CPSC-421/501 Introduction to Theory of Computing Fall 2007

Question 2

Since A is regular, there is some DFA M = (@, Y, 9, qo, F'). Our goal is to construct a
NFA that accepts A¥ to show that A% is regular. Let u be a state not in (). Then consider
the NFA N = (Q U{u},>,0r,u,{q}) where dg(u,e) = F, and for any state v and letter
a, 0r(v,a) = {qlq € Q,0(q,a) = v}. So N is M but with all the arrows reversed, the inital
state made into the only accepting state, and all of M’s old accepting states are now an ¢
transition away from a new accepting state.

If the string w = wyws...w,, is in A, than w corresponds to some path ¢oq;,qi,...q;, in
the machine M where ¢;_ is in F. If we put w® = w,w,_;...w; through N we can take the
path ug;, g, _,..-qi,qo because there is an e transition from v to g;,, and all the transitions
afterwards are the reverse of transitions in N. Since qq is a final state in N, N accepts w.
This means N accepts the revers of any word in A4, so A® C L(N). Notice we do not know
if N accepts more than just A%.

Now suppose w = w,wy,_1...w; is in L(N). Then if we put w through N we can take
the path ug;,qi, _,...qi;qo where g;, is in F'. Then, since M is N with transitions reversed,
string w? corresponds to path qoqi, gi,...q;, in M. So M accepts w? because ¢;, is in . This
implies that any word in L(N) is the reverse of a word in A. Thus L(N) C A and so we
have L(N) = A®. We know now N is a NFA accepting A%, and so A" is regular.

Question 3

(a) We can create a DFA M with k states that accepts L. Let M’ be exactly the same
as M except all the accepting states in M are nonaccepting states in M’, and all the
nonaccepting states in M are accepting states in M’. If M accepts string w, w must
have correspond to a path ending in an accepting state. So if we put w through M’
we end at the same state except it is nonaccepting. So any string in L is not in L(M’).
On the other hand, suppose string v is not in L. Then if we put string v through M it
must end at a nonaccepting state. So putting v through M’ we end at the same state
which is now accepting. So any string not in L is accepted by M’. This shows that
some DFA with k states, M’, accepts L.

Suppose, contrary to what we wish to show, there exists a DFA N over j states with
j < k that accepts L. Then from the argument above, we can change the nonaccepting
states to accepting states and vice versa in IV to create a new machine N’ with j states
that accepts L = L. This contradicts thats that k& was the minimal amount of states
in a machine that recognizes L! So k is the minimal amount of states in a machine
that recognizes L.

(b) Consider the set S = {¢,a,aa,...,a’,a™}. Now let 0 < j < k < i+ 1. Then
a’a’ = a' € L, and since i + k — j > i we have a*a’~7 = a"**J ¢ L. So a’ and a* are
distinguishable, showing that any pair of strings in S are distinguishable. Notice also
that a' and a™ for I,m > i + 1 are not distinguishable since appending any string to
either a' or a™ will create a string of length greater than 7 which consequently would

CPSC-421/501 Introduction to Theory of Computing Fall 2007

not be in L. So we may include at most one string of length greater than 7 in any set of
pairwise distinguishable strings. S includes one string of length greater than i as well
as all strings of length less than or equal to ¢ and so it must be maximal. The index
of L is then |S| = i+ 2, and the Myhill-Nerode Theorem, this is minimal number of
states in a DFA that accepts L.

Since L us finite, let a’ be the longest string in L. By part b, L is regular and the
minimal number of states in a DFA that accepts it is i + 2. So by part a, L is regular
as well and the minimal number of states in a DFA that accepts L is i + 2.

Since the longest string in L is of length 7, by part b the machine with fewest states
that recognizes it has 7+ 2 = 9 states.

From class, we can recall that a3 is the longest number not in L. We can also check
this fact though. We can make a set S of the first few shortest strings in Lx step by
step. At step 0, we put a® in S. And then at step i for i > 0, we place a' in the
list if ¢’ or a'~" was already in the list. So at step 7, S = {¢,a®,a"}. At step 28,
S ={e,a® a’,a' a, a'® a7, a?, a®, a?t, a?, a*, a®®, a?®, a*", a*®}. So a®3 is not in L.
We can also see inductively from S at this step that at step k& > 28, a*=5 will already
be in S. So every string of length greater than 23 is in L.

This implies that a?® is the longest string in L. So by part b, the minimum number of
states for a DFA recognizing L is 23 + 2 = 25, and part a then says that the minimum
number of states for a DFA recognizing L is 25 as well.

CPSC-421/501 Introduction to Theory of Computing Fall 2007

Figure 1: An answer to Problem 1

CPSC-421/501 Introduction to Theory of Computing Fall 2007

Figure 2: An answer to problem 2.a.

CPSC-421/501 Introduction to Theory of Computing Fall 2007

Figure 3: An answer to problem 2.b.

