
CPSC-421/501 Introduction to Theory of Computing Fall 2007

Question 2

Since A is regular, there is some DFA M = (Q,
∑

, δ, q0, F). Our goal is to construct a
NFA that accepts AR to show that AR is regular. Let u be a state not in Q. Then consider
the NFA N = (Q ∪ {u}, ∑

, δR, u, {q0}) where δR(u, ε) = F , and for any state v and letter
a, δR(v, a) = {q|q ∈ Q, δ(q, a) = v}. So N is M but with all the arrows reversed, the inital
state made into the only accepting state, and all of M ’s old accepting states are now an ε
transition away from a new accepting state.

If the string w = w1w2...wn is in A, than w corresponds to some path q0qi1qi2 ...qin in
the machine M where qin is in F . If we put wR = wnwn−1...w1 through N we can take the
path uqinqin−1 ...qi1q0 because there is an ε transition from u to qin , and all the transitions
afterwards are the reverse of transitions in N . Since q0 is a final state in N , N accepts wR.
This means N accepts the revers of any word in A, so AR ⊆ L(N). Notice we do not know
if N accepts more than just AR.

Now suppose w = wnwn−1...w1 is in L(N). Then if we put w through N we can take
the path uqinqin−1 ...qi1q0 where qin is in F . Then, since M is N with transitions reversed,
string wR corresponds to path q0qi1qi2 ...qin in M . So M accepts wR because qin is in F . This
implies that any word in L(N) is the reverse of a word in A. Thus L(N) ⊆ AR and so we
have L(N) = AR. We know now N is a NFA accepting AR, and so AR is regular.

Question 3

(a) We can create a DFA M with k states that accepts L. Let M ′ be exactly the same
as M except all the accepting states in M are nonaccepting states in M ′, and all the
nonaccepting states in M are accepting states in M ′. If M accepts string w, w must
have correspond to a path ending in an accepting state. So if we put w through M ′,
we end at the same state except it is nonaccepting. So any string in L is not in L(M ′).
On the other hand, suppose string v is not in L. Then if we put string v through M it
must end at a nonaccepting state. So putting v through M ′ we end at the same state
which is now accepting. So any string not in L is accepted by M ′. This shows that
some DFA with k states, M ′, accepts L.

Suppose, contrary to what we wish to show, there exists a DFA N over j states with
j < k that accepts L. Then from the argument above, we can change the nonaccepting
states to accepting states and vice versa in N to create a new machine N ′ with j states

that accepts L = L. This contradicts thats that k was the minimal amount of states
in a machine that recognizes L! So k is the minimal amount of states in a machine
that recognizes L.

(b) Consider the set S = {ε, a, aa, ..., ai, ai+1}. Now let 0 ≤ j < k ≤ i + 1. Then
ajai−j = ai ∈ L, and since i + k− j > i we have akai−j = ai+k−j /∈ L. So aj and ak are
distinguishable, showing that any pair of strings in S are distinguishable. Notice also
that al and am for l,m > i + 1 are not distinguishable since appending any string to
either al or am will create a string of length greater than i which consequently would

1

CPSC-421/501 Introduction to Theory of Computing Fall 2007

not be in L. So we may include at most one string of length greater than i in any set of
pairwise distinguishable strings. S includes one string of length greater than i as well
as all strings of length less than or equal to i and so it must be maximal. The index
of L is then |S| = i + 2, and the Myhill-Nerode Theorem, this is minimal number of
states in a DFA that accepts L.

(c) Since L us finite, let ai be the longest string in L. By part b, L is regular and the
minimal number of states in a DFA that accepts it is i + 2. So by part a, L is regular
as well and the minimal number of states in a DFA that accepts L is i + 2.

(d) Since the longest string in L is of length 7, by part b the machine with fewest states
that recognizes it has 7 + 2 = 9 states.

From class, we can recall that a23 is the longest number not in L∗. We can also check
this fact though. We can make a set S of the first few shortest strings in L∗ step by
step. At step 0, we put a0 in S. And then at step i for i > 0, we place ai in the
list if ai−5 or ai−7 was already in the list. So at step 7, S = {ε, a5, a7}. At step 28,
S = {ε, a5, a7, a10, a14, a15, a17, a19, a20, a21, a22, a24, a25, a26, a27, a28}. So a23 is not in L.
We can also see inductively from S at this step that at step k > 28, ak−5 will already
be in S. So every string of length greater than 23 is in L.

This implies that a23 is the longest string in L. So by part b, the minimum number of
states for a DFA recognizing L is 23 + 2 = 25, and part a then says that the minimum
number of states for a DFA recognizing L is 25 as well.

2

CPSC-421/501 Introduction to Theory of Computing Fall 2007

Figure 1: An answer to Problem 1

3

CPSC-421/501 Introduction to Theory of Computing Fall 2007

Figure 2: An answer to problem 2.a.

4

CPSC-421/501 Introduction to Theory of Computing Fall 2007

Figure 3: An answer to problem 2.b.

5

