
TESTS FOR LANGUAGE REGULARITY

JOEL FRIEDMAN

Contents

1. Introduction 1
2. Walk-Counting Functions 2
3. The Myhill-Nerode Theorem 3
4. Examples 4

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

The reference [Sip] is to the course textbook, Introduction to the Theory of
Computation by Michael Sipser, 3rd Edition.

1. Introduction

This year in CPSC 421 we have seen a number of ways to prove that a language
L ⊂ Σ∗ is not regular, namely:

(1) Walk-counting tests: if L regular, then

f(n)
def
=

∣∣∣{s ∈ L ∣∣ |s| = n
}∣∣∣

is the a walk-counting function as we desribed in the article “Directed
Graphs and Asymptotic Tests1;” in this article we gave a number ways
to show that some functions cannot be walk-counting functions.

(2) The Pumping Lemma of Section 1.4 of [Sip].
(3) The Myhill-Nerode Theorem: if for each s ∈ Σ∗ we set

A.F.(L, s) = AcceptingFutures(L, s)
def
= {t ∈ Σ∗|st ∈ L},

then if there are infinitely many values of A.F.(L, s) as s varies over Σ∗,
then L is not regular.

Research supported in part by an NSERC grant.
1 In more detail, if L is accepted by a DFA with p states, we may associate this DFA to its

underlying directed graph, which has p vertices—representing the states—and |Σ| edges leaving

each vertex—respresenting the transitions. Then f(n) counts the number of walks of length n in
a directed graph that begin in the vertex corresponding to the initial vertex and that end in a

vertex which corresponds to an accepting state.

1

2 JOEL FRIEDMAN

Furthermore, if L is regular, then all the above methods have variants that can give
lower bounds on the minimum number of states in a DFA recognizing L. In fact,
the Myhill-Nerode Theorem gives an algorithm for building the DFA.

Generally speaking, walk-counting tests are the simplest and most direct method
to use. The Pumping Lemma is trickier to use, in that it requires a judicious choice
of string to apply to the lemma and requires you to prove that this string cannot
be pumped; the pedagogical advantage of the Pumping Lemma is that its proof
doesn’t require anything not covered in [Sip] (such as the linear algebra needed for
walk-counting tests). However, neither walk-counting methods nor the Pumping
Lemma always determine whether or not a language is regular. The Myhill-Nerode
Theorem is the most powerful method, in the sense that it works for all languages,
determining whether or not they are regular and giving an algorithm for building
the DFA; walk-counting tests and the Pumping Lemma don’t always determine
this information; the difficulty in the Myhill-Nerode Theorem is that you have to
be able to determine how many sets there are of the form A.F.(L, s) for a number
of values of s.

One can combine the above methods with various properties of regular languages
to get more results regarding regularity. Here are some examples.

(1) If L′ is a regular language, and L∩L′ is not regular, then L is not regular;
this follows from the contrapositive: if L,L′ are both regular, then so is
L ∩ L′ (see [Sip], Sections 1.1–1.2).

(2) A similar statement holds for L ∪ L′, for L ◦ L′, for L∗, and for the com-
plement of L.

(3) Substitution: if Σ′ is another alphabet, and if f : Σ → (Σ′)∗ is a function
(mapping the symbols or letters of Σ to strings over Σ), then f determines
a map Σ∗ → (Σ′)∗. If

f(L) = {f(s) | s ∈ L}

is not regular, then L is not regular. This follows from the contrapositive:
if L is regular, then L is described by a regular expression, and f maps this
regular expression to a regular expression in the symbols in Σ′; hence f(L)
is regular.

Since the Pumping Lemma is covered extensively in [Sip], Section 1.4, we now
make some remarks regarding the other two methods, namely walk-counting meth-
ods and the Myhill-Nerode Theorem. The Myhill-Nerode Theorem is briefly covered
in [Sip], Exercises 1.51 and 1.52.

2. Walk-Counting Functions

Recall that a walk-counting function is a function f : N → Z≥0 where f(n) is
the number of walks of length n in a fixed (finite) directed graph, G = (V,E, t, h),
that begin in a fixed subset of vertices V1 ⊂ V and end in a fixed subset of vertices
V2 ⊂ V . Here are some things that hold for walk-counting functions in such a
graph, G:

(1) if G has at most p vertices, then f satisfies the recurrence relation

f(n) = c1f(n− 1) + · · ·+ cpf(n− p)

TESTS FOR LANGUAGE REGULARITY 3

for all n ≥ p + 1, for some ci ∈ Z (such ci can be found from the charac-
terisitic polynomial of the adjacency matrix of G; this recurrence also holds
for n = p since it makes sense to speak of f(0)).

(2) if f has asymptotic ratio ρ, i.e.,

lim
n→∞

f(n+ 1)

f(n)

exists and equals ρ, then
(a) if ρ is a rational number, then ρ must be an integer (more generally, ρ

must be an algebraic integer2.
(b) f(n) ∼ cρnnq for some c > 0 and some positive integer q ≤ p−1. From

part (b) it follows that f(n) cannot be o(ρn), and cannot be Θ(ρnnα)
for some α that is not an integer.

There are many variants of the above tests. For example, if g(n) = f(nd) for
some integer d ≥ 2 has an asymptotic ratio, then g must satisfy the above conditions
on f (since g(n) is a walk counting function on the directed graph whose vertex set
is V and whose edges represent walks of length d in the G). For example, if

L =
{
s ∈ {0, 1}∗

∣∣ s has the same number of 0’s and 1’s
}
,

then using f(n) to denote the number of words of length n in L, we have that (1)
f(n) = 0 if n is odd, and (2) otherwise, f(n) =

(
n
n/2

)
. It follows that the asymptotic

ratio of f does not exist, but that of g(n) = f(2n) exists and equals 4. Furthermore
Stirling’s formula shows that

g(n) =

(
2n

n

)
= O

(
22n/
√
n
)

= o(4n),

and hence L is not regular.

3. The Myhill-Nerode Theorem

If L is regular, then the Myhill-Nerode Theorem gives an algorithm for construct-
ing the DFA for L with the smallest number of states: namely, the initial state of
the DFA, q0, is labelled with the set A.F.(L, ε). To see what are the transitions out
of q0, we compute A.F.(L, σ) for all σ ∈ Σ, and for each new value of A.F.(L, σ)
we construct a new state. More generally, once we construct a new state A.F.(L, t)
for some t ∈ Σ∗, the transition out of this state upon reading σ ∈ Σ is the state
A.F.(L, tσ) for σ ∈ Σ. If L is regular, then this procedure will eventually lead to a
situation where for every state labelled A.F.(L, t), the values of A.F.(L, tσ) already
appear in some previously constructed state.

The difficulty with the above procedure is that we are required to “compute”
A.F.(L, s) for a number of s ∈ Σ∗, which really means that for a finite number of
pairs, (s, s′), we must be able to determine whether or not A.F.(L, s) = A.F.(L, s′).
This may not be easy to do in practice. Furthermore, if L is not regular, then
proving this by the Myhill-Nerode Theorem requires us to demonstrate an infinite
number of elements, s ∈ Σ∗, such that A.F.(L, s) are all distinct. Again, depending
on how L is specified, this may not be easy to do in practice.

2 i.e., ρ is the root of an equation xn + a1xn−1 + an = 0 where a1, . . . , an ∈ Z.

4 JOEL FRIEDMAN

4. Examples

(1) Let L be the langauge of binary strings that represent prime numbers writ-
ten in base 2. The Prime Number Theorem implies that the number of
elements in L of length n is ∼ 2n/(n loge(2)) which has asymptotic ratio 2
but is o(2n). Hence n is not regular.

(2) One can construct examples where any of the three tests produces stronger
or more easily obtained results than the other two.

(3) For any integer p ≥ 1 and the language L described by the regular expres-
sion (1p)∗, all three tests easily prove that the minimal number of states in
a DFA recognizing L is p.

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf

	1. Introduction
	2. Walk-Counting Functions
	3. The Myhill-Nerode Theorem
	4. Examples

