
Midterm Solutions, CPSC 421/501, 2017W1

N. Bayless, J. Friedman, R. Stiyer, and S. Yang

1

1. True: the intersection of two regular languages is regular; see Sec-
tions 1.1 and 1.2 of [Sip].

2. False: for example, the intersection of the empty language with any
nonregular language is the empty language.

3. False: for example, the language L = {1n2 | n ∈ Z≥0} is nonregular,
but L∗ = 1∗.

4. True: if L1 is regular, then L2 is regular implies that L1 ∩ L2 is reg-
ular (see the first question). Hence if L1 is regular, then if L1 ∩ L2 is
nonregular then L2 cannot be regular.

5. True: if L is recognized by a DFA, from the DFA one can build a Turing
machine that moves right and transitions through states just like the
DFA; upon reading a blank symbol the Turing machine transitions to
qaccept or qreject according to whether or not the current state is a final
state of the DFA. (See also Problem 2 of this exam: this involves a
regular language for which you are asked to give a Turing machine that
recognizes it.)

2

The transition diagram below uses a condensed version of the notation used
by Sipser: an edge labeled {0, 1} → R is equivalent to an edge labeled with
both 0 → R and 1 → R. This, of course, is a further simplification of the
full δ function definition, and is equivalent to writing δ(qstart, 0) = (qend, 0, R)

1



and δ(qstart, 1) = (qend, 1, R), where qstart is the state from which the edge
leaves and qend is the state in which the edge terminates.

Note that this language is regular, so a Turing machine which decides this
language will not need to backtrack (i.e. move left). Since we want to accept
only strings whose length is divisible by 3, we need 5 states: one state each
for the possible remainders modulo 3 (q0 for 0 mod 3, q1 for 1 mod 3, and q2
for 2 mod 3), an accepting state (qacc), and a rejecting state (qrej). It doesn’t
matter what symbols make up the string as long as its length is divisible by
3, so the behaviour should be same whether the next symbol read is a 0 or a
1.

We start before having read the first symbol on the tape. If the first
symbol is a blank symbol, t, then the input string has length 0. 0 is divisible
by 3, so we should accept this string. If the first symbol is not a blank symbol,
the length of the string that has been read so far is now 1, which is equal
to 1 mod 3, so we move the next state. Continuing in this fashion, we will
read each subsequent symbol and cycle through states q0, q1, and q2 as the
length of the string that has been read increases. If we are in either state q1
or q2 and encounter a blank symbol, this means we have reached the end of
the input string and that its length is not divisible by 3, so we transition to
the rejecting state. If we encounter the blank symbol for state q0, however,
it means the input string’s length is divisble by 3, so we transition to the
accepting state, as in the case of the empty string. In this way, we can see
that the Turing machine will only accept inputs whose length is divisible by
3 and will reject all other input.

So, we can formally define the Turing machine as follows:

Q = {q0, q1, q2, qacc, qrej}
Σ = {0, 1}
Γ = Σ ∪ {t}
q0, qacc, qrej are the initial, accepting, and rejecting states as expected

δ : Q× Γ→ Q× Γ× {L,R} is given by the transition diagram below

2



q0 q1 q2

qacc

qrej

{0, 1} → R {0, 1} → R

{0, 1} → Rt → R

t → R t → R

3

3.1

Assume—for the sake of contradiction—that there is a DFA with five states.
Then according to the pumping lemma, the word 15 ∈ L can be written as
xyz such that y 6= ε and xyiz ∈ L for all i. But then xy2z ∈ L and yet xy2z
has length at least six, which is impossible.

3.2

We compute

1. AF(L∗, ε) = L (where AF means AcceptingFutures);

2. AF(L∗, 1) = {1n | n = 2, 4, 5 or n ≥ 7};

3. AF(L∗, 12) = {1n | n = 1, 3, 4 or n ≥ 6};

4. AF(L∗, 13) = {1n | n = 0, 2, 3 or n ≥ 5};

5. AF(L∗, 14) = {1n | n = 1, 2 or n ≥ 4};

3



6. AF(L∗, 15) = {1n | n = 0, 1 or n ≥ 3};

7. AF(L∗, 16) = {1n | n = 0 or n ≥ 2};

8. AF(L∗, 17) = {1n | n ≥ 1};

9. AF(L∗, 18) = 1∗.

For n = 0, 1, . . . 7 we see that the longest word not in AF(L∗, 1n) is 17−n, and
there is no word not in AF(L∗, 18). Hence all these values of AF(L∗, 1n) are
distinct; hence, by the Myhill-Nerode theorem, any DFA recognizing L must
have at least nine states.

3.3

Here are some examples.

q0start q1 q2 q3 q4
1 1 1

1

1

1

q0start q1 q2 q3 q4
1

1

1 1 1

1

q0start q1 q2 q3 q4
1 1

1

1 1

1

4


