Marks
[10] 1. Describe a Turing machine that takes as input, $x \in\{a, b\}^{*}$, and (1) accepts x if $|x|$ is even, and (2) rejects x if $|x|$ is odd. You should explicitly write and explain each of $Q, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}, \delta$.

Answer: For example, we may scan to the right, alternating between two states q_{0} (the initial state) and q_{1}, and enter the appropriate accepting or rejecting state when we encounter a blank. So we may take

$$
Q=\left\{q_{0}, q_{1}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right\}, \quad \Gamma=\{a, b, \beta\},
$$

where β is the blank symbol, and set

$$
\begin{gathered}
\delta\left(q_{0}, x\right)=\left(q_{1}, x, R\right), \quad \delta\left(q_{1}, x\right)=\left(q_{0}, x, R\right), \quad \text { for } x=a \text { or } x=b, \text { and } \\
\delta\left(q_{0}, \beta\right)=\left(q_{\text {accept }}, \beta, R\right), \quad \delta\left(q_{1}, \beta\right)=\left(q_{\text {reject }}, \beta, R\right),
\end{gathered}
$$

with the values of δ on the accepting and rejecting states being irrelevant. (Also everything we write to the tape is irrelevant.)

November 2009 CPSC 421/501 Name
[10] 2. Let 4SAT be the language of 4 cnf 's (conjunctions of disjunctions of 4 literals). Give a direct polynomial time reduction to show that $3 \mathrm{SAT} \leq_{\mathrm{P}} 4 \mathrm{SAT}$.

Answer: A clause $y_{1} \wedge y_{2} \wedge y_{3}$ is equivalent to the redundant clause $y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{3}$, and performing this redundancy operation to each clause of a 3 cnf yields (in polynomial time) an equivalent 4 cnf . This gives the desired reduction
\qquad
[10] 3. Let $L_{\text {agree }}$ be (as in class) the language of $\langle M, N\rangle$ such that M and N are Turing machines that give the same result (accept, reject, or loops) on all inputs. Show that $L_{\text {yes }} \leq L_{\text {agree }}$.
[Note: $L_{y e s}$ is the language of encodings of pairs M, x where M accepts x.]
Answer: Given a pair P, x, let M be a Turing machine that (1) erases its input, (2) writes x on the tape, and (3) runs P (either by simulation or just by incorporating P into M). Let N be a Turning machine that accepts all its inputs. Then P accepts x iff M and N agree on all inputs. This gives the desired reduction from pairs P, x to pairs M, N where the former is in $L_{\text {yes }}$ iff the latter is in $L_{\text {agree }}$. Hence this is a reduction of $L_{\text {yes }}$ to $L_{\text {agree }}$.
\qquad
[10] 4. Recall how we showed $L_{\text {yes }}$ is undecidable. Assume to the contrary that there is a program, P, that decides $L_{\text {yes }}$. Let D be a program such that for all programs, Q,

$$
\operatorname{Result}(D, \operatorname{EncodeProg}(Q))=\neg \operatorname{Result}(P, \operatorname{EncodeBoth}(Q, \operatorname{EncodeProg}(Q)))
$$

Argue that considering the value of $\operatorname{Result}(D, \operatorname{EncodeProg}(D))$ leads to a contradition.
Answer: Since P is a decider, so is D, and hence D can never loop. Assume that

$$
\operatorname{Result}(D, \operatorname{EncodeProg}(D))=\mathrm{no} ;
$$

then

$$
\neg \operatorname{Result}(P, \operatorname{EncodeBoth}(D, \operatorname{EncodeProg}(D)))=\text { no },
$$

so
$\operatorname{Result}(P, \operatorname{EncodeBoth}(D, \operatorname{EncodeProg}(D)))=$ yes,
so

$$
\operatorname{Result}(D, \operatorname{EncodeProg}(D))=\text { yes }
$$

which is a contradiction. Similarly, if we assume that Result $(D, \operatorname{EncodeProg}(D))=$ yes, then we conclude $\operatorname{Result}(D, \operatorname{EncodeProg}(D))$ is either no or loop, again a contradiction.

November 2009 CPSC 421/501 Name
Page 6 of 6 pages

Be sure that this examination has 6 pages including this cover

The University of British Columbia

Midterm Examinations - November 2009
Computer Science 421/501

Name \qquad

Student Number

\qquad

Instructor's Name

\qquad

Section Number

\qquad

Special Instructions:

Calculators, notes, or other aids may not be used. Answer questions on the exam. This exam is two-sided!

Rules governing examinations

1. Each candidate should be prepared to produce his library/AMS card upon request.
2. Read and observe the following rules:

No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination. Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.

CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action
(a) Making use of any books, papers or memoranda, other than those authorized by the examiners.
(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
3. Smoking is not permitted during examinations.

1		10
2		10
3		10
4		10
Total		40

