Question 2

Since A is regular, there is some DFA $M=\left(Q, \sum, \delta, q_{0}, F\right)$. Our goal is to construct a NFA that accepts A^{R} to show that A^{R} is regular. Let u be a state not in Q. Then consider the NFA $N=\left(Q \cup\{u\}, \sum, \delta_{R}, u,\left\{q_{0}\right\}\right)$ where $\delta_{R}(u, \epsilon)=F$, and for any state v and letter $a, \delta_{R}(v, a)=\{q \mid q \in Q, \delta(q, a)=v\}$. So N is M but with all the arrows reversed, the inital state made into the only accepting state, and all of M's old accepting states are now an ϵ transition away from a new accepting state.

If the string $w=w_{1} w_{2} \ldots w_{n}$ is in A, than w corresponds to some path $q_{0} q_{i_{1}} q_{i_{2}} \ldots q_{i_{n}}$ in the machine M where $q_{i_{n}}$ is in F. If we put $w^{R}=w_{n} w_{n-1} \ldots w_{1}$ through N we can take the path $u q_{i_{n}} q_{i_{n-1}} \ldots q_{i_{1}} q_{0}$ because there is an ϵ transition from u to $q_{i_{n}}$, and all the transitions afterwards are the reverse of transitions in N. Since q_{0} is a final state in N, N accepts w^{R}. This means N accepts the revers of any word in A, so $A^{R} \subseteq L(N)$. Notice we do not know if N accepts more than just A^{R}.

Now suppose $w=w_{n} w_{n-1} \ldots w_{1}$ is in $L(N)$. Then if we put w through N we can take the path $u q_{i_{n}} q_{i_{n-1}} \ldots q_{i_{1}} q_{0}$ where $q_{i_{n}}$ is in F. Then, since M is N with transitions reversed, string w^{R} corresponds to path $q_{0} q_{i_{1}} q_{i_{2}} \ldots q_{i_{n}}$ in M. So M accepts w^{R} because $q_{i_{n}}$ is in F. This implies that any word in $L(N)$ is the reverse of a word in A. Thus $L(N) \subseteq A^{R}$ and so we have $L(N)=A^{R}$. We know now N is a NFA accepting A^{R}, and so A^{R} is regular.

Question 3

(a) We can create a DFA M with k states that accepts L. Let M^{\prime} be exactly the same as M except all the accepting states in M are nonaccepting states in M^{\prime}, and all the nonaccepting states in M are accepting states in M^{\prime}. If M accepts string w, w must have correspond to a path ending in an accepting state. So if we put w through M^{\prime}, we end at the same state except it is nonaccepting. So any string in L is not in $L\left(M^{\prime}\right)$. On the other hand, suppose string v is not in L. Then if we put string v through M it must end at a nonaccepting state. So putting v through M^{\prime} we end at the same state which is now accepting. So any string not in L is accepted by M^{\prime}. This shows that some DFA with k states, M^{\prime}, accepts \bar{L}.
Suppose, contrary to what we wish to show, there exists a DFA N over j states with $j<k$ that accepts \bar{L}. Then from the argument above, we can change the nonaccepting states to accepting states and vice versa in N to create a new machine N^{\prime} with j states that accepts $\overline{\bar{L}}=L$. This contradicts thats that k was the minimal amount of states in a machine that recognizes L ! So k is the minimal amount of states in a machine that recognizes \bar{L}.
(b) Consider the set $S=\left\{\epsilon, a, a a, \ldots, a^{i}, a^{i+1}\right\}$. Now let $0 \leq j<k \leq i+1$. Then $a^{j} a^{i-j}=a^{i} \in L$, and since $i+k-j>i$ we have $a^{k} a^{i-j}=a^{i+k-j} \notin L$. So a^{j} and a^{k} are distinguishable, showing that any pair of strings in S are distinguishable. Notice also that a^{l} and a^{m} for $l, m>i+1$ are not distinguishable since appending any string to either a^{l} or a^{m} will create a string of length greater than i which consequently would
not be in L. So we may include at most one string of length greater than i in any set of pairwise distinguishable strings. S includes one string of length greater than i as well as all strings of length less than or equal to i and so it must be maximal. The index of L is then $|S|=i+2$, and the Myhill-Nerode Theorem, this is minimal number of states in a DFA that accepts L.
(c) Since \bar{L} us finite, let a^{i} be the longest string in \bar{L}. By part b, \bar{L} is regular and the minimal number of states in a DFA that accepts it is $i+2$. So by part a, L is regular as well and the minimal number of states in a DFA that accepts L is $i+2$.
(d) Since the longest string in L is of length 7 , by part b the machine with fewest states that recognizes it has $7+2=9$ states.
From class, we can recall that $a^{2} 3$ is the longest number not in $L *$. We can also check this fact though. We can make a set S of the first few shortest strings in $L *$ step by step. At step 0 , we put a^{0} in S. And then at step i for $i>0$, we place a^{i} in the list if a^{i-5} or a^{i-7} was already in the list. So at step $7, S=\left\{\epsilon, a^{5}, a^{7}\right\}$. At step 28, $S=\left\{\epsilon, a^{5}, a^{7}, a^{10}, a^{14}, a^{15}, a^{17}, a^{19}, a^{20}, a^{21}, a^{22}, a^{24}, a^{25}, a^{26}, a^{27}, a^{28}\right\}$. So $a^{2} 3$ is not in L. We can also see inductively from S at this step that at step $k>28, a^{k-5}$ will already be in S. So every string of length greater than 23 is in L.
This implies that a^{23} is the longest string in \bar{L}. So by part b , the minimum number of states for a DFA recognizing \bar{L} is $23+2=25$, and part a then says that the minimum number of states for a DFA recognizing L is 25 as well.

Figure 1: An answer to Problem 1

Figure 2: An answer to problem 2.a.

Figure 3: An answer to problem 2.b.

