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Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

The reference [Sip] is to the course textbook, Introduction to the Theory of
Computation by Michael Sipser, 3rd Edition.

1. Introduction

This article reviews matertial prerequisite to CPSC 421. It can be viewed as a
bridge between Chapter 0 and Chapters 1-9 of [Sip].

In addition, we describe what we call asymptotic tests ; when we cover Chapter 1
of [Sip], we will see that asymptotic tests give the most direct and simplest way to
show that (some) languages are not regular languages. [I have never seen such tests
in any introductory CS theory textbook; this omission has baffled me for decades.]

Here we formally describe directed graphs, to prepare students for formal descrip-
tions of computing machines such as finite automata and Turing machines. Many
such machines are most simply described by drawing a directed graph—whose ver-
tices are the states of the machine—and adding some information. We will describe
asymptotic tests in the language of directed graphs.

Research supported in part by an NSERC grant.

1



2 JOEL FRIEDMAN

A lot of examples and some extra material is developed in the exercises at the
end of this article. Linear algebra is not a prerequisite for this course, but can be
used to explain why asymptotic tests work and to give more powerful tests; this
will be explained in an appendix (not required for CPSC 421 this year).

2. Review: Basic Notation and Asymptotics

The following material is mostly from Chapter 0 and Section 7.1 of [Sip].

2.1. Basic Notation. We use N = {1, 2, . . .} to denote the natural numbers, Z
to denote the integers, R to denote the real numbers. We use R≥0 to denote the
non-negative real numbers, R>0 the positive reals, N>33 the integers greater than
33, etc. [Sip] uses N ,R,Z for N,R,Z; [Sip] uses R+ for R≥0, not R>0 (ouch!).

Consult Section 0.2 of [Sip] for common conventions regarding sets and se-
quences. A function f : N→ R can be viewed as an infinite sequence of its values,
f(1), f(2), . . ., and an infinite sequence of real numbers, a1, a2, . . . can be viewed as
a function N → R. These notions are interchangeable, but sometimes one form is
more convenient than the other.

If f, g are functions N → R, we may write formulas like f(n)/g(n), log(g(n)),
etc., that may not defined for all n ∈ N (e.g., when g(0) = 0) and therefore have a
smaller domain. To make sense of the limit

lim
n→∞

f(n)/g(n)

it is permissible to have g(n) = 0 for finitely many n, and we allow this. In our
limits we allow for infinite values such as +∞ and −∞, unless we insist that the
limit is finite.

If x ∈ R is a real number, the floor of x, denoted bxc, is the largest integer no
larger than x; the ceiling of x, denoted dxe, is the smallest integer no smaller than
x.

Let f = f(n) and g = g(n) be functions N→ R≥0.

(1) We write f(n) = O(g(n)) if there exists n0 ∈ N and c ∈ R≥0 for which

f(n) ≤ c g(n)

provided that n ≥ n0.
(2) We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)), i.e., if

there exists n0 ∈ N and c, c′ ∈ R≥0 for which

c′g(n) ≤ f(n) ≤ c g(n)

provided that n ≥ n0.
(3) We write f(n) = o(g(n)) if for any c ∈ R>0 there is an n0 ∈ N for which

f(n) < c g(n) provided that n ≥ n0; this condition is equivalent to

lim
n→∞

f(n)/g(n) = 0

whenever g(n) 6= 0 for sufficiently large n.
(4) We write f(n) ∼ g(n) if

lim
n→∞

f(n)/g(n) = 1 .
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These definitions also make sense and work well if f, g are functions N → R such
that f(n) > 0 and g(n) > 0 for n sufficiently large. (Compare (1)–(3) above with
Section 7.1 of [Sip], starting page 276.)

Chapter 0 of [Sip] has a lot of important notation regarding sets and graphs, and
gives a review of proofs (by induction, by contradiction, etc.); you should review
all of this. We will use this material in the exercises at the end of this article.

In class we will also discuss the OO(f(n)) notation1.

2.2. Determining Asymptotic Relationships. Given two functions N→ R≥0,
f, g, it is not necessarily easy to determine when f(n) is O(g(n)), o(g(n)), etc. How-
ever, in CPSC 421 we will only need a few simple relationships between logarithms,
polynomials, and exponential functions: some examples are

2n3 − n2 = O(n3), n4 = o(2n), (log n)12 = o
(
n.01

)
.

As another example, since 0 ≤ x− bxc < 1 for all x ∈ R, we have

(1) b
√
nc =

√
n+O(1) =

√
n+ o

(√
n
)

and similarly with
√
n replaced with other functions, and similarly with the ceiling

function. At times students will be provided with necessary asymptotics, such as
π(n) ∼ n/ loge n, where π(n) is the number of primes less than or equal to n.

3. The Asymptotic Ratio

Definition 3.1. Let f : N→ R be a function. If

ρ
def
= lim

n→∞
f(n+ 1)/f(n)

exists, we say that f has asymptotic ratio ρ (we allow for ρ = ±∞); otherwise we
say that f does not have an asymptotic ratio. The ratio ρ is finite if ρ 6= ±∞.

We remind the reader that f(n+ 1)/f(n) may be undefined for finitely many n,
according to our convention on limits. Asymptotic limits exist for many sequences
arising in complexity theory. This definition is used in the asymptotic test for
convergence of the infinite sum

∑∞
n=1 f(n), e.g.,

1

5
+

2

25
+

3

125
+ · · ·+ n

5n
+ · · ·

converges since the asymptotic ratio of the terms is 1/5.
Here are some standard examples:

(1) The asymptotic ratio of f(n) = 3n is 3.
(2) The asymptotic ratio of f(n) = n2 is 1, since

lim
n→∞

(n+ 1)2

n2
= lim

n→∞

(
1 + 2n−1 + n−2

)
= 1.

(3) The asymptotic ratio of f(n) = log n is 1 (see the exercises).
(4) If f(n) and g(n) have respective asympotic ratios ρ and ρ′, then the as-

ymptotic ratio of h(n) = f(n)g(n) is ρ ρ′; similarly for the product of three
functions or of any finite number of functions.

1 To the best of the author’s knowledge, this notation is due to Udi Manbar; it is not precise:

an algorithm running in time f(n) = 101000(n−1)+3 runs in time order n or O(n), but the factor
of 101000—hidden in the O(n) notation—means that the algorithm may be wildly impractical for

n ≥ 2. We write f(n) = OO(n) (the OO(n) is pronounced uh-oh of n).
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(5) The asymptotic ratio of f(n) = 3nn2 log n is, in view of (1)–(4) above,
3 · 1 · 1 = 3.

(6) If f(n) ∼ g(n), then f, g have the same asymptotic ratio, i.e., either both
ratios exist and are equal, or both ratios don’t exist.

(7) If f(n) = o(g(n)), then f(n) + g(n) and g(n) have the same asymptotic
ratios (indeed, g ∼ f + g).

(8) For example, the asymptotic ratio of n2 is the same as that of n2+5n+100,
since 5n+ 100 = o(n2). Hence the asymptotic ratio of n2 + 5n+ 100 is one.

(9) More generally, the asymptotic ratio of any nonzero polynomial is 1.

Here are examples of functions without asymptotic ratios:

(1) The function f(n) which is 0 if n is even and 1 if n is odd does not have an
asymptotic ratio, since f(n+ 1)/f(n) is undefined at infinitly many values
of n.

(2) The function f(n) which is 2 if n is even and 1 if n is odd does not have an
asymptotic ratio, since f(n+ 1)/f(n) alternates between 2 and 1/2.

As in Subsection 2.2, finding the asymptotic ratio of a function is more of an
art rather than a deterministic procedure. For example, the asymptotic ratio of
f(n) = b

√
nc is, by definition,

lim
n→∞

b
√
n+ 1c
b
√
nc

= lim
n→∞

MessyExpression(n).

However, in view of (1) and item 7 above, f(n) and
√
n have the same asymptotic

ratio, and

lim
n→∞

√
n+ 1√
n

= lim
n→∞

√
1 + (1/n) = 1.

4. Directed Graphs

Directed graphs are described informally in [Sip] Section 0.2, page 12. Let us
give a formal definition.

Definition 4.1. A directed graph is a 4-tuple G = (V,E, t, h) where V and E are
sets—called the vertex set and edge set—and t, h are maps E → V called the tail
map and head map.

There is a lot of terminology that is derived from this definition; for example, if
v ∈ V (i.e., v is an element of V ), we say that v is a vertex of G. On page 12 of
[Sip], edges are called arrows. If e ∈ E, t(e) = v1, h(e) = v2, we sometimes say that
e points from v1, points to v2, e is (runs) from v1 to v2, etc. Indegree and outdegree
of a vertex are defined on page 12 of [Sip].

Example 4.2. The Fibonacci graph: V = {v1, v2}, E = {e1, e2, e3}; t, h are
described in one of three ways:

(1) e1 is from v1 to v2, e2 is from v2 to v1, e3 is from v1 to itself;
(2) t(e1) = v1, t(e2) = v2, t(e3) = v1 and h(e1) = v2, h(e2) = v1, h(e1) = v1;
(3) the simple picture we draw in class (see Figure 1).

An edge whose tail equals its head is called a self-loop; in the Fibonacci graph
above, e3 is a self-loop.
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v1 v2

e1

e2

e3

Figure 1. The Fibonacci graph

There is an immense literature on directed graphs; they are often used as models,
such as for the world-wide web, tournaments, preferences, tasks with a chronological
order, etc. The rest of this article and the exercises have more examples of digraphs.

5. Directed Graphs and [Sip]

All of the examples of DFA’s, NFA’s, GNFA’s in Chapter 1 of [Sip] are depicted
there as directed graphs with some additional information.

Here is an alternate definition of directed graphs that more closely resembles
what you’ll see in Chapter 1 of [Sip].

Definition 5.1 (Alternate definition of a directed graph). A directed graph is a
3-tuple G = (V,E, δ), where V,E are sets, and δ : E × {H,T} → V .

The product of sets, such as E×{H,T} above, is explained in Chapter 0 of [Sip];
it appears in all definitions of finite automata and Turing machines. This alternate
definition is equivalent to the original one: in the alternate definition V,E are still
the vertex and edge sets, and δ(e,H) is the head of e, and similarly for T and tail.

6. Walks Counts in Directed Graphs

Definition 6.1. Let k ≥ 0 be an integer, and G = (V,E, t, h) a directed graph. A
walk of length k in G is an alternating sequence of vertices and edges

w = (v0, e1, v1, . . . , ek, vk),

such that ei is an edge from vi−1 to vi for all i = 1, . . . , k. We say that w begins in
v0 and ends in vk.

Example 6.2. In the Fibonacci graph (Example 4.2), let f = f(n) be the num-
ber of walks of length n beginning and ending in v1. Then the values of f , i.e.,
f(1), f(2), . . ., form the sequence 1, 2, 3, 5, 8, 13, 21, . . ., which is the Fibonacci se-
quence shifted by one. The seqence f(0), f(1), f(2), . . . form the usual Fibonacci
sequence 1, 2, 3, 5, 8, 13, 21, . . ., if we remember that f(0)—by definition—equals
one, since a walk of length zero consists of a single vertex.

Example 6.3. Consider the Fibonacci graph (Example 4.2) with e2 omitted. Let
f(n) be the number of walks of length n from v1 to v2. Then f(n) = 1 for all n,
since a walk from v1 to v2 of length n must traverse e3 n−1 times and then traverse
e1 at the end. If we add to this graph a single self-loop at v2, then f(n) = n for all
n, since now we may loop at v1 using e3 i times, traverse e1 to v2, and loop at v2
n− i+ 1 times for any i = 0, 1, . . . , n− 1; if we add two self-loops at v2 instead of
only one, then f(n) is

1 + 2 + 4 + · · ·+ 2n−1 = 2n − 1
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since once we arrive at v2 we have 2n−i+1 ways to loop n − i + 1 times instead of
a single way; if instead of adding two self-loops at v2 we add three self-loops, then
f(n) becomes

1 + 3 + 32 + · · ·+ 3n−1 = (3n − 1)/2.

Example 6.4. Consider the Fibonacci graph (Example 4.2) with e3 omitted. Let
f(n) be the number of walks of length n from v1 to v2. Then f(n) = 1 if n is odd,
and f(n) = 0 if n is even.

Definition 6.5. A walk counting function, or simply a walk count, is any f(n) such
that there is a finite graph G with subsets of vertices V1 and V2 such that f(n) is
the number of walks of length n beginning in (some vertex of) V1 and ending in
(some vertex of) V2.

[A finite graph is one whose vertex and edge sets are finite.] For example, all the
functions the previous examples are walk counts. If f(n) is the number of walks of
length n in the Fibonacci graph beginning in v1 and ending in {v1, v2}, then f(n) is
a walk count given by f(n) = Fn + Fn−1, where Fn is the n-th Fibonacci number.

Example 6.6. If f(n), g(n) are walk counts, then it is not hard to see that f(n) +
g(n) and f(n)g(n) are walk counts; see the exercises.

7. Asymptotic Tests

If f : N → Z has an asymptotic ratio, there are many situations where we can
tell that f(n) is not a walk count.

Theorem 7.1 (Asymptotic Tests). Let f(n) have finite asymptotic ratio ρ. Then
f(n) is not a walk count if any of the following hold:

(1) f(n) = o(ρn),
(2) f(n) = Θ(ρnnr) for a real r that is not an integer,
(3) ρ is a rational number that is not an integer.

There are many related tests, most of which we will not use in CPSC 421: for
example, if f is a walk count then ρ must be an algebraic integer2. We discuss this
and other tests in Appendix B.

Example 7.2. Let f(n) be the number of strings in {0, 1} of length n of the form
0i1j where i is a perfect square. Then f(n) = b

√
nc, which has asymptotic ratio 1.

But

f(n) = b
√
nc =

√
n+O(1) = Θ(n1/2) ,

so f(n) cannot be a walk count.

Example 7.3. Let f(n) be the number of strings in {0, 1} of length n that represent
prime numbers written in base 2. It is a classical fact that f(n) ∼ 2n/ loge(2

n).
Hence f(n) ∼ γ2n/n where for the constant γ = log2 e = 1.4426 . . . Since the
asypmtotic ratios of the functions γ, 2n, and 1/n, are respectively 1, 2, and 1, the
asymptotic ratio of f(n) is 2. But

f(n) ∼ γ2n/n = o(2n),

f(n) is not a walk count.

2i.e., must satisfy a polynomial equation xn + a1xn−1 + . . .+ an = 0 where the ai ∈ Z.
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8. Conclusion

We have reviewed a lot of the material prerequisite to CPSC 421; you will need
some set theory, which we will review in another handout before we begin Chap-
ter 1 of [Sip] covering regular languages. When we wish to prove that certain
languages are not regular, we will have some tools such as (1) asymptotic tests, (2)
the Pumping Lemma, and (3) the Myhill-Nerode theorem. All of this material is a
good warmup to the main goal of this course, which is to study computability and
the complexity of algorithms, beginning with Chapter 3 of [Sip].

Appendix A. Exercises form This Article and Chapter 0 of [Sip]

These exercises are based on the material in this article and parts of Chapter 0
in [Sip] not covered here, including set notation and proofs of various kinds.

I AM IN THE PROCESS OF ADDING MORE EXERCISES TO
THIS SECTION AND/OR CHANING THEIR ORDER; THE EXER-
CISE NUMBERS WILL CHANGE.

Exercise A.1. Let Fn denote the n-th Fibonacci number, i.e., F1 = 1, F2 = 1, and
for n ≥ 3 we have Fn = Fn−1 + Fn−2. Give a proof by induction in the following
exercises.

(1) Prove that for all n ∈ Z, the number of walks of length n from v1 to itself
in the Fibonacci graph (Example 4.2) equals Fn.

(2) Compute FnFn+2 − F 2
n+1 for n = 1, . . . , 5; guess a simple formula for this

expression, and prove that your guess is correct.
(3) Compute FnFn+3 − Fn+1Fn+2 for n = 1, . . . , 5; guess a simple formula for

this expression, and prove that your guess is correct.
(4) Compute FnFn+8−Fn+1Fn+7 for n = 1, . . . , 5; you can write your answer in

terms of the Fibonacci numbers rather than writing out the actual integer;
guess a simple formula for this expression, and prove that your guess is
correct.

(5) Compute FnFn+100 − Fn+1Fn+99 for n = 1, . . . , 5; you can write your an-
swer in terms of the Fibonacci numbers rather than writing out the actual
integer; guess a simple formula for this expression, and prove that your
guess is correct.

(6) Prove that if ξ+ = (1+
√

5)/2 and ξ− = (1−
√

5)/2, then Fn = (ξn+−ξn−)/
√

5;
use this formula to determine the asymptotic ratio of the function Fn. [Hint:
first find the roots of x2 = x+ 1.]

(7) Prove that the GCD (greatest common divisor) of Fn and Fn+1 is 1.

Exercise A.2. Recall that the number of subsets of size k from a fixed set of n
elements is (

n

k

)
=
n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 1
=

n!

k!(n− k)!
,

where ! denotes the “factorial,” e.g., k! = k(k − 1) . . . 1.

(1) Prove that for any n ∈ N we have that
∑n

m=1m = 1 + 2 + · · · + n equals(
n+1
2

)
; use induction on n.

(2) Prove that for any n, k ∈ N we have that(
1

k

)
+

(
2

k

)
+ · · ·+

(
n

k

)
=

(
n+ 1

k + 1

)
;
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prove this by fixing an integer k and using induction on n.

Exercise A.3. Let k ∈ N (i.e., k is a positive integer) and A1, . . . , Ak be finite
sets.

(1) Prove that

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.
[Hint: each element of x ∈ A1 ∪ A2 is counted once on the LHS (left-hand
side). What about the RHS (right-hand side)? You may need to consider
a few cases.]

(2) Prove that

|A1∪A2∪A3| = |A1|+ |A2|+ |A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+ |A1∩A2∩A3|.

(3) Prove that for any m ∈ N that

m∑
j=0

(
m

j

)
(−1)j =

(
m

0

)
−
(
m

1

)
+

(
m

2

)
+ · · ·+ (−1)m

(
m

m

)
= 0

[Hint: you may use induction on m, or you may use the binomial theorem
(x+ y)m =

∑m
j=0 x

m−jyj
(
m
j

)
and cleverly choose x, y.]

(4) Show that

|A1 ∪A2 ∪ . . . ∪Ak| =
∑

0≤i≤k

|Ai| −
∑

0≤i1<i2≤k

|Ai1 ∩Ai2 |

+
∑

0≤i1<i2<i3≤k

|Ai1 ∩Ai2 ∩Ai3 | · · ·+ (−1)k|A1 ∩A2 ∩ . . . ∩Ak|.

[Hint: you can use part (3) of this exercise; or you can ignore part (3) and
use induction.]

Exercise A.4. Exercises 7.1 and 7.2 of [Sip] are good to make sure you have the
basic idea of big-O and little-o notation. However, rather than just answering true
or false, you might be asked to justify your answer.

(1) Show that f(n) = O(g(n) in the following examples, by finding C, n0 such
that f(n) ≤ Cg(n) provided that n ≥ n0 for:
(a) f(n) = 3n, g(n) = 4n;
(b) f(n) = 100 · 3n, g(n) = 4n;
(c) f(n) = 3n, g(n) = n(n− 1);
(d) f(n) = n2 + 3n+ 1, g(n) = n(n− 1).

(2) Compute the limit limn→∞ f(n)/g(n) to show that f(n) = o(g(n)) in the
following examples:
(a) f(n) = 3n, g(n) = 4n;
(b) f(n) = 100 · 3n, g(n) = 4n;
(c) f(n) = 3n, g(n) = n(n− 1);
(d) f(n) = n2 + 3n+ 1, g(n) = n(n− 1)(n− 2).

Exercise A.5. Prove that if f, g are functions Z→ R+, then:

(1) f(n) = O(g(n)) iff for some C we have log f(n)− log g(n) ≤ C for all n;
(2) f(n) = o(g(n)) iff log g(n)− log f(n) tends to infinity (as n→∞);
(3) f(n) ∼ g(n) iff log g(n)− log f(n) tends to zero (as n→∞).
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Exercise A.6. Let f1, f2, g1, g2 be functions N→ R+ such that f2 = o(f1) (which
we write instead of f2(n) = o(f1(n)) for brevity) and g2 = o(g1). Let f = f1 + f2
and g = g1 + g2. Prove that:

(1) f = o(g) iff f1 = o(g1).
(2) f = O(g) iff f1 = O(g1).
(3) f = Θ(g) iff f1 = Θ(g1).
(4) f ∼ g iff f1 ∼ g1.

Exercise A.7. By taking a limit, find the asymptotic ratios, when they exist, of
the following sequences {an} where:

(1) an = 5n;
(2) an = ρn for some real ρ > 0;
(3) an = n2;

(4) an = 2n
2

.

Exercise A.8. Find the asymptotic ratios, when they exist, of the following se-
quences {an} where:

(1) an = 5n + 1;
(2) an = 3n2 − 4 (make a computation; don’t just quote the fact that any

nonzero polynomial has asymptotic ratio 1);
(3) an = 7n6 + 5n2 + n;

(4) an = 2n
2

+ 2n + n2 + 3.

[Hint: use the fact that f(n) and f(n) + g(n) have the same asymptotic ratio if
g(n) = o(f(n))]

Exercise A.9. Let {an} be a sequence of asymptotic ratio ρ. Find the asymptotic
ratios of the following sequences {bn} by taking a limit.

(1) bn = 3an.
(2) bn = an+1.
(3) bn = (an)3.

Exercise A.10. Describe f(n) defined to be the number of walks of length n
beginning in V1 and ending in V2 in the graph G = (V,E, h, t) where G,V1, V2 are
given below; justify your answer (give an explanation, but not a formal proof):

(1) V1 = V2 = V , G has one vertex and m edges (i.e., |V | = 1 and |E| = m).
(2) V1 = V2 = V , G has five vertices and each vertex has outdegree four.
(3) V1 = V2 = {v1}, G has V = {v1, v2}, E has 2 self-loops at v1, 2 edges

from v1 to v2, 2 edges from v2 to v1; your answer can involve the Fibonacci
numbers.

(4) V1 = V2 = {v1, v3}, G has V = {v1, v2, v3}, E one self-loop at v1, one self-
loop at v3, one edge from v1 to v2, one edge from v3 to v2, one edge from
v2 to v1, one edge from v2 to v3; your answer can involve the Fibonacci
numbers.

(5) V1 = {v1}, V2 = {v3}, G has V = {v1, v2, v3}, E has one self-loop at v1,
one self-loop at v2, one edge from v1 to v2, and one edge from v2 to v3.

Exercise A.11. Let G = (V,E, h, t) be the following “star” graph with one “cen-
ter” and seven “outer vertices” (this is an informal description): V = {c, v1, . . . , v7},
and E has one edge from c to each vi with 1 ≤ i ≤ 7, and one edge from each vi
to c with 1 ≤ i ≤ 7. Describe f(n) defined to be the number of walks of length n
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beginning in V1 and ending in V2 in the graph G with V1, V2 given below; justify
your answer (give an explanation, but not a formal proof):

(1) V1 = V2 = {c}.
(2) V1 = {c}, V2 = {v1}.
(3) V1 = {v1}, V2 = {c}.
(4) V1 = V2 = {v1}.
(5) V1 = {c, v1, v2}, V2 = {c, v2, v3}.

Exercise A.12. Say that a function f : N→ Z is infinite walk counting if it satisfies
the criteria of Definition 6.5 except that the graph is allowed to be infinite. Prove
that a function f : N→ Z is infinite walk counting iff f(n) ≥ 0 for all n ∈ N.

Exercise A.13. Show that if f, g are walk counts, then so is f+g, i.e., the function
f(n) + g(n). Do so by taking two graphs, G1 and G2, involved in producing the
walk counting functions f and g, and creating a new graph from G1 and G2.

Exercise A.14. Show that if f, g are walk counts, then so is fg, i.e., the function
f(n)g(n). Do so by taking two graphs, G1 and G2, involved in producing the walk
counting functions f and g, and creating a new graph from G1 and G2.

Exercise A.15. Let an be the number of strings of length n in {0, 1} such that
each 0 must immediately follow and immediately precede a 1; examples of such
strings would be 11010111 and 1111, but not 110 or 1001.

(1) Write out the values of an for n = 1, . . . , 6.
(2) Prove that an = an−1 + an−2 for all n ≥ 3.
(3) What is the capacity of {an}.
(4) Show that {an} is a walk count: draw or describe the graph and the set of

beginning and of ending vertices.

Exercise A.16. Use Stirling’s formula n! ∼
√

2πn(n/e)n to show that
(
2n
n

)
=

(2n)!/(n!)2 is ∼ γ22n/
√
n for a constant γ > 0. What is γ?

Exercise A.17. Use an asymptotic test to show that the following functions f(n)
are not walk functions of any (finite) directed graph:

(1) The number of strings of length n over {0, 1} representing a binary integer
of size at most n2/3.

(2) The number of strings of length n over {0, 1} representing a binary integer
of size at most n4/3.

(3) The number of strings of length 2n over {0, 1} with exactly n 0’s and n
1’s; you may use the result of Exercise A.16 (the value of γ is unimportant
here).

(4) The number of strings of length 2n of “matching parenthesis” (this number
is known to be

(
2n
n

)
/(n+ 1), the n-th Catalan number).

Appendix B. Asymptotic Tests and Linear Algebra

The basic idea is that any walk function is of the form

f(n) = uTAnw,
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where A is the adjacency matrix of the graph, and u,w are vectors whose compo-
nents are all 0’s or 1’s. From Jordan canonical form it follows that

f(n) =

s∑
i=1

λni pi(n)

where λ1, . . . , λs are the eigenvalues of A, and the pi = pi(n) are polynomials. The
Perron-Frobenius theorem3 implies that A has at least one real eigenvalue, and that
if λ1 ≥ 0 is the largest one, then every other eigenvalue is either (1) of absolute
value less than λ1, or (2) of the form ζλ1, where ζ is a d-th root of unity for some
d ∈ N. This easily implies our “asymptotic tests.”

Since A has integer coefficients, the λi must be algebraic integers. This gives a
further test.

It follows from the Cayley-Hamilton theorem that f(n) satisfies a linear recur-
rence equation

f(n) + c1f(n− 1) + . . .+ ctf(n− t) = 0

where the ci are the coefficients of the characteristic polynomial (or, sometimes
better yet, the minimal polynomial) of A.

You can probably use other aspects of linear algebra to give futher conditions
that walk counting functions must satisfy.

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,

Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf

3 Sometimes the Perron-Frobenius theorem is stated requiring that the associated digraph is
strongly connected; but one can order the strong components, whereupon the adjacency matrix

becomes a block lower triangular matrix whose blocks are strongly connected.
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