MIDTERM PRACTICE, CPSC 421/501, FALL 2017

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.

See the course website for info regarding the midterm.

Sample Midterm Problems

- (1) Answer true or false; if false, then provide a counterexample.
 - (a) If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular.
 - (b) If L_1 and L_2 are nonregular languages, then $L_1 \cap L_2$ is nonregular.
 - (c) If L is a regular language, then L^* is regular.
 - (d) If L is a nonregular language, then L^* is nonregular.
 - (e) If L is regular, then L is recognizable by a Turing machine.
 - (f) If L is nonregular, then L is not recognizable by any Turing machine.
 - (g) If L is recognized by a NFA, then it is recognized by some DFA.
 - (h) If L is recognized by a NFA with n states, then it is recognized by some DFA with n states.
 - (i) If $f(n) = o(2^n)$, then it is not a walk-counting function.
 - (j) If $f(n) = o(2^n)$ and f has asymptotic ratio 2, then it is not a walkcounting function.
 - (k) If $f(n) \sim 2^n/n$, then f is not a walk-counting function.
 - (1) If $f(n) \sim 2^n$, then f is not a walk-counting function.
 - (m) If $f(n) \sim (3/2)^n$, then f is not a walk-counting function.
 - (n) If L is a regular language, and f(n) is the number of strings of length n in L, then f(n) is a walk-counting function.
 - (o) If L is a nonregular language, and f(n) is the number of strings of length n in L, then f(n) is not a walk-counting function.
 - (p) If L is a regular language, and f(n) is the number of strings of length n in L, then f(n) is not a walk-counting function.

Justify your answer to all questions below.

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

(2) Let $\Sigma = \{0, 1\}$, and let $L = \{0, 11\} \subset \Sigma^*$. Compute all possible values of

AcceptingFuture $(L, s) \stackrel{\text{def}}{=} \{t \mid st \in L\}$

as s varies over Σ^* ; justify your answer. Then use these values to construct a DFA for L with a minimum number of states; explain your construction.

- (3) Let $\Sigma = \{0, 1\}$, and let $L = \{0, 11\} \subset \Sigma^*$. Give a Turing machine that decides L and explain how your machine works.
- (4) Let $\Sigma = \{0, 1\}$, and let $L = \{0^i 1^j \mid i \ge j\}$.
 - (a) Give a Turing machine that decides L and explain how your machine works.
 - (b) Prove that L is not regular.
- (5) Let $\Sigma = \{0, 1\}$, and let $L = \{1^n \mid n \text{ is a power of two}\}.$
 - (a) Use the pumping lemma to show that L is not regular.
 - (b) Use a fact about walk-counting functions to show that L is not regular.
 - (c) Use the Myhill-Nerode theorem to show that L is not regular.
- (6) Give a DFA that recognizes the language, L, of strings in $\{0, 1\}^*$ such that the difference in the number of 0's and the number of ones is divisible by three. Use the procedure of obtaining a regular expression from a DFA to write a regular expression for L.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca *URL*: http://www.math.ubc.ca/~jf

 $\mathbf{2}$