December 2009 CPSC 421/501 Name

Marks
[5] 1. Write a DFA describing the language of strings over $\{0,1\}$ that have an even number of 1's. Use the technique discussed in class and the book to use the DFA to obtain a regular expression for this language (by writing the DFA as a GNFA and then repeatedly reduce the number of states in the GNFA).

December 2009 CPSC 421/501 Name \qquad Page 3 of 10 pages
[5] 2. Use the pumping lemma for context-free languages to show that the language $L=$ $\left\{0^{n} 1^{n} 2^{n} \mid n=0,1,2, \ldots\right\}$ is not context-free.

December 2009 CPSC 421/501 Name \qquad Page 4 of 10 pages
[5] 3. Let $L=\left\{a^{100}\right\}$. Argue that a DFA that recognizes L must have at least 101 states. Explain your argument from scratch; i.e., if you use want to use Myhill-Nerode, then explain why it is true in this case.

December 2009 CPSC 421/501 Name Page 5 of 10 pages
[5] 4. Describe a Turing machine that takes as input, $x \in\{a, b\}^{*}$, and (1) accepts x if $|x|$ is even, and (2) rejects x if $|x|$ is odd. You should explicitly write and explain each of $Q, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}, \delta$.

December 2009 CPSC 421/501 Name \qquad Page 6 of 10 pages
[5] 5. In the following questions you may assume that SAT is NP-complete. Let DOUBLESAT be the set of $\langle\phi\rangle$ such that ϕ is a Boolean formula with at least two satisfying assignments. Show that DOUBLE-SAT is NP-complete.

December 2009 CPSC 421/501 Name Page 7 of 10 pages
[5] 6. Consider the following "Funny Axiom": given any program, P, there is a program, P^{\prime}, such that

$$
\operatorname{Result}\left(P^{\prime}, x\right)=f(\operatorname{Result}(P, x))
$$

where $f($ yes $)=$ loops and f (loops $)=f($ no $)=$ yes. Show that if we add the Funny Axiom to all the axioms in the handout we get an inconsistency.

December 2009 CPSC 421/501 Name \qquad Page 8 of 10 pages
[5] 7. Give short explanations to the following questions.
(a) Show that SAT $\leq_{P} L_{\text {yes }}$.
(b) Explain why part (a) does not imply that $L_{\text {yes }}$ is NP-complete.

December 2009 CPSC 421/501 Name \qquad Page 9 of 10 pages
[5] 8. Outline (in a few sentences) the reduction 3 SAT \leq_{P} SUBSET - SUM done in class and the text, and illustrate the reduction on the example $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)$.

December 2009 CPSC 421/501 Name_ Page 10 of 10 pages

The University of British Columbia
Final Examinations - December 2009

Computer Science 421/501
\qquad Signature \qquad

Student Number

\qquad

Instructor's Name

\qquad
Section Number \qquad

Special Instructions:

Calculators, notes, or other aids may not be used. Answer questions on the exam. This exam is two-sided!

Rules governing examinations

1. Each candidate should be prepared to produce his library/AMS card upon request.
2. Read and observe the following rules:

No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination. Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
(a) Making use of any books, papers or memoranda, other than those authorized by the examiners.
(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
3. Smoking is not permitted during examinations.

1		5
2		5
3		5
4		5
5		5
6		5
7		5
8		5
Total		40

