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Problem 1

We now have four ways to determine if two vectors are parallel: the two on
Written Homework 1, and the following two methods:

(1) a and b are parallel iff

a · b = ± |a| |b|,
and

(2) a and b are parallel iff

a× b = 0

Use both of the above two methods to determine

(1) if a = 〈1, 3, 2〉 is parallel to b = 〈5, 15, 10〉;
(2) if a = 〈1, 3, 2〉 is parallel to b = 〈5, 15, 12〉; and
(3) if a = 〈1, 3, 2〉 is parallel to b = 〈−6,−18,−12〉.

Problem 1, Solutions:

(1) a = 〈1, 3, 2〉 and b = 〈5, 15, 10〉:
a · b = 1 · 5 + 3 · 15 + 2 · 10 = 5 + 45 + 20 = 70

while

|a| |b| =
√

12 + 32 + 22
√

52 + 152 + 102 =
√

14
√

350 =
√

4900 = 70,

so a and b are parallel by the first method above.

a× b = 〈3 · 10− 2 · 15,−(1 · 10− 2 · 5), 1 · 15− 3 · 5〉 = 〈0, 0, 0〉,
so a and b are parallel by the second method above.

(2) a = 〈1, 3, 2〉 and b = 〈5, 15, 12〉:
a · b = 5 + 45 + 24 = 74

while

|a| |b| =
√

12 + 32 + 22
√

52 + 152 + 122 =
√

14
√

394 =
√

5516 = 74.26977 . . . 6= ±74
1
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so a and b are not parallel by the first method above.

a× b = 〈3 · 12− 2 · 15,−(1 · 12− 2 · 5), 1 · 15− 3 · 5〉 = 〈6,−6, 0〉,

so a and b are not parallel by the second method above.
(3) a = 〈1, 3, 2〉 and b = 〈−6,−18,−12〉:

a · b = −6− 54− 24 = −84

while

|a| |b| =
√

14504 = 84 = −a · b,
so a and b are parallel by the first method above.

a× b = 〈3(−12)− 2(−18),−(1(−12)− 2(−6)), 1(−18)− 3(−12)〉 = 〈0, 0, 0〉,

so a and b are parallel by the second method above.

Problem 2

We shall use the fact (Exercise 53, Section 12.3) that in R2 (i.e., the plane), the
distance from a point P1(x1, y1) to the line ax + by + c = 0 in the (x, y)-plane is

(1)
|ax1 + by1 + c|√

a2 + b2
.

Say that the equation ax+by+c = 0 (as in Problem 2) is normalized if a2+b2 = 1.

(1) How does Equation 1 simplify if we know that a2 + b2 = 1, i.e., if the
equation is normalized? Explain.

(2) The equation of the line in the plane

3x + 4y − 2 = 0

can be divided by |〈3, 4〉| = 5 to get an equivalent equation

(0.6)x + (0.8)y − (0.4) = 0

which is normalized. Using a similar idea, write an equation that is equiv-
alent to

5x + 12y − 26 = 0

that is normalized. Similarly for the equation

8x− 6y + 15 = 0.

(3) Recall the “number of operations” as explained on Problem 4 of Written
Homework 1, and in their (soon to be published) solutions. If you are given
an equation of one line, ax + by + c = 0 and 1000 points whose distance
from the line you wish to compute, what is the advantage—in terms of
computation speed (i.e., numbers of operations) in first normalizing the
equation ax + by + c = 0? Explain.

Problem 2, Solutions:

(1) Then the distance from P1(x1, y1) to the line becomes

|ax1 + by1 + c|.

http://www.math.ubc.ca/~jf/courses/200/hw1.pdf
http://www.math.ubc.ca/~jf/courses/200/hw1.pdf
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(2) Dividing 5x + 12y − 26 = 0 by |〈5, 12〉| = 13 gives the normalized equation

(5/13)x + (12/13)y − 2 = 0

or roughly

(.3846153846)x + (.9230769231)y − 2 = 0

(either form is acceptable). Dividing 8x − 6y + 15 = 0 by |〈8,−6〉| = 10
yields the normalized equation

(0.8)x + (−0.6)y + 1.5 = 0.

(3) If you normalize first you save yourself having to divide by
√
a2 + b2 in

the equation at the beginning of this exercise. Either way you will want
to compute

√
a2 + b2; by normalizing first you divide a and b by

√
a2 + b2

which costs you 2 divisions; if you don’t normalize, you need to divide
by
√
a2 + b2 in each distance computation, for a total of 1000 divisions.

Aside from this, the computations—and therefore operation counts—are
the same. So by finding the normalized equation you save yourself 1000−
2 = 998 operations.

Problem 3

Consider the formula:

projab =

(
a · b
|a|2

)
a =

(
a · b
a · a

)
a

(1) How does this formula simplify if a happens to be a unit vector?
(2) Given a single vector, a, and 1000 vectors whose projection onto a we wish

to compute, can we speed up this computation (in terms of number of
operations, as in Problem 2) by first computing u = a/|a|? Explain.

Problem 3, Solutions:

(1) In this case a · a = 1 or, equivalently, |a| = 1, and the formula becomes

projab = (a · b)a

(2) Let us first assume that a is 3-dimensional. Let us focus on how the two
computations differ.

If we do not compute u, then we need to compute a · a, and for each of
1000 vectors b we need to compute a · b, divide this by a · a, and multiply
by each of the three components of a.

If we first compute u = a/|a|, then we must compute |a|, which requires
a single square root one we compute a · a, and then we divide the three
components of a by |a|. Then for each of 1000 b we compute the projection
using u instead of a, which means that we save ourselves one division for
each projection computations. So computing u costs ourselves four more
operations, and saves 1000 operations. In total we save 996 operations by
first normalizing a, i.e., replacing it with u.

[Since the problem does not state that our vectors are necessarily 3-
dimensional, you could have answered this question for other dimensions. (I
imagine most people didn’t do this. . .) If you did this in n-dimensions, then
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computing u would cost you n+1 operations (the square root computation,
and then dividing each of a’s components by n), and using u instead of a
saves you 1000 operations (one division for each of 1000 vectors b). So
interestingly, if n is much larger than 1000, then actually working with u
is more expensive (n + 1 versus 1000).]

Problems 4 and 5, Solutions

See the PDF files attached below.
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