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(a) For any integer, n > 0, X", the set of strings of length n, is of finite size
|X]". So we can list all of ¥* in a sequence by first listing X°, then !, then %2,
etc. Hence ¥* is countable.

(b) We know that the power set of a set, .S, is larger than S, and, in particular,
if S is countably infinite then its power set is uncountable. Since ¥ is non-empty,
3* is infinite (since it has at least one string of each length). Since X* is countably
infinite, its power set is uncountable.

(c) If we have a set of programs each of which is described by some string in
¥*  then the set of programs is countable. If the set of inputs is also X*, then
the number of languages is uncountable; hence there are languages that cannot be
computed (i.e., decided, recognized, etc.) by any program. [This was an important
point in CPSC 421.]
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See the textbook or class notes for the reduction. Here are the points you need
to make to get full credit.

First, you should make diagram like Figure 7.57 on page 321 of the textbook to
indicate what the reduction looks like.

Second you should state or indicate the following on your diagram: given a
formula, f, with n variables and c¢ clauses, we can build a sequence of 2n + 2¢
integers and a target integer ¢, such that: (1) exactly one the first 2 integers must
be chosen in a subset that sums to the target; it encodes whether the first Boolean
variable is true or false; (2) similarly all the first 2n integers encode the true/false
setting of the n variables; (3) the 2c other variables are dummy variables, two per
clause to make sure that the digit designated for each clause can sum to 3 iff this
clause evaluates to true in the formula.

Third, you should say why this is a polynomial time reduction; namely there are
only a polynomial number of integers 2n + 2c¢ plus a target, and each is a base 10
integer whose length is n 4 ¢, and each can be generated by finding the variables
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and seeing which one is in which clause. So each of the integers can be generated
in linear time in (f), the size of the description of f.
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On input w to Ly, there a reduction to a string f(w) (an input to L) that takes
time p(Jw|) to generate where p is some polynomial; the length of f(w) is at most
p(Jw|) (since the tape head can only move one cell per time step).

Similarly there is a polynomial ¢ which is the time that the reduction from Lo
to Lg requires. It follows that by running the first reduction on w to obtain f(w),
and then the second reduction, we take time at most

plw]) + q([f (w)]) < p(lw]) + q(p(wl])),

which is a polynomial in |w|. In particular, if p(n) = n® and ¢(n) = n?, the time
needed on imput w with |w| = n is at most

p(n) + a(p(n) = n° + (n)° = n® + 3,
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DOUBLE-SET is in NP since we can guess two satisfying assignments, which
we (1) verify are actually different, and (2) verify that each satisfies the Boolean
formula. To produce the guess takes twice with number of variables in the formula,
which is less than the description of the formula; each satisfying assignment then
takes again polynomial time in the length of the formula.

We now reduce SAT to DOUBLE-SAT. If f is a Boolean formula function, and
T is a variable not in f, then the formula g defined on one more variable,

g:f/\(mk\/xk\/ﬁ:rk)

has twice as many satisfying assignments as f. Thus f has at least one satisfying

assignment iff g has two or more satisfying assignments. Given a description of f, we

can find a variable xj, that does not appear in f and write down g as above. Clearly

this takes polynomial time (we need to find a k such that z; does not appear in f,

and then write down f plus the additional clause). Thus 3SAT < DOUBLE — SAT.
Hence DOUBLE-SAT is NP-complete.
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[Lyes was called the “acceptance problem” in 2015, and is the analogue of Sipser’s
Aty in the case of Turing machines.|

Since P is a decider, so is D. Hence the result of D on input EncodeProg(D) is
either “yes” or “no.” Let us show that either assume leads to a contradiction.

Assume that the result of D on input EncodeProg(D) is “yes;” then the result
of P on EncodeBoth(D, EncodeProg(D)) is no; but this means that the result of D
on EncodeProg(D) (by definition of P) is “no,” which contradicts our assumption.

Similary the “no” assumption leads to the contradiction in the above paragraph
with the words “no” and “yes” interchanged everywhere.

Hence Lycs is undecidable.
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Here are some major points to address:

(1) Just by counting, we know that there exist problems that cannot be decided,
recognized, etc., since most of the time there are more problems (i.e., languages)
than programs. For example, there are only countably infinitely many Turing
machines (C programs, Java programs, etc.), but uncountably many problems (i.e.,
languages). However, counting alone does not tend to produce languages that
cannot be decided or recognized (you could generate such a language, but it would
involve enumerating all Turing machines and a type of diagonalization algorithm
that is probably not of practical interest).

(2) By a type of self-referencing argument, we saw that the acceptance problem
and the halting problem are undecidable; furthermore, their complements aren’t
even recognizable. At times this related to concrete problems, such as the “dead
code” problem (i.e., is there a line in a computer program that will never be
reached). While compilers can find and eliminate some code that is never used,
they can’t generally find all of it; so you shouldn’t try to build a compiler that tries
to find all of it for every possible computer program.

(3) NP-completeness type problems arise much more in practice, as certain op-
timization problems (some scheduling problems, traveling salesman, etc.) Most
people suspect that NP-complete problems cannot be solved in polynomial time; at
the very least we don’t know algorithms for them. So while such optimization prob-
lems can be solved (or approximately) solved) in polynomial time in many practical
situations, you should realize that looking for an algorithm that completely solves
such problems in polynomial time is an extremely ambitious task.

8 Not covered in 2015.
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