HOMEWORK \#9, CPSC 421/501, FALL 2017

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) We may only mark a subset of the problems below, depending on time constraints; the solution set we provide will solve all of the problems below.
(2) Proofs should be written out formally. Your solutions should be explained: e.g., if we ask for a DFA, you should explain how it works, not merely produce a diagram of the DFA.
(3) Homework that is difficult to read may not be graded.
(4) You may work together on homework, you must write up your own solutions individually. You must acknowledge with whom you worked (specify their ugrad.cs.ubc.ca email addresses). You must also acknowledge any sources you have used beyond the textbook and two articles on the class website.
(5) When you submit your homework to gradescope.com, you need to put the solutions to different problems on different pages; gradescope.com will ask you to identify which pages correspond to which problems. Please use the problem numbers below.
(6) Bonus questions count for marks above the 10% homework grade.

Homework Problems

(1) Let PARTITION be the language consisting of descriptions $\left\langle n_{1}, \ldots, n_{m}\right\rangle$ of elements $n_{1}, \ldots, n_{m} \in \mathbb{Z}$ such that there exists an $I \subset\{1, \ldots, m\}$ such that

$$
\sum_{i \in I} n_{i}=\sum_{i \notin I} n_{i} .
$$

Prove that PARTITION is NP-complete, by (1) arguing that PARTITION is in NP (this is similar to Theorem 7.25 in [Sip]), (2) giving a reduction from SUBSET-SUM to PARTITION, and (3) explaining why your reduction can be computed in polynomial time. [Make sure you address (1) and (3), not just (2).]
(2) Exercise 7.24 of [Sip].
(3) Exercise 7.29 of [Sip].
(4) Problem 4 of my Final Exam from December 2014 (i.e., Exercise 7.22 of [Sip]).

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

