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1. Introduction

CPSC 536J for Spring 2019 focuses on applications of linear algebra to computer
science.

2. Outline

In this section we outline some class discussion.

2.1. Review of Eigenvalues. If A ∈ Rn×n, we say that (λ,v) is an eigenpair for
A if v 6= 0 and Av = λv; λ is called an eigenvalue of A, and v an eigenvector. In
this case

Eλ
def
= ker

(
(A− Iλ)n

)
(where I denotes the identity matrix) is called the generalized eigenspace associated
to λ. Each vector in Rn can be written uniquely as a linear combination of vectors in
the Eλ = Eλ(A), and dim(Eλ) is the multiplicity of λ as a root of the characteristic
polynomial of A, i.e., the polynomial pA(x) = det(xI −A).
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Example 2.1. Consider

A =

[
0 1
0 0

]
, B =

[
3 1
0 3

]
Then we easily compute

pA(x) = det(xI −A) = x2, pB(x) = (x− 3)2.

Since A2 = 0 (where 0 is the all zeros matrix), we have E0(A) = R2; similarly
E3(B) = 0.

Example 2.2. Say that D is a diagonal matrix with diagonal entries d1, . . . , dn
(meaning that Di,j = 0 if i 6= j and Di,i = di). Then D has eigenpairs (di, ei),
where ei is the i-th element of the standard basis for Rn, i.e., the vector that is
zero at all components except the i-th component, whose value is 1. If p is any
polynomial, then we have that p(D) is the diagonal matrix with diagonal entries
p(d1), . . . , p(dn); if f is any function, it often makes sense to define f(D) to be
the diagonal matrix with entries f(d1), . . . , f(dn) (e.g., f has a globally convergent
power series, such as f(x) = sin(x) or f(x) = ex).

Example 2.3. If A,B are n× n matrix, then we say that A and B are similar if
B = M−1AM for some invertible n×n matrix M . In this case A,B have the same
eigenvalues and p(B) = M−1p(A)M for any polynomial, p.

If A = AT is symmetric, then

(1) all eigenvalues of A are real;
(2) if (λ,v) and (µ,u) are eigenpairs of A with λ 6= µ, then v · u = 0;
(3) there is an orthonormal eigenbasis for A, meaning an orthonormal set of

vectors v1, . . . ,vn spanning Rn and real λ1, . . . , λn such that (λi,vi) is an
eigenpair for A for all i; in this case

A =

n∑
i=1

λiviv
T
i .

Example 2.4. Let ~Kn denote the complete directed graph on n vertices V = [n]
def
=

{1, 2, . . . , n} with one directed edge from each vertex to each other (including each

vertex to itself). The adjacency matrix of ~Kn is the all 1’s matrix A, i.e.,

A =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


whose eigenvalues are n with multiplicity 1 and 0 with multiplicity n − 1; the
eigenvalue λ = n has eigenvector 1 (the all 1’s vector), which when normalized can
be taken to be v1 = 1/

√
n. We have

v1(v1)T =


1/n 1/n . . . 1/n
1/n 1/n . . . 1/n

...
...

. . .
...

1/n 1/n . . . 1/n

 =
1

n
A

is the projection onto the vector 1 (or, equivalently v1), and
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3. Graph Adjacency Eigenvalues: Examples and Exercises

In all these exercises, eigenvalues, eigenvectors, and eigenpairs refer
to those of the associated adjacency matrix.

Definition 3.1. If G is a group and {g1, . . . , gd} a subset (or multiset) of elements
of G, we use

G = Cayley(G, {g1, . . . , gd})
to denote the graph whose vertex set is VG = G, with a directed edge (g, ggi) for
all g ∈ G and i ∈ [d] (which can be multiedges).

Example 3.2. If G = Z/nZ is the group of integers modulo n (i.e., the cyclic group
of order n), then for each ζ ∈ C with ζn = 1, there is an eigenfunction fζ : G → C
given by fζ(i) = ζi is an eigenfunction with eigenvalue

(1) λζ =
∑
i∈[d]

ζgi .

Endowing Cn with the dot product

〈f, h〉 def=
∑
i∈[n]

f(i)h(i).

Exercise 3.1. Let p ≡ 1 (mod 4). Let Q be the set of quadratic residues modulo
p.

3.1(a) Show that for any ζ with ζp = 1 and ζ 6= 1 we have

λζ =
±√p− 1

2
.

[Hint: we have that

2λ+ 1 =

p−1∑
a=0

ζa
2

,

and

(2λ+ 1)2 =

p−1∑
a,b=0

ζ(a+b)(a−b)

which after a change of variables is

p−1∑
u,v=0

ζuv.

Consider the sum over all v above with u = 0 and for each with u 6= 0.]
3.1(b) For how many of the p− 1 values of ζ with ζp = 1 and ζ 6= 1 do we have

λζ =

√
p− 1

2
?

See the bottom for a hint1

3.1(c) What are the eigenvalues of Cayley(Z/pZ, Q) (and what are their multi-
plicities)?

3.1(d) Same question with Q replaced with the quadratic nonresidues.

1
Considerthetraceofanappropriatematrix.
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Exercise 3.2. Let G,H be graphs with adjacency matrices AG, AH . Let G×H be
the graph with vertex sets VG×VH and with an edge (v1, u1) to (v2, u2) if EITHER
v1 = v2 and H has an edge (u1, u2) OR u1 = u2 and G has an edge (v1, v2).

3.2(a) If G is d1-regular and H is d2-regular, what is the regularity of G×H?
3.2(b) Find the eigenvalues and eigenvectors of the adjacency matrix AG×H in

terms of those of AG, AH .

Exercise 3.3. Let G,H be graphs with adjacency matrices AG, AH . Let G ⊗ H
be the graph with vertex sets VG × VH and with an edge (v1, u1) to (v2, u2) if H
has an edge (u1, u2) AND and G has an edge (v1, v2).

3.3(a) If G is d1-regular and H is d2-regular, what is the regularity of G⊗H?
3.3(b) Find the eigenvalues and eigenvectors of the adjacency matrix AG⊗H in

terms of those of AG, AH .

Exercise 3.4. Let B denotes the graph with vertex set VB = {0, 1} with a single
edge from 0 to 1; let Bn = B×n (i.e., the n-fold product B × · · · × B). Determine
the eigenpairs of Bn.

Exercise 3.5. Let Pn denote the graph that is commonly called the path of length
n, i.e., the graph with vertex set [n] = {1, . . . , n}, and with an edge joining i, j ∈ V
iff |i− j| = 1. Determine a set of eigenvectors and eigenvalues for Pn as follows:

3.5(a) By a directed eigenvalue computation, find the eigenpairs for Pn for n =
1, 2, 3.

3.5(b) Determine the eigenpairs for the cycle of length 2n + 2, viewed as
Cayley(Z/(2n+ 2)Z, {±1}).

3.5(c) For f : Z/(2n+ 2)Z→ C, let σf be the function Z/(2n+ 2)Z→ C given by
(σf)(i) = f(−i); say that such a function is odd if σf = −f . Show that an
eigenfunction of the cycle (i.e., the adjacency matrix of the cycle) that is
odd restricts to an eigenfunction of the path, whose vertex set [n] is viewed
as a subset in Z/(2n+ 2)Z in the evident (quotient) fashion.

3.5(d) Find a formula for the eigenpairs of Pn using the previous part.
3.5(e) Check the formula of the previous part for n = 1, 2, 3 and the computations

in part (a).
3.5(f) Let G be a graph, each of whose vertices are of degree d or d/2 for some

even integer d ≥ 2. Let Double(G) be the graph consisting of two disjoint
copies of G where each vertex of degree d/2 is connected to its “mirror
vertex” (i.e., the same vertex in the other copy) by a single edge. Define
a notion of odd eigenfunction and generalize the remark in the previous
parts of this exercise to relate odd adjacecy eigenfunctions of Double(G)
and those of G.

3.5(g) If we allow multiple edges in our graphs, can we generalize the last part
further? [For example, say that you can add self-loops of any degree (odd
degrees are OK) to any vertex (we will do this later in the course). If G is a
graph each of whose vertices are of degree at most d, is there a Double(G)
that is a 2(d− 1) regular graph such that the odd eigenpairs of Double(G)
can be related to those of G?

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca


	1. Introduction
	2. Outline
	2.1. Review of Eigenvalues

	3. Graph Adjacency Eigenvalues: Examples and Exercises

