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The following are sample midterm problems beyond the problems in the hand-
out, “Computability and Self-Referencing in CPSC 421” (see Section 7) and the
homework problems.

Here is a brief summary of the material so far. The theme is: what can and
cannot (especially cannot) by computers in various models, with various resources.

(1) Generally speaking, we work in settings that have a countable number of
computer programs, but an uncountable number of languages. Hence there
are (a whole lot) of languages that cannot be recognized by any computer
program.

(2) We can name some programs that cannot be recognized by any Turing ma-
chine (or similar model), such as complements of the Acceptance problem
or complements of the Halting problem. In general:
(a) We know that the Acceptance problem and Halting problem are both

examples of languages that can be recognized but not decided; and
(b) if L is a language that is recognizable but not decidable, then its

complement cannot be recognized.
(c) A number of other problems, such as identifying a line of “dead code,”

cannot be recognized, and no algorithm can eliminate all such lines for
every program.

(3) The fact that the Acceptance problem—in many models of computation—
is not decidable follows from general axioms, the most tedious to verify of
which is (Axiom 2) the existence of a universal program in the setting in
which we are working.

(4) The class, P, of polynomial time decidable languages, tries to describe lan-
guages that can be decided by a reasonable efficient algorithm; however,
there are a number of tricky aspects to the definition of P and it is not
clear than a 101000n2 time algorithm is really practically usable.

(5) There are a number of variants of Turing machines that are interesting, such
as “oracle Turing machines” and “non-deterministic Turing machines.”

(6) You will be rich and famous (in academia, relatively speaking) if you can
resolve the question of whether NP is the same class as P.
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Sample Midterm Problems

(1) If f : Z→ Z is a function, we define a Turing machine with oracle f to be
a Turing machine with a special “oracle” worktape and two special states
qask oracle and qoracle reply; the Turing machine runs as usual except for the
following exception: whenever we enter the state qask oracle, if the special
oracle worktape is a string over {1, . . . , 9, 0} representing the integer n in
base 10, then at the next step we transition to the state qoracle reply and
(magically) the value f(n) appers on the oracle tape.

Fix a function f as above.
(a) Explain why Axioms 1, 3, 4, and 5 hold for Turing machines with

oracle f .
(b) Does Axiom 2 hold for Turing machines with oracle f , i.e., does there

exist a universal machine for Turing machines with oracle f? Explain.
[Hint: Every Turing machine has the same access to the oracle.]

(2) Define a Geiger Turing machine to be a Turing machine with a special
“Geiger” worktape and two special states qask Geiger and qGeiger reply; the
Turing machine runs as usual except for the following exception: when-
ever we enter the state qask oracle, then at the next step we transition to
qGeiger reply, and a “random” integer between 1 and 10 is (magically) writ-
ten on the worktape. This “random integer” depends on the particular
Turing machine, the input to the Turing machine, and number of steps
taken by the Turing machine; you do not know how this “random integer”
is determined, and it may be an uncomputable function of the machine
description, the input, and the number of steps taken.

Which of Axioms 1–5 hold (really meaning “can be seen to hold for the
standard reasons”) for Geiger Turing machines? [Remember that every
Turing machine has its own random number generator.]

(3) Explain why, generally speaking, if a language, L, is recognizable but not
acceptable, then the complement of L is not recognizable. Explain what
this has to do with Axiom 5.

(4) Consider the language HALT-PROG, of description of Turing machines,
〈M〉 that eventually halt when given an empty input. Argue that HALT-
PROG is recognizable but not decidable. Argue that its complement is not
even recognizable.

(5) Consider the language, OUTPUTS, of descriptions, 〈p, i〉 of a 421Simple
program, p, and an input, i, such that on input i the program p reaches
a line of code which writes to the OUTPUT array (via a line of the form
“LET OUTPUT[...”). Is OUTPUTS recognizable? Decidable?

(6) Consider the language, NO-OUTPUT, of descriptions, 〈p, i〉 of a 421Simple
program, p, and an input, i, such that on input i the program p never
reaches a line of code which writes to the OUTPUT array (via a line of the
form “LET OUTPUT[...”). Is NO-OUTPUTS recognizable? Decidable?

(7) An algebraic number is a complex number, z, that satisfies an equation

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0
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for some integers an, . . . , a0. Show that the algebraic numbers are a count-
able set. [Recall that for any (a0, a1, . . . , an), there are at most n complex
numbers that satisfy the above displayed equation.]

(8) In class we have shown that if S is a set, then there is no function f : S →
Power(S) that is surjective, i.e., each element of Power(S) is in the image
of f . The proof is to assume such an f exists, and to consider

T = {s ∈ S s /∈ f(s)}
and to obtain a contradition.
(a) Explain what is the contradiction.
(b) Give an example where S has three elements and f is the function of

your choice.
(c) Explain why this proof by contradiciton is sometimes called diagonal-

izatoin; you might use your example in the previous part.
(9) Consider the phrase, “In Smalltown, there is one barber and she cuts the

hair of anyone who does not cut his/her own hair.” Explain the inherent
contradiction that arises from this statement.

(10) Consider the phrase, “n is the smallest positive integer not described by a
sentence of fewer than 100 words.” Explain the paradox in this phrase, and
explain one way to resolve this paradox, in a way that sentences that give
an explicit calculation of an integer still refer to this integer.

(11) Russell’s paradox arises from the phrase, “Let S be the set of all sets that
don’t contain themselves.” Explain the paradox that arises, and indicate
in a sentence or two how set theorists resolve this paradox.”

(12) Give an implementation-level description of a universal Turing machine.
(13) Give a formal description of a Turing machine to recognize the language of

words over {0, 1} whose first and last letter are the same.
(14) Give a formal description of a 421Simple program to recognize the language

of words over {0, 1} whose first and last letter are the same.
(15) Give an implementation-level description of a Turing machine that recog-

nizes a language recognized with a k-tape Turing machine using a 1-tape
Turing machine.

(16) Give an implementation-level description of a Turing machine to decide the
language PRIMES of strings over the alphabet {0, 1, . . . , 9} that represent
prime numbers written in base 10.

(17) Explain how a one-tape Turing machine can simulate an f(n)-time two-
tape Turing machine in time order f2(n). Explain why we cannot improve
the f2(n) to any fγ(n) with γ < 2. [Hint: In class we have stated that
a one-tape Turing machine requires at least cn2 time to recognize PALIN-
DROMES (over any finite, non-empty alphabet), but can be performed in
O(n) time on a two-tape Turing machine.]

(18) Problems from Sipser, Chapter 3, regarding Turing machines: 3.5, 3.7,
3.8, 3.11, 3.12, 3.15(a,b,e), 3.16(a,d), 3.22. 3.5, 3.7, and 3.22 regard the
definition of a Turing machine; 3.8 ask for implementation-level descriptions
of certain languages; 3.11 and 3.12 regard variations on the definition of
Turing machines; 3.15 and 3.16 regard combining two Turing machines.

(19) Consider the set of all Turing machines, M , such that (1) M always moves
to the right on each step, (2) M has only three states: q0, qaccept, qreject
(and all of these states are distinct), and (3) the input alphabet of M is
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{0, 1}. As usual, define the result of M on input i to be (1) yes if M halts
on input i in the state qaccept, (2) no if M halts on input i in the state
qreject, and (3) NoHalt if M on input i doesn’t halt.
(a) Describe which languages such (very limited) Turing machines can

recognize.
(b) Which of Axioms 2–5 are satisfied by this set of Turing machines?

(20) Give an implementation level description of a Turing machine whose input
alphabet is {a, b, . . . , z,#} such that on input consisting of some number
of words over {a, b, . . . , z}, separated by #’s, the Turing machine accepts
this input if the words are sorted in increasing lexicographical order. [Lex-
icographical order is “dictionary order,” i.e., you compare two words by
looking at their first letter, and in a tie you look at the second letter; if one
word ends and another does not, then the ending word is first in order.]
For example,

ab#aba#bzza#bzzb

would be accepted.
(21) Give an implementation-level description of a Turing machine that accepts

the language whose words are of the form w1#w2, where w1, w2 are integers
described in base 10 such that 3w1 + 5 = w2 (where the strings w1, w2 are
interpreted as integers).

(22) Let L be the language consisting of 1 if the Twin Prime Conjecture (a cur-
rently unresolved conjecture) is true, and 0 otherwise. Is L a recognizable
language? Explain.

(23) Give an implementation-level description and a fromal description (i.e.,
write out the values of the δ-function) of a Turing machine that recognizes
the language of words over {1, 2} that have an even number of 1’s.

(24) Give an implementation-level description and a fromal description (i.e.,
write out the values of the δ-function) of a Turing machine that recognizes
the language of words over {1, 2} that have an even number of 1’s and an
odd number of 2’s.

(25) Give an implementation-level description and a fromal description (i.e.,
write out the values of the δ-function) of a Turing machine that recognizes
the language of words over {1, 2} that begin and end with the same letter.

(26) Which of the following sets are countable and why?
(a) the integers;
(b) the rational numbers;
(c) the set of subsets of the integers;
(d) the set of strings over a finite alphabet;
(e) the set of languages over a finite alphabet (recall that a language is a

collection of strings);
(f) the set of sequences over {1, 2, 3, 4}, i.e,, the set {1, 2, 3, 4}N.

(27) Outline how a universal Turing machine can be designed. Outline how a
universal C program can be designed. What are the relative advantages
and disadvantages of the two different settings?



SAMPLE MIDTERM QUESTIONS 5

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,

Vancouver, BC V6T 1Z2, CANADA.
E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf


