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Course Overview

Course summary:
I , We understand pretty well: there are “uncomputatable” problems,

including the halting problem.
I / We don’t understand: P versus NP.

Course material:
I Our course mainly follows Sipser’s textbook.
I We start with two articles: (1) prerequisites and walk counts, (2)

self-referencing.
I Chapter 1 is a good warm-up for the main material.
I The main material is about Turing machines and computability

(Chapters 3–5, 7–9).
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Executive Summary of First Two Weeks

Directed Graphs and Asymptotic Tests: Prerequisites (or stuff you
must quickly learn).

Directed Graphs and Asymptotic Tests: New material: Counting
walks in directed graphs (e.g., Fibonacci numbers), asymptotic tests
for walk counts.

Uncomputability and Self-Referencing (and Paradoxes):
Self-referencing is a powerful tool for proving theorems.
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Paradoxes and Self-Referencing (2nd Article)

Self-referencing is a powerful tool for proving theorems and
discovering serious fundamental issues with what you are doing.

1 “This statement is a lie.”
2 “Let S be the sets of sets that don’t contain themselves.”
3 “Let n be the smallest integer not described by an English sentence

with fewer than one hundred words.”
4 Etc.

Example of self-referencing (diagonalization) result:
Theorem: The set of “computer programs” over an alphabet is
(infinite but) less than the number of “languages” or “decision
problems.”
Corollary: There exists a “language” (or a “decision problem”) for
which there is no corresponding “computer program” (or
“algorithm”).
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Here’s What We Don’t Want

Chapter 0: If |A| = 3 and |B| = 4, what is the largest possible value
of |A ∪ B| ?

Three weeks later: Let M be a Turing machine that invokes a
universal Turing machine [specifically a multi-tape machine that can
simulate k steps of an arbitrary machine M ′ in time O(f (M ′)k log k)
where f (M ′) = O(poly(〈M ′〉))] that preprocesses its input I by
computing an injection Σ∗ → Σ∗ whose meaning is to negate... Etc.

This course:

Review prerequisites, test our knowledge by studying “walks in
directed graphs.”

Give some idea of diagonalization and self-referencing.

Cover Chapter 1 is reasonable detail and sophistication.
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Directed Graphs and Asymptotic Tests: Prerequisites

Prerequisites (or stuff you must quickly learn, Chapter 0)

I Conventions regarding N, R, R+, Z, limn→∞ f (n).
I Big-O, little-o, limn→∞, Θ, ∼ (reviewed in Section 7.1 of [Sip]).
I Basic ideas in set theory, alphabets, words/strings, languages.
I Recurrence equations (mainly from algorithms).
I Proofs (by induction, by contradiction, etc.).

Counting f (n)
def
= the number walks of length n there are from a given

vertex to another in a fixed directed graph.

What functions f (n) can never arise as such. (By direct, simple,
asymptotic tests.)
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Discussion Ideas from “Directed Graphs ...”

N,R,R+, Z. E.g., n 7→ n log2 n is N→ R, problematic for [Sip] who uses N→ R+ for big-O, little-o.

big-O, little-o review:
I Big-O, little-o basic examples. n2 + 3n + 20 = n2 + O(n) = O(n2).
I 3n + 20 = o(n2) (take limit); so n2 + 3n + 20 = n2 + o(n); n log2 n + 20n + 3 = n log2 n + o(n log2 n).
I Facts: for any a, ε > 0: na = o(na+ε), log n = o(nε); an = o((a + ε)n); ε > 0 connotes a “small” number.
I Meta-facts: f (n) = o(g(n))⇒ f (n) = O(g(n)). f1(n) = O(g1(n) and f2(n) = O(g2(n)) implies

f1f2 = O(g1g2), etc.
I n2 + 3n + 20 = Θ(n2), since n2 ≤ n2 + 3n + 20 ≤ 24n2 for all n ≥ 1.

Maybe new: Θ and ∼.
I f (n) = Θ(g(n)) means C1g ≤ f ≤ C2g for large n; f (n) ∼ g(n) means limn→∞ f (n)/g(n) = 1.
I “Order f (n)” can mean Θ(f (n)) or O(f (n)): “Linear time algorithm” means “runs in Θ(n) time”; quadratic

Θ(n2); cubic Θ(n3).
I Simplify: asymptotic relations are determined by largest term: 5n2 − 7n + 5 can be replaced with 5n2 for the

sake of O, o,Θ,∼.
I Stirling’s approximation: n! ∼ (n/e)n

√
2πn or

√
2πn(n/e)n ≤ n! ≤

√
2πn(n/e)ne1/(12 n)

f (n) = OO(g(n))

Proofs by induction, contradition, etc.

Set notation: A ∩ B, |A|, A× B, etc.

Alphabet: finite set; string (word) over an alphabet; substring; concatenation; language.

Graphs, digraphs (directed graphs), vertices, edges, etc.
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Discussion Ideas from “Directed Graphs ...”

Use walk counts on directed graphs to review everything and give some
new ideas.

Definition of digraph. Fibonacci graph. Walks.

Examples.
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Many Topics Starting Friday, Sept 8, 2017

Note: [Sip] uses R+ to denote R≥0, i.e., the non-negative reals.

Instructions for gradescope.com to come.

Today: O, o,Θ,∼ and asymptotic ratio.
“Quadratic time,” 3n2 + 3n ∼ 3n2, n! ∼

√
2πn(n/e)n , log(n!) ∼ n log n.

Example: sin(1)/2 + sin(2)/4 + sin(3)/8 + · · · + sin(n)/2n + · · · converges.

Exercise A.4(1d) n2 + 3n + 1 = O(n(n − 1)) ? Ex. A.5(3) f ∼ g iff log(f )− log(g) = o(1) ?

Walks in directed graphs, walk counting functions.

Walk counts in a graph where the first vertex has five self-loops, the second has three, and there is one edge from the

first to the second (and that’s it).
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