
CPSC 421/501: Outline, Starting September 6, 2017

Joel Friedman

University of British Columbia
www.math.ubc.ca/∼jf

UBC
September 2017

Joel Friedman (UBC) CPSC 421/501 September 2017 1 / 9

Course Overview

Course summary:
I , We understand pretty well: there are “uncomputatable” problems,

including the halting problem.
I / We don’t understand: P versus NP.

Course material:
I Our course mainly follows Sipser’s textbook.
I We start with two articles: (1) prerequisites and walk counts, (2)

self-referencing.
I Chapter 1 is a good warm-up for the main material.
I The main material is about Turing machines and computability

(Chapters 3–5, 7–9).

Joel Friedman (UBC) CPSC 421/501 September 2017 2 / 9

Executive Summary of First Two Weeks

Directed Graphs and Asymptotic Tests: Prerequisites (or stuff you
must quickly learn).

Directed Graphs and Asymptotic Tests: New material: Counting
walks in directed graphs (e.g., Fibonacci numbers), asymptotic tests
for walk counts.

Uncomputability and Self-Referencing (and Paradoxes):
Self-referencing is a powerful tool for proving theorems.

Joel Friedman (UBC) CPSC 421/501 September 2017 3 / 9

Paradoxes and Self-Referencing (2nd Article)

Self-referencing is a powerful tool for proving theorems and
discovering serious fundamental issues with what you are doing.

1 “This statement is a lie.”
2 “Let S be the sets of sets that don’t contain themselves.”
3 “Let n be the smallest integer not described by an English sentence

with fewer than one hundred words.”
4 Etc.

Example of self-referencing (diagonalization) result:
Theorem: The set of “computer programs” over an alphabet is
(infinite but) less than the number of “languages” or “decision
problems.”
Corollary: There exists a “language” (or a “decision problem”) for
which there is no corresponding “computer program” (or
“algorithm”).

Joel Friedman (UBC) CPSC 421/501 September 2017 4 / 9

Here’s What We Don’t Want

Chapter 0: If |A| = 3 and |B| = 4, what is the largest possible value
of |A ∪ B| ?

Three weeks later: Let M be a Turing machine that invokes a
universal Turing machine [specifically a multi-tape machine that can
simulate k steps of an arbitrary machine M ′ in time O(f (M ′)k log k)
where f (M ′) = O(poly(〈M ′〉))] that preprocesses its input I by
computing an injection Σ∗ → Σ∗ whose meaning is to negate... Etc.

This course:

Review prerequisites, test our knowledge by studying “walks in
directed graphs.”

Give some idea of diagonalization and self-referencing.

Cover Chapter 1 is reasonable detail and sophistication.

Joel Friedman (UBC) CPSC 421/501 September 2017 5 / 9

Directed Graphs and Asymptotic Tests: Prerequisites

Prerequisites (or stuff you must quickly learn, Chapter 0)

I Conventions regarding N, R, R+, Z, limn→∞ f (n).
I Big-O, little-o, limn→∞, Θ, ∼ (reviewed in Section 7.1 of [Sip]).
I Basic ideas in set theory, alphabets, words/strings, languages.
I Recurrence equations (mainly from algorithms).
I Proofs (by induction, by contradiction, etc.).

Counting f (n)
def
= the number walks of length n there are from a given

vertex to another in a fixed directed graph.

What functions f (n) can never arise as such. (By direct, simple,
asymptotic tests.)

Joel Friedman (UBC) CPSC 421/501 September 2017 6 / 9

Discussion Ideas from “Directed Graphs ...”

N,R,R+, Z. E.g., n 7→ n log2 n is N→ R, problematic for [Sip] who uses N→ R+ for big-O, little-o.

big-O, little-o review:
I Big-O, little-o basic examples. n2 + 3n + 20 = n2 + O(n) = O(n2).
I 3n + 20 = o(n2) (take limit); so n2 + 3n + 20 = n2 + o(n); n log2 n + 20n + 3 = n log2 n + o(n log2 n).
I Facts: for any a, ε > 0: na = o(na+ε), log n = o(nε); an = o((a + ε)n); ε > 0 connotes a “small” number.
I Meta-facts: f (n) = o(g(n))⇒ f (n) = O(g(n)). f1(n) = O(g1(n) and f2(n) = O(g2(n)) implies

f1f2 = O(g1g2), etc.
I n2 + 3n + 20 = Θ(n2), since n2 ≤ n2 + 3n + 20 ≤ 24n2 for all n ≥ 1.

Maybe new: Θ and ∼.
I f (n) = Θ(g(n)) means C1g ≤ f ≤ C2g for large n; f (n) ∼ g(n) means limn→∞ f (n)/g(n) = 1.
I “Order f (n)” can mean Θ(f (n)) or O(f (n)): “Linear time algorithm” means “runs in Θ(n) time”; quadratic

Θ(n2); cubic Θ(n3).
I Simplify: asymptotic relations are determined by largest term: 5n2 − 7n + 5 can be replaced with 5n2 for the

sake of O, o,Θ,∼.
I Stirling’s approximation: n! ∼ (n/e)n

√
2πn or

√
2πn(n/e)n ≤ n! ≤

√
2πn(n/e)ne1/(12 n)

f (n) = OO(g(n))

Proofs by induction, contradition, etc.

Set notation: A ∩ B, |A|, A× B, etc.

Alphabet: finite set; string (word) over an alphabet; substring; concatenation; language.

Graphs, digraphs (directed graphs), vertices, edges, etc.

Joel Friedman (UBC) CPSC 421/501 September 2017 7 / 9

Discussion Ideas from “Directed Graphs ...”

Use walk counts on directed graphs to review everything and give some
new ideas.

Definition of digraph. Fibonacci graph. Walks.

Examples.

Joel Friedman (UBC) CPSC 421/501 September 2017 8 / 9

Many Topics Starting Friday, Sept 8, 2017

Note: [Sip] uses R+ to denote R≥0, i.e., the non-negative reals.

Instructions for gradescope.com to come.

Today: O, o,Θ,∼ and asymptotic ratio.
“Quadratic time,” 3n2 + 3n ∼ 3n2, n! ∼

√
2πn(n/e)n , log(n!) ∼ n log n.

Example: sin(1)/2 + sin(2)/4 + sin(3)/8 + · · · + sin(n)/2n + · · · converges.

Exercise A.4(1d) n2 + 3n + 1 = O(n(n − 1)) ? Ex. A.5(3) f ∼ g iff log(f)− log(g) = o(1) ?

Walks in directed graphs, walk counting functions.

Walk counts in a graph where the first vertex has five self-loops, the second has three, and there is one edge from the

first to the second (and that’s it).

Joel Friedman (UBC) CPSC 421/501 September 2017 9 / 9

