Question 7.21 One can run a NDTM on a given input $\phi$ and count the number of its accepting branches to determine if $\phi \in D O U B L E-S A T$. Therefore, $D O U B L E-S A T$ is in NP. It remains to find a reduction from $3 S A T$ to $D O U B L E-S A T$. Let $\psi \in 3 S A T$ and construct $\psi^{\prime}$ as follows:

$$
\psi^{\prime}=\psi \wedge(x \vee \bar{x}),
$$

where $x$ is a new variable not used in $\psi$. If $\psi$ is satisfiable, $\psi^{\prime}$ has at least two satisfiable assignments.

## Question 7.23

a One can construct a new boolean formula from any instance of $C N F_{2}$ in which a variable appears exactly once in positive and once in negative form. To do so, replace variables that appear only in positive form with True and remove the clauses that contain them. Similarly, for variables that appear only in negative form, replace them with False and remove their corresponding clauses. This does not affect the satisfiability of the given formula. Therefore, one can focus on boolean expressions of the following form:

$$
\phi=\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge \ldots\left(x_{n-1} \vee \overline{x_{n}}\right)
$$

The modified expression can be further reduced to perfect matching in a bipartite graph. To construct the graph, create a node for every variable $x$ in $\phi$. Furthermore, create a node for every clause $c$. Then for every clause ( $x \vee y$ ) add an edge from the clause node to variable nodes $x$ and $y$. We provide the following lemma:
Lemma: The expression $\phi$ is satisfiable iff there is a perfect matching of size $m$ in the corresponding bipartite graph $G$, where $m$ is the number of clauses in $\phi$.
Proof: Clearly, any satisfying assignment yields a matching of size $m$. To see why, assign a true literal, say $x_{i}$, to the clause $c_{k}$ in which it appears positively. Similarly, assign a false literal, say $x_{j}$, to the clause $c_{l}$ where it appears negatively. This constructs a matching since $x_{i}$ and $x_{j}$ appear once positively and once negatively in the clauses of $\phi$.
Conversely, if there is a matching of size $m$ in the graph, then a satisfying assignment can be constructed as follows: If there is an edge from the clause $c_{k}$ to the node $x_{i}$, set $x_{i}=$ True if $x_{i}$ appears positively in $c_{k}$; otherwise, set $x_{i}=$ False. This assignment satisfies all clauses of $\phi$.
Remark: Note that finding the perfect matching in a bipartite graph can be done in polynomial time (for instance, by computing the permanent of the adjacency matrix).
b Verifying that an assignment is satisfying and that the variables appear in at most 3 places can be done in polynomial time. Therefore, $C N F_{3}$ is in NP. Also, $3 S A T$ can be reduced to $C N F_{3}$ by a change of variables. For every variable $x$ that appears in $k>3$ clauses, create new variables $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}$. Construct $\phi^{\prime} \in C N F_{3}$ as follows: replace $x$ with $x^{\prime}$ 's. Then, add new clauses that imply equivalence between $x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{k}^{\prime}$ :

$$
\left(x_{1}^{\prime} \vee \bar{x}_{2}^{\prime}\right) \wedge\left(x_{2}^{\prime} \vee \bar{x}_{3}^{\prime}\right) \wedge \ldots \wedge\left(x_{k-1}^{\prime} \vee \bar{x}_{k}^{\prime}\right) \wedge\left(x_{k}^{\prime} \vee \bar{x}_{1}^{\prime}\right)
$$

$\phi^{\prime}$ is in $C N F_{3}$ and is satisfiable iff $\phi$ is satisfiable.


Figure 1: A clause gadget. Terminals 1,2 , and 3 correspond to the first, second, and third literals respectively. If the top node is colored $T$, it means that the clause is satisfied.

Question 7.27 $3 C O L O R$ is in NP because a coloring can be verified in polynomial time. We show that $3 S A T<_{p} 3 C O L O R$. Let $\phi=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{l}$ be a 3 cnf formula over the variables $x_{1}, \ldots, x_{n}$. We build a graph $G$ with $2 n+6 l+3$ nodes, containing a variable gadget for each variable $x_{i}$, one clause gadgets for each clause, and one palette gadget as follows. Label the nodes of the palette gadget $T, F$, and $R$. Label the nodes in each variable gadget + and - and connect each to the $R$ node in the palette gadget as shown in the hint. For each clause, create a gadget as shown in Fig.1.

Connect the top of the clause gadgets to the $F$ and $R$ nodes in the palette. Also, connect the top of its bottom triangle to the $R$ node. For every clause $c_{j}$, connect the $i$-th $(1 \leq i \leq 3)$ bottom node of its clause gadget to the literal node that appears in its $i$-th location. An example is shown below.


Figure 2: A graph constructed from $\phi=\left(\bar{x}_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{2}\right)$.
To show that the construction is correct, we first demonstrate that if $\phi$ is satisfiable, the graph is 3 -colorable. The three colors are called $T, F$, and $R$. Color the palette with its labels. For each variable, color the + node $T$ and the - node $F$ if the variable is True in a satisfying assignment; otherwise reverse the colors. Because each clause has one True literal in the assignment, we can color the nodes of that clause so that the node connected
to the $F$ node in the palette is not colored $F$. Hence we have a proper 3 -coloring. Similarly, if we are given a 3 -coloring, we can obtain a satisfying assignment by taking the colors assigned to the + nodes of each variable. Observe that neither node of the variable gadget can be colored $R$, because all variable nodes are connected to the $R$ node in the palette. Furthermore, if both bottom nodes of a clause gadget are colored $F$, the top node must be colored $F$, and hence, each clause must contain a true literal.

Question 7.28 SET-SPLITTING is in NP because we can verify in polynomial time that no subset $C_{i}$ is monochromatic. To prove that the problem is NP-complete, we give a polynomial time reduction from 3SAT to SET-SPLITTING. Given an instance of 3SAT $\phi$, set $S=\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \bar{x}_{n}, y\right\}$, where $x_{i}$ 's are the variables and $y$ is a special color variable. The splitting is done as follows.
For every clause $c_{i}$ in $\phi$, let $C_{i}$ be a subset of S containing the elements corresponding to the literals in $c_{i}$ and the special element $y \in S$. Then $C=C_{1}, \ldots, C_{k}$.
If $\phi$ is satisfiable, consider a satisfying assignment. If we color all the true literals red, all the false ones blue, and $y$ blue, then every subset $C_{i}$ of $S$ has at least one red element (because it is satisfiable) and it also contains one blue element $y$. This constitutes a splitting. In addition, for a given splitting $\langle S, C\rangle$, we can set the literals that are colored differently from y to true. Similarly, we set the literals that have the same color as y to false. This yields a satisfying assignment for $\phi$.

