Coverage for Math 200 Common Final Exam, Fall 2015

- (1) Chapter 12:
 - (a) No problems on counting the number of operations.
 - (b) No direction angles or direction cosines (12.3).
 - (c) No scalar projection, but its absolute value, which is the magnitude of the vector projection, can be useful.
 - (d) No questions on the angle a line makes with a plane (12.5).
 - (e) 12.6: You need to know cyclinders, ellipsoids, paraboloids, and spheres. No questions on hyperboliods.
- (2) Chapter 14:
 - (a) Section 14.2 entirely omitted.
 - (b) No problems on Lagrange multipliers involving two constraints.
- (3) Chapter 15:
 - (a) Sections 15.6 and 15.10 entirely omitted.
 - (b) Section 15.5: mass and centre of mass, no questions on momemnts of interia or probability.
 - (c) You may be asked to sketch a 2-dimensional region. No questions for points directly for 3-dimensional sketching of regions; but you should be able to specificy limits in 3-dimensional integrals by a combination of manipulating inequalities and sketching.
 - (d) Integrals: here are representative examples (not an exhaustive list).
 - (i) You should know how to integrate $x^n dx$, $\sin \theta d\theta$, $\cos \theta d\theta$.
 - (ii) You should know how to integrate by substitution: e.g., $\sin(10\theta) d\theta$, $e^{y^2} 2y dy$ (but $e^{y^2} dy$ cannot be integrated in terms of commonly used functions). Similarly you should know how to integrate $\sin^n \theta \cos \theta d\theta$.
 - (iii) You should know how to integrate $\cos^2 \alpha \, d\alpha$ using the formula sheet identity $\cos(2\alpha) = 2\cos^2 \alpha 1$.
 - (iv) You should know how to integrate $\cos^3 \alpha$ if we provide a formula expressing this in terms of a combination of $\cos(3\alpha)$ and $\cos(\alpha)$.