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Problem 1: Final 2013WT2, Problem 1

There are a number of ways of solving these problems; we shall give one way.

(a). The direction of the line is the cross product of the normals:

〈−2, 1, 1〉 × 〈−1, 3, 3〉 = 〈0, 5,−5〉.
To find a particular point on the line we may set z = 0 in the equations for W1 and
W2 (since the z-component of line’s direction is non-zero) to find the point 〈x, y, 0〉
where

−2x+ y = 7 and − x+ 3y = 6,

which gives x = −3, y = 1, and hence the equation is:

〈−3, 1, 0〉+ t〈0, 5,−5〉

(b). Setting
x

2
=

2y − 4

4
= z + 5 = t,

we have x = 2t, y = 2t + 2, and z = t − 5. Hence a parametric representation of
the line is

〈x, y, z〉 = 〈0, 2,−5〉+ t〈2, 2, 1〉.
So M points in the direction 〈2, 2, 1〉 and contains the point 〈0,−2,−5〉. Hence
both L and M lie on a plane with normal

〈2, 2, 1〉 × 〈0, 5,−5〉 = 〈−15, 10, 10〉.
Since 〈−3, 1, 0〉 lies on L, we have that L lies on the plane

−15x+ 10y + 10z = (−15)(−3) + 10(1) + (10)(0) = 55 ;

since M contains the point 〈0, 2,−5〉, M lies on the plane

−15x+ 10y + 10z = (−5)(0) + 10(2) + (10)(−5) = −30 ;

It follows that the distance between L and M is | − 30 − 55|/|〈−15, 10, 10〉| =

17/
√

17 =
√

17.
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(c). For any values x and y, the point 〈x, y, z〉 that lies on W2 is given by

z = 2 + (1/3)x− y .
The region 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2 has

(1) one corner at x = 0 and y = 0; the z value required to have this point lie
on W2 is z = 2 + (1/3)(0) − (0) = 2; hence 〈0, 0, 2〉 is one vertex of this
parallelogram;

(2) similarly another corner at x = 3 and y = 0, which gives the parallelogram
vertex with z = 2 + (1/3)3 − (0) = 3, i.e., the vertex 〈3, 0, 3〉; hence one
side of the parallelogram is

〈3, 0, 3〉 − 〈0, 0, 2〉 = 〈3, 0, 1〉 ;

(3) another corner is at x = 0, y = 2, with z = 2 + (1/3)(0) − 2 = 0 at
the parallelogram corner, i.e., 〈0, 2, 0〉; hence the second side points in the
direction

〈0, 2, 0〉 − 〈0, 0, 2〉 = 〈0, 2,−2〉.
Hence the area of the parallelogram is

|〈3, 0, 1〉 × 〈0, 2,−2〉| = |〈−2, 6, 6〉| =
√

76 = 2
√

19.

Problem 2: Final 2013WT1, Problem 1(a)

(i).
We have x = 2 + 3t, y = 4t, and z = −1; solving for t gives

x− 2

3
=
y

4
and z = −1

(since z is independent of t).

(ii).
L points in the direction v = 〈3, 4, 0〉 (the t coefficients in the parametric form for

L). The normal to the plane points in the direction n = 〈1,−1, 2〉 (the coefficients
from x − y + 2z = 0). Hence the angle between L and the normal to the plane is
given by

cos θ =
v · n
|v| |n|

=
−1

5 ·
√

6
.

Hence α = 90◦ − θ where θ = cos−1(−1/(5
√

6)), or α = θ − 90◦ for a number
between 0 and 90◦.

Problem 3: Final 2012WT1, Problem 1

(i). Similar to Problem 1 above, the line L has the direction that is the cross
product of the normals to the planes, i.e.,

〈1, 1, 1〉 × 〈1,−1, 2〉 = 〈3,−1,−2〉.
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To find a point on the intersection take z = 0 to get the point 〈x, y〉 such that

x+ y = 6 and x− y = 0,

which is the point x = 3 and y = 3 (and z = 0). Hence L is the line

〈3, 3, 0〉+ t〈3,−1,−2〉
in other words

〈3 + 3t, 3− t,−2t〉.
To find the intersection of L with the coordinate plane z = 0 we solve −2t = 0,

giving t = 0, which gives us the point

〈3 + 3(0), 3− (0),−2(0)〉 = 〈3, 3, 0〉.
To find the intersection of L with the coordinate plane y = 0 we solve 3− t = 0,

giving t = 3, which gives us the point

〈3 + 3(3), 3− (3),−2(3)〉 = 〈12, 0,−6〉.
To find the intersection of L with the coordinate plane x = 0 we solve 3+3t = 0,

giving t = −1, which gives us the point

〈3 + 3(−1), 3− (−1),−2(−1)〉 = 〈0, 4, 2〉.

(ii).
A normal to the plane y = z, in other words 0x + 1y − 1z = 0 is the vector

〈0, 1,−1〉. Hence the direction of the line we are seeking is perpendicular to this
normal vector and the direction of L (which is 〈3,−1,−2〉); hence the line we are
seeking points in the direction

〈0, 1,−1〉 × 〈3,−1,−2〉 = 〈−3,−3,−3〉
Hence a parametric equation for the line we are seeking is

〈10, 11, 13〉+ t〈−3,−3,−3〉.
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