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Recall (Section 12.2) that nonzero vectors two vectors are parallel if they are
scalar multiples of each other.

Problem 1

One way to determine if two vectors are parallel is to see if one is a scalar multiple
of another. For example, to see if a = 〈1, 3, 2〉 is parallel to b = 〈2, 6, 5〉, one writes
the equation

b = c a ,

for a scalar (i.e.,real number) c and sees if there is a solution. In this case the
equation amounts to

〈2, 6, 5〉 = c 〈1, 3, 2〉 = 〈c, 3c, 2c〉,

which means that we are looking for a c such that

2 = c, 6 = 3c, 5 = 2c

which has no solution. On the other hand if d = 〈10, 30, 20〉, then d and a are
parallel, since the equation

〈10, 30, 20 = c 〈1, 3, 2〉 = 〈c, 3c, 2c〉

has a solution, namely c = 10.

Use the above method to determine

(1) if a = 〈1, 3, 2〉 is parallel to b = 〈5, 15, 10〉;
(2) if a = 〈1, 3, 2〉 is parallel to b = 〈5, 15, 12〉; and
(3) if a = 〈1, 3, 2〉 is parallel to b = 〈−6,−18,−12〉.

Problem 1: Solutions
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(1) For a = 〈1, 3, 2〉 and b = 〈5, 15, 10〉, we solve

〈1, 3, 2〉 = c〈5, 15, 10〉,

which means

1 = 5c, 3 = 15c, 2 = 10c ;

so c = 1/5 satisfies all these equations, and hence the vectors in question
are parallel.

(2) For a = 〈1, 3, 2〉 and b = 〈5, 15, 12〉 we similarly solve

1 = 5c, 3 = 15c, 2 = 12c ;

the first two equations require c = 1/5 while the third requires c = 1/6,
so there is no common solution c; hence the vectors in question are not
parallel.

(3) For a = 〈1, 3, 2〉 and b = 〈−6,−18,−12〉 we solve

1 = −6c, 3 = −18c, 2 = −12c,

which have a common solution c = −1/6; hence the vectors in question are
parallel.

Problem 2

Recall (Section 12.2) that to each nonzero vector a, the vector u = a/|a| is the
unique unit vector (i.e., vector of length 1) whose direction is the same as a.

For each vector below, find the unique unit vector that points in the same direc-
tion:

(1) a = 〈3, 0,−4〉;
(2) b = 〈6, 0, 8〉;
(3) c = 〈−3, 0, 4〉;
(4) d = 〈3, 0, 4〉;
(5) e = 〈2, 2, 1〉;
(6) f = 〈4, 4, 2〉;
(7) g = 〈2, 6, 3〉; and
(8) h = 〈−4,−12,−6〉.

Problem 2: Solutions

(1) For a = 〈3, 0,−4〉, the unit vector is

a/|a| = a/
√

32 + 02 + (−4)2 = a/5 = 〈3, 0,−4〉/5 = 〈3/5, 0,−4/5〉;

(2) b = 〈6, 0, 8〉: we similarly compute

b/|b| = 〈6, 0, 8〉/|〈6, 0, 8〉| = 〈6, 0, 8〉/
√

62 + 02 + 82 = 〈6, 0, 8〉/10 = 〈3/5, 0, 4/5〉;

(3) c = 〈−3, 0, 4〉: we have |c| =
√

(−3)2 + 02 + 42 = 5, and so

c/|c| = 〈−3, 0, 4〉/5 = 〈−3/5, 0, 4/5〉;

(4) d = 〈3, 0, 4〉: |d| = 5 and so

d/|d| = 〈3, 0, 4〉/5 = 〈3/5, 0, 4/5〉;
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(5) e = 〈2, 2, 1〉: |e| =
√

22 + 22 + 12 = 3, so

e/|e| = 〈2/3, 2/3, 1/3〉;

(6) f = 〈4, 4, 2〉: |f | = 6 and so

f/|f | = 〈2/3, 2/3, 1/3〉;

(7) g = 〈2, 6, 3〉: |g| =
√

4 + 36 + 9 = 7 and so

g/|g| = 〈2/7, 6/7, 3/7〉;

(8) h = 〈−4,−12,−6〉: |h| = 14 and so

h/|h| = 〈−2/7,−6/7,−3/7〉 .

Problem 3

Based on your answer to Problem 2, answer the following questions.

(1) Which vectors in Problem 2 have the same direction?
(2) Which pairs vectors in Problem 2 have the opposite direction? [Two

nonzero vectors a and b have the opposite direction if a and −b have
the same direction.]

(3) Which vectors in Problem 2 are parallel? [To be parallel is equivalent to
having the same direction or the opposite direction.]

Problem 3: Solutions

(1) Comparing unit vectors: b and d have the same direction (since they have
the same corresponding unit vectors); and e and f have the same direction.

(2) Those that have opposite unit vectors point in opposite directions, so a
and c point in the opposite direction; and g and h point in the opposite
direction.

(3) The following vectors have ± the same corresponding unit vectors and are
therefore parallel: a and c; b and d; e and f ; and g and h.

Problem 4

A computer is given 1000 3-dimensional vectors and must detect which are par-
allel. Consider the total number of operations—additions, subtractions, multiplica-
tions, divisions, and square roots, each counted as one operation—in the following
two methods:

(1) (Using the ideas of Problems 2 and 3:) Find the associated unit vectors of
the 1000 vectors. [You would still need to compare them, presumably by
sorting the unit vectors, but let’s ignore this cost.]

(2) Test all pairs of the 1000 vectors for being parallel, by the method of Prob-
lem 1. [There are 499,500 pairs of the 1000 vectors.]

Which method takes fewer operations? Would the difference be more significant
with 1,000,000 vectors [there would be roughly 5.0 × 1011 pairs of vectors in this
case]?
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[As an example, the calculation√
52 + (−4)2 =

√
5 · 5 + (−4) · (−4)

requires one addition (+), two multiplications (two · ’s) and one square root, for a
total of four operations.]

Problem 4: Solutions

(1) Finding the unit vector associated to 〈1, 2, 3〉 requires computing

|〈1, 2, 3〉| =
√

1 · 1 + 2 · 2 + 3 · 3
using three multiplications, two additions, and one square root, for a total
of six operations. Then finding the associated unit vector

〈1, 2, 3〉/|〈1, 2, 3〉| =
〈

1/|〈1, 2, 3〉|, 2/|〈1, 2, 3〉|, 3/|〈1, 2, 3〉|
〉

takes an additional three divisions, for a total of 9 operations per unit vector
computation. A similar 9 operations would be required for this computation
for any of the 1000 vectors, for a total of 9000 operations.

(2) In Problem 1 we solve for c which requires three divisions (we ignore com-
paring the three values of c). Done for 499, 500 pairs of vectors gives close
to 1.5 million operations.

So the second method requires (over 150) more times the cost, measured in opera-
tions. For 1,000,000 vectors the rough counts are 9 million versus some 1.5 trillion,
a difference by a factor over 150,000.

Even if you counted the operations slightly differently, and got somewhat dif-
ferent operation counts, the bottom line is that the first method works on the
individual vectors, while the second method works on pairs of vectors. So as the
number of vectors gets large, the second method becomes much slower. If you had
only 2 or 3 vectors, the story would be different. . .
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