, y, z) = (0,−1, 1),

P =
02 + 2(−1)2

1 + 12
= 1, T = 5 + 0 · (−1)− 12 = 4.

We have

d

dt
(PT )2 = 2(PT )(

dP

dt
T + P

dT

dt
) = 2(1 · 4)(4

dP

dt
+ 1

dT

dt
) = 32

dP

dt
+ 8

dT

dt
.

As for derivatives, we have dx/dt = 2, dy/dt = 2t, dz/dt = − sin t, so at t = 0 we
have dx/dt = 2, dy/dt = 0, dz/dt = 0. So

dP

dt
= Px

dx

dt
+ Py

dy

dt
+ Pz

dz

dt
,

which at t = 0 is

= 2Px + 0Py + 0Pz.

So we only need to compute Px (at t = 0), which is

∂

∂x

x2 + 2y2

1 + z2
=

2x

1 + z2
,

which at t = 0 is therefore (2 · 0)/(1 + 11) = 0. Hence at t = 0 we have

dP

dt
= 2 · 0 = 0.

Similarly, at t = 0 we have

dT

dt
= 2Tx + 0Ty + 0Tz.

So we only need to compute Tx (at t = 0), which is

∂

∂x
(5 + xy − z2) = y

which at t = 0 is therefore −1. Hence at t = 0 we have

dT

dt
= 2(−1) = −2.
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It follows that at t = 0 we have

d

dt
(PT )2 = 32

dP

dt
+ 8

dT

dt
= 32 · 0 + 8 · (−2) = −16.

Remark: if you don’t notice that dy/dt = 0 and dz/dt = 0 at t = 0, then you
might think you need to compute Py and Pz to find

dP

dt
= Px

dx

dt
+ Py

dy

dt
+ Pz

dz

dt
;

this is why you might want to first compute dx/dt, dy/dt, and dz/dt, and see if you
get lucky.

Final 2013WT1, Problem 1(b)

(i).
For F (x, y, z) = x2z3 + y sin(πx) + y2 we have

Fx = 2xz3 + yπ cos(πx), Fy = sin(πx) + 2y, Fz = x23z2.

Therefore at (1, 1,−1) we have

Fx = 2(1)(−1)3 + 1π(−1) = −2− π, Fy = sin(π) + 2 = 2, Fz = 3.

Therefore the tangent plane to F (x, y, z) = 0 at (1, 1,−1) is given by

Fx(1, 1,−1)(x− 1) + Fy(1, 1,−1)(y − 1) + Fz(1, 1,−1)(z + 1) = 0,

that is,

(−2− π)(x− 1) + 2(y − 1) + 3(z + 1) = 0.

(ii).
Since F (x, y, z) = 0 with F as above, we can differentiate implicitly to find

Fx + Fzzx = 0,

and hence at (1, 1,−1), from part (i), we have

zx = −Fx/Fz = (2 + π)/3.

(iii).
By the linear approximation we have

∆z ≈ (∆x)zx + (∆y)zy = (−0.03)(2 + π)/3 + 0zy = −0.01(2 + π).

Final 2012WT1, Problem 2

(a).
We have z = f(x, y) = 1000 − 0.02x2 − 0.01y2, and so zx = −0.04x and zy =

−0.02y. At x = 0 and y = 100 we have

∇z = (−0.04 · 0,−0.02 · 100) = (0,−2).



WRITTEN HOMEWORK 5 (SOLUTIONS), MATH 200, FALL 2015 3

Therefore the direction of steepest ascent, i.e., the direction in which ∇z points, is
the negative y direction, i.e., South.

(b).
The slope of the hill in the steepest ascent direction is |∇z| = |(0,−2)| = 2.

(c).
The slope in the steepest descent direction is −2, which means at 5 m/s your

rate of change is −10 m/s (which is −36 km/h, so you should be wearing a helmet).
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