CPSC 421/501: Outline, Starting September 6, 2017

Joel Friedman
University of British Columbia
www.math.ubc.ca/~jf

UBC
September 2017

Course Overview

- Course summary:
- © We understand pretty well: there are "uncomputatable" problems, including the halting problem.
- © We don't understand: P versus NP.
- Course material:
- Our course mainly follows Sipser's textbook.
- We start with two articles: (1) prerequisites and walk counts, (2) self-referencing.
- Chapter 1 is a good warm-up for the main material.
- The main material is about Turing machines and computability (Chapters 3-5, 7-9).

Executive Summary of First Two Weeks

- Directed Graphs and Asymptotic Tests: Prerequisites (or stuff you must quickly learn).
- Directed Graphs and Asymptotic Tests: New material: Counting walks in directed graphs (e.g., Fibonacci numbers), asymptotic tests for walk counts.
- Uncomputability and Self-Referencing (and Paradoxes): Self-referencing is a powerful tool for proving theorems.

Paradoxes and Self-Referencing (2nd Article)

- Self-referencing is a powerful tool for proving theorems and discovering serious fundamental issues with what you are doing.
(1) "This statement is a lie."
(2) "Let S be the sets of sets that don't contain themselves."
(3) "Let n be the smallest integer not described by an English sentence with fewer than one hundred words."
(1) Etc.
- Example of self-referencing (diagonalization) result:

Theorem: The set of "computer programs" over an alphabet is (infinite but) less than the number of "languages" or "decision problems."
Corollary: There exists a "language" (or a "decision problem") for which there is no corresponding "computer program" (or "algorithm").

Here's What We Don't Want

- Chapter 0: If $|A|=3$ and $|B|=4$, what is the largest possible value of $|A \cup B|$?
- Three weeks later: Let M be a Turing machine that invokes a universal Turing machine [specifically a multi-tape machine that can simulate k steps of an arbitrary machine M^{\prime} in time $O\left(f\left(M^{\prime}\right) k \log k\right)$ where $\left.f\left(M^{\prime}\right)=O\left(\operatorname{poly}\left(\left\langle M^{\prime}\right\rangle\right)\right)\right]$ that preprocesses its input I by computing an injection $\Sigma^{*} \rightarrow \Sigma^{*}$ whose meaning is to negate... Etc.

This course:

- Review prerequisites, test our knowledge by studying "walks in directed graphs."
- Give some idea of diagonalization and self-referencing.
- Cover Chapter 1 is reasonable detail and sophistication.

Directed Graphs and Asymptotic Tests: Prerequisites

- Prerequisites (or stuff you must quickly learn, Chapter 0)
- Conventions regarding $\mathbb{N}, \mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}, \lim _{n \rightarrow \infty} f(n)$.
- Big-O, little-o, $\lim _{n \rightarrow \infty}, \Theta, \sim$ (reviewed in Section 7.1 of [Sip]).
- Basic ideas in set theory, alphabets, words/strings, languages.
- Recurrence equations (mainly from algorithms).
- Proofs (by induction, by contradiction, etc.).
- Counting $f(n) \stackrel{\text { def }}{=}$ the number walks of length n there are from a given vertex to another in a fixed directed graph.
- What functions $f(n)$ can never arise as such. (By direct, simple, asymptotic tests.)

Discussion Ideas from "Directed Graphs ..."

$\mathcal{N}, \mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}$. E.g., $n \mapsto n \log _{2} n$ is $\mathbb{N} \rightarrow \mathbb{R}$, problematic for [Sip] who uses $\mathbb{N} \rightarrow \mathbb{R}^{+}$for big-O, little-o.

- big-O, little-o review:
- Big-O, little-o basic examples. $n^{2}+3 n+20=n^{2}+O(n)=O\left(n^{2}\right)$.
- $3 n+20=o\left(n^{2}\right)$ (take limit); so $n^{2}+3 n+20=n^{2}+o(n) ; n \log _{2} n+20 n+3=n \log _{2} n+o\left(n \log _{2} n\right)$.
- Facts: for any $a, \epsilon>0: n^{a}=o\left(n^{a+\epsilon}\right), \log n=o\left(n^{\epsilon}\right) ; a^{n}=o\left((a+\epsilon)^{n}\right) ; \epsilon>0$ connotes a "small" number.
- Meta-facts: $f(n)=o(g(n)) \Rightarrow f(n)=O(g(n)) . f_{1}(n)=O\left(g_{1}(n)\right.$ and $f_{2}(n)=O\left(g_{2}(n)\right)$ implies $f_{1} f_{2}=O\left(g_{1} g_{2}\right)$, etc.
- $n^{2}+3 n+20=\Theta\left(n^{2}\right)$, since $n^{2} \leq n^{2}+3 n+20 \leq 24 n^{2}$ for all $n \geq 1$.
- Maybe new: Θ and \sim.
$-f(n)=\Theta(g(n))$ means $C_{1} g \leq f \leq C_{2} g$ for large $n ; f(n) \sim g(n)$ means $\lim _{n \rightarrow \infty} f(n) / g(n)=1$.
- "Order $f(n)$ " can mean $\Theta(f(n))$ or $O(f(n))$: "Linear time algorithm" means "runs in $\Theta(n)$ time"; quadratic $\Theta\left(n^{2}\right)$; cubic $\Theta\left(n^{3}\right)$.
- Simplify: asymptotic relations are determined by largest term: $5 n^{2}-7 n+5$ can be replaced with $5 n^{2}$ for the sake of O, o, Θ, \sim.
\rightarrow Stirling's approximation: $n!\sim(n / e)^{n} \sqrt{2 \pi n}$ or $\sqrt{2 \pi n}(n / e)^{n} \leq n!\leq \sqrt{2 \pi n}(n / e)^{n} e^{1 /(12 n)}$
- $f(n)=O O(g(n))$
- Proofs by induction, contradition, etc.
- Set notation: $A \cap B,|A|, A \times B$, etc.
- Alphabet: finite set; string (word) over an alphabet; substring; concatenation; language.
- Graphs, digraphs (directed graphs), vertices, edges, etc.

Discussion Ideas from "Directed Graphs ..."

Use walk counts on directed graphs to review everything and give some new ideas.

- Definition of digraph. Fibonacci graph. Walks.
- Examples.

Many Topics Starting Friday, Sept 8, 2017

- Note: $[\mathrm{Sip}]$ uses \mathcal{R}^{+}to denote $\mathbb{R}_{\geq 0}$, i.e., the non-negative reals.
- Instructions for gradescope.com to come.
- Today: O, o, Θ, \sim and asymptotic ratio.
- "Quadratic time," $3 n^{2}+3 n \sim 3 n^{2}, n!\sim \sqrt{2 \pi n}(n / e)^{n}, \log (n!) \sim n \log n$.
- Example: $\sin (1) / 2+\sin (2) / 4+\sin (3) / 8+\cdots+\sin (n) / 2^{n}+\cdots$ converges.
- Exercise A.4(1d) $n^{2}+3 n+1=O(n(n-1))$? Ex. A.5(3) $f \sim g$ iff $\log (f)-\log (g)=o(1)$?
- Walks in directed graphs, walk counting functions.
- Walk counts in a graph where the first vertex has five self-loops, the second has three, and there is one edge from the first to the second (and that's it).

