- [10] 1. Answer each question with a **brief** explanation.
 - (a) If L_1, L_2 are regular languages, is $L_1 \cap L_2$ necessarily regular?
 - (b) If L_1, L_2 are both not regular languages, is $L_1 \cup L_2$ necessarily not regular?
 - (b) If $L_1 \cap L_2$ is not regular and L_2 is regular, is L_1 necessarily not regular?
 - (b) If L_1, L_2 are acceptable, is $L_1 \cap L_2$ necessarily acceptable?
 - (b) If L is acceptable, is the complement of L necessarily acceptable?
 - (c) If L is decidable, is the complement of L necessarily decidable?
- [10] 2.Write down a DFA for the set of strings over 0,1 that do not contain 110 as a substring. Use the procedure described in class and the text to convert the DFA into an appropriate GNFA and then, by removing states one by one, find a corresponding regular expression.
- 3. Show that $\{ww | w \in \{0, 1\}^*\}$ is not context-free. [10]
- [10] 4. Let G_1 be the grammar S-> Sa|a, and let G_2 be the grammar S-> SS|a. (Both grammar's describe the language of words consisting of one or more a's.)
 - (a) How many parse trees are there for **aaa** with G_1 , and how many with G_2 ?
 - (b) Explain why one of G_1 and G_2 is unambiguous, and the other isn't.
 - (c) List all rules in Earley's algorithm in bags S_0, S_1, S_2 on input aaa for G_1 ; then do the same for G_2 . [Recall that Earley's algorithm adds the rule $\phi \rightarrow S$, begins by placing $\phi \rightarrow S$ 0 into S_0 , and has the bag S_i contain all rules obtained after scanning the first *i* symbols of the word being parsed.]
 - (d) On input a^n with n large, explain why Earley's algorithm will be much faster on one of G_1, G_2 than the other.
- [10] 5. Recall that

 $A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a Turing machine and } M \text{ accepts } w \}.$

Show that $A_{\rm TM}$ is not decidable. [Hint: Suppose R is a Turing machine deciding $A_{\rm TM}$. Let S be the machine that on input $\langle M \rangle$ runs R on input $\langle M, \langle M \rangle \rangle$ and outputs the opposite of R's answer. What does S do on input $\langle S \rangle$?]

- [10] Let 5PLUS be the language of $\langle M \rangle$ such that M accepts at least five strings. Show that 5PLUS is 6. acceptable but not decidable.
- 7. Give a reduction to show that 3SAT $\leq_{\rm P}$ SUBSET-SUM. [Hint: Starting with a 3CNF formula, dedicate [10] one digit (in a suitable base) to each variable and clause in the 3CNF.]
- Let DOUBLE-SAT be the set of $\langle \phi \rangle$ such that ϕ is a Boolean formula with at least two satisfying [10] 8. assignments. Show that DOUBLE-SAT is NP-complete.
- **[10]** 9. Let L_n be the language of strings over $\{0,1\}$ of length at least n whose n-th last digit is a 1. In other

Computer Science 421 _____ Section 101 _____ page 2 out of 0

words, L_n contains precisely those strings of the form u1w, where w is a string of length n-1 and u is an arbitrary (possibly empty) string.

- (a) Write down an NFA accepting L_n with O(n) states.
- (b) Show that any DFA accepting L_n has at least 2^n states. [Hint: Show that there is a set of 2^n words that are pairwise distinguishable by L_n , i.e., such that any two of them x, y that are distinct have the property that for some z, exactly one of zx, zy is accepted by L_n .]