HOMEWORK 5, CPSC 421/501, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.

1. Let TRIPLE-PARTITION be the language of sequences of positive integers n_{1}, \ldots, n_{k} such that they can be divded into three collections whose sums are equal, i.e., such that there are $A, B, C \subset\{1, \ldots, k\}$ such that each element of $\{1, \ldots, k\}$ is in exactly one of A, B, C and such that

$$
\sum_{i \in A} n_{i}=\sum_{i \in B} n_{i}=\sum_{i \in C} n_{i} .
$$

Show that TRIPLE-PARTITION is NP-complete.
2. Show that 3COLOR is NP-complete. For a reminder of what is 3COLOR and a hint, see the textbook's exercises, Chapter 7.
3. Let SQRT-CLIQUE be the set of graphs, G, such that G has n vertices for some perfect square n, and such that G has a clique of size \sqrt{n}. Show that SQRTCLIQUE is NP-complete. [There is a related problem, HALF-CLIQUE, in the textbook's exercises, Chapter 7.]

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

[^0]
[^0]: Research supported in part by an NSERC grant.

