CPSC 421/501: Outline, Starting September 6, 2017

Joel Friedman

University of British Columbia www.math.ubc.ca/~jf

UBC September 2017

Joel Friedman (UBC)

CPSC 421/501

Course Overview

• Course summary:

- Solution We understand pretty well: there are "uncomputatable" problems, including the halting problem.
- © We don't understand: P versus NP.
- Course material:
 - Our course mainly follows Sipser's textbook.
 - ► We start with two articles: (1) prerequisites and walk counts, (2) self-referencing.
 - Chapter 1 is a good warm-up for the main material.
 - The main material is about Turing machines and computability (Chapters 3–5, 7–9).

Executive Summary of First Two Weeks

- Directed Graphs and Asymptotic Tests: Prerequisites (or stuff you must quickly learn).
- Directed Graphs and Asymptotic Tests: New material: Counting walks in directed graphs (e.g., Fibonacci numbers), asymptotic tests for walk counts.
- Uncomputability and Self-Referencing (and Paradoxes): Self-referencing is a powerful tool for proving theorems.

Paradoxes and Self-Referencing (2nd Article)

- Self-referencing is a powerful tool for proving theorems and discovering serious fundamental issues with what you are doing.
 - "This statement is a lie."
 - 2 "Let S be the sets of sets that don't contain themselves."
 - Use the smallest integer not described by an English sentence with fewer than one hundred words."
 - ④ Etc.
- Example of self-referencing (diagonalization) result:

Theorem: The set of "computer programs" over an alphabet is (infinite but) *less than* the number of "languages" or "decision problems."

Corollary: There exists a "language" (or a "decision problem") for which there is no corresponding "computer program" (or "algorithm").

Here's What We Don't Want

- Chapter 0: If |A| = 3 and |B| = 4, what is the largest possible value of $|A \cup B|$?
- Three weeks later: Let M be a Turing machine that invokes a universal Turing machine [specifically a multi-tape machine that can simulate k steps of an arbitrary machine M' in time O(f(M')k log k) where f(M') = O(poly(⟨M'⟩))] that preprocesses its input I by computing an injection Σ^{*} → Σ^{*} whose meaning is to negate... Etc.

This course:

- Review prerequisites, test our knowledge by studying "walks in directed graphs."
- Give some idea of diagonalization and self-referencing.
- Cover Chapter 1 is reasonable detail and sophistication.

Directed Graphs and Asymptotic Tests: Prerequisites

• Prerequisites (or stuff you must quickly learn, Chapter 0)

- Conventions regarding \mathbb{N} , \mathbb{R} , \mathbb{R}^+ , \mathbb{Z} , $\lim_{n\to\infty} f(n)$.
- ▶ Big-O, little-o, $\lim_{n\to\infty}$, Θ , ~ (reviewed in Section 7.1 of [Sip]).
- Basic ideas in set theory, alphabets, words/strings, languages.
- Recurrence equations (mainly from algorithms).
- Proofs (by induction, by contradiction, etc.).
- Counting $f(n) \stackrel{\text{def}}{=}$ the number walks of length *n* there are from a given vertex to another in a fixed directed graph.
- What functions f(n) can never arise as such. (By direct, simple, *asymptotic tests*.)

(日) (同) (三) (三)

Discussion Ideas from "Directed Graphs ..."

• $\mathbb{N}, \mathbb{R}, \mathbb{R}^+, \mathbb{Z}$. E.g., $n \mapsto n \log_2 n$ is $\mathbb{N} \to \mathbb{R}$, problematic for [Sip] who uses $\mathbb{N} \to \mathbb{R}^+$ for big-O, little-o.

big-O, little-o review:

- Big-O, little-o basic examples. $n^2 + 3n + 20 = n^2 + O(n) = O(n^2)$.
- ▶ $3n + 20 = o(n^2)$ (take limit); so $n^2 + 3n + 20 = n^2 + o(n)$; $n \log_2 n + 20n + 3 = n \log_2 n + o(n \log_2 n)$.
- Facts: for any $a, \epsilon > 0$: $n^a = o(n^{a+\epsilon})$, $\log n = o(n^\epsilon)$; $a^n = o((a+\epsilon)^n)$; $\epsilon > 0$ connotes a "small" number. Meta-facts: $f(n) = o(g(n)) \Rightarrow f(n) = O(g(n))$. $f_1(n) = O(g_1(n) \text{ and } f_2(n) = O(g_2(n))$ implies
- $f_1 f_2 = O(g_1 g_2)$, etc.
- $n^2 + 3n + 20 = \Theta(n^2)$, since $n^2 \le n^2 + 3n + 20 \le 24n^2$ for all $n \ge 1$.

Maybe new: Θ and ∼.

- ► $f(n) = \Theta(g(n))$ means $C_1g \le f \le C_2g$ for large n; $f(n) \sim g(n)$ means $\lim_{n\to\infty} f(n)/g(n) = 1$.
- "Order f(n)" can mean $\Theta(f(n))$ or O(f(n)): "Linear time algorithm" means "runs in $\Theta(n)$ time"; quadratic $\Theta(n^2)$; cubic $\Theta(n^3)$.
- Simplify: asymptotic relations are determined by largest term: $5n^2 7n + 5$ can be replaced with $5n^2$ for the sake of O, o, Θ, \sim .
- Stirling's approximation: $n! \sim (n/e)^n \sqrt{2\pi n}$ or $\sqrt{2\pi n} (n/e)^n \leq n! \leq \sqrt{2\pi n} (n/e)^n e^{1/(12n)}$

• f(n) = OO(g(n))

- Proofs by induction, contradition, etc.
- Set notation: A ∩ B, |A|, A × B, etc.
- Alphabet: finite set; string (word) over an alphabet; substring; concatenation; language.
- Graphs, digraphs (directed graphs), vertices, edges, etc.

イロト 不得下 イヨト イヨト 二日

Discussion Ideas from "Directed Graphs ..."

Use walk counts on directed graphs to review everything and give some new ideas.

- Definition of digraph. Fibonacci graph. Walks.
- Examples.

▲ 同 ▶ → ● ▶

Many Topics Starting Friday, Sept 8, 2017

- Note: [Sip] uses \mathcal{R}^+ to denote $\mathbb{R}_{\geq 0}$, i.e., the non-negative reals.
- Instructions for gradescope.com to come.
- Today: O, o, Θ, ∼ and asymptotic ratio.
- "Quadratic time," $3n^2 + 3n \sim 3n^2$, $n! \sim \sqrt{2\pi n}(n/e)^n$, $\log(n!) \sim n \log n$.
- Example: $\sin(1)/2 + \sin(2)/4 + \sin(3)/8 + \cdots + \sin(n)/2^n + \cdots$ converges.
- Exercise A.4(1d) $n^2 + 3n + 1 = O(n(n-1))$? Ex. A.5(3) $f \sim g$ iff $\log(f) \log(g) = o(1)$?
- Walks in directed graphs, walk counting functions.
- Walk counts in a graph where the first vertex has five self-loops, the second has three, and there is one edge from the first to the second (and that's it).