Question 1

First suppose $S \in S$. Then by the definition of S, since $S \in S$ we have that $S \notin S$. This is a clear contradiction.

Now suppose $S \notin S$. By the definition of S then, S belongs in S, contradicting that S is not in S.

I think no "reasonable" set theory can allow S to exist, since no matter whether S contains itself or not there is some logical inconsitency.

Question 2

Let $S=\{0,1\}$. Note the DFAs are included at the end of the document.
(b) Regular expressions describing $\{w \mid w$ containing three 1's $\}$.

$$
S * 1 S * 1 S * 1 S * \text {, or } 0 * 10 * 10 * 1 S * \text {, or } S * 10 * 10 * 1 S * \text {. }
$$

One incorrect answer which was submitted is $S * 111 S$. This requires three 1 s to be consecutive, and thus is too restrictive.
(f) Regular expressions describing $\{w \mid w$ doesnt contain the substring 110$\}$.
$0 * \cup[(0 * 10) * 1 *$, or $0 *(100 *) * 1 *$, or $0 *(10 \cup 0) * 1 *$, or $(10 \cup 0) * 1 *$. Incorrect answers that were submitted were: $0 *(10 *) * 1 *$: note that the middle $(10 *) *$ matches 1110, for example. $(0 * 1) * 0 * 1 *$: note that the string 110 matches this expression.
(l) Regular expression describing $\{w \mid w$ contains an even number of 0 s, or exactly two 1 's $\}$. $(1 * 01 * 0) * 1 * \cup 0 * 10 * 10 *$

Question 3

Let R^{\prime} be the regular expression of problem 3. It is important to include "both directions" of the explanation that $L\left(R^{\prime}\right)$ describes the set of strings with an even number of 0 s and an odd number of 1 s . (Several solutions only presented the direction that shows $L\left(R^{\prime}\right)$ is a subset of L, where L is language of string with an odd number of 1 s and an even number of 0 s , but omitted to show that L is a subset of $L\left(R^{\prime}\right)$.
$L\left(R^{\prime}\right)$ is a subset of L : Suppose that w is in $L\left(R^{\prime}\right)$. We show that w must have an even number of 0 s and an odd number of 1 s . Note that w must be the concatenation of three strings, say $w=x y z$, where both x and z are in $L(R)$ and y is in $L(1 \cup 01(11) * 0)$. Hence, both x and z must have an even number of 0 s and y must have either zero or two 0 s , (depending on whether y is in $L(1)$ or y is in $L(01(11) * 0)$). Hence since all of x, y, and z have an even number of 0 s , so must w. Also, both x and z must have an even number of 1 s , but y must have an odd number of 1 s . Since two even numbers plus one odd number is an odd number, clearly w must have an odd number of 1 s .
L is a subset of $L\left(R^{\prime}\right)$: (This is the harder direction, kudos to those of you who understood how to proceed with this one.) Suppose that w has an even number of 0s and an odd number of 1 s . We show that w is in $L\left(R^{\prime}\right)$. Let x be the longest prefix of w that has
an even number of 0 s and an even number of 1 s . Note that x may be the empty string but x cannot be the whole string w; that is, x is a proper prefix of w. We now consider two cases.

1. The first case is that $x 1$ is a prefix of w. Then $w=x 1 z$ for some z. In this case, since x has an even number of both 0 s and 1 s , so must z. Hence w is in $L(R 1 R)$ and therefore in $L(R(1 \cup 01(11) * 0) R)$.
2. The second case is that $x 0$ is a prefix of w. Now, $x 00$ cannot be a prefix of w, since $x 00$ has an even number of both 0 s and 1 s , but we know that x is the longest prefix of w with an even number of both 0 s and 1 s . Therefore, $x 01$ must be a prefix of w. The string $x 01$ has an odd number of 0 s and an odd number of 1 s ; hence another 0 must occur in w after the prefix $x 01$. Therefore, $w=x y z$ where y is of the form $011 * 0$. But in fact, y must contain an odd number of 1 s : if this were not true then $x y$ would be a prefix of w containing an even number of 0 s and 1 s and would be longer than x, but we know that x is the longest prefix of w containing an even number of 1 s . Thus, y is a string with a 0 at each end and an odd number of 1 s between these two 0 s, which means that y must be in $L(01(11) * 0)$. Therefore, y is also in $L(1 \cup 01(11) * 0)$. We have now shown that $w=x y z$ where x has an even number of both 0 s and 1 s and y is in $L(01(11) * 0)$. Since the string $x y$ has an even number of 0 s and an odd number of 1 s , it must be that z has both an even number of 0 s and an even number of 1 s . Thus, $w=x y z$ where x is in $L(R), y$ is in $L(1 \cup 01(11) * 1)$ and z is in $L(R)$. Therefore, $w=x y z$ is in $L(R(1 \cup 01(11) * 1) R)$ and we are done.

Figure 1: DFA for problem 2.b.

Figure 2: DFA for this problem 2.f.

Figure 3: DFA for problem 2.l.

