[10] 1. Answer each question with a brief explanation.
(a) If L_{1}, L_{2} are regular languages, is $L_{1} \cap L_{2}$ necessarily regular?
(b) If L_{1}, L_{2} are both not regular languages, is $L_{1} \cup L_{2}$ necessarily not regular?
(b) If $L_{1} \cap L_{2}$ is not regular and L_{2} is regular, is L_{1} necessarily not regular?
(b) If L_{1}, L_{2} are acceptable, is $L_{1} \cap L_{2}$ necessarily acceptable?
(b) If L is acceptable, is the complement of L necessarily acceptable?
(c) If L is decidable, is the complement of L necessarily decidable?
[10] 2. Write down a DFA for the set of strings over 0,1 that do not contain 110 as a substring. Use the procedure described in class and the text to convert the DFA into an appropriate GNFA and then, by removing states one by one, find a corresponding regular expression.
[10] 3. Show that $\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not context-free.
[10] 4. Let G_{1} be the grammar $\mathrm{S}->\mathrm{Sa\mid a}$, and let G_{2} be the grammar S-> $\mathrm{SS} \mid \mathrm{a}$. (Both grammar's describe the language of words consisting of one or more a's.)
(a) How many parse trees are there for aaa with G_{1}, and how many with G_{2} ?
(b) Explain why one of G_{1} and G_{2} is unambiguous, and the other isn't.
(c) List all rules in Earley's algorithm in bags S_{0}, S_{1}, S_{2} on input aaa for G_{1}; then do the same for G_{2}. [Recall that Earley's algorithm adds the rule $\phi->\mathrm{S}$, begins by placing $\phi->$.S 0 into S_{0}, and has the bag S_{i} contain all rules obtained after scanning the first i symbols of the word being parsed.]
(d) On input a^{n} with n large, explain why Earley's algorithm will be much faster on one of G_{1}, G_{2} than the other.
[10] 5. Recall that

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a Turing machine and } M \text { accepts } w\} .
$$

Show that A_{TM} is not decidable. [Hint: Suppose R is a Turing machine deciding A_{TM}. Let S be the machine that on input $\langle M\rangle$ runs R on input $\langle M,\langle M\rangle\rangle$ and outputs the opposite of R 's answer. What does S do on input $\langle S\rangle$?]
[10] 6. Let 5PLUS be the language of $\langle M\rangle$ such that M accepts at least five strings. Show that 5PLUS is acceptable but not decidable.
[10] 7. Give a reduction to show that 3 SAT \leq_{P} SUBSET-SUM. [Hint: Starting with a 3CNF formula, dedicate one digit (in a suitable base) to each variable and clause in the 3CNF.]
[10] 8. Let DOUBLE-SAT be the set of $\langle\phi\rangle$ such that ϕ is a Boolean formula with at least two satisfying assignments. Show that DOUBLE-SAT is NP-complete.
[10] 9. Let L_{n} be the language of strings over $\{0,1\}$ of length at least n whose n-th last digit is a 1 . In other
words, L_{n} contains precisely those strings of the form $u 1 w$, where w is a string of length $n-1$ and u is an arbitrary (possibly empty) string.
(a) Write down an NFA accepting L_{n} with $O(n)$ states.
(b) Show that any DFA accepting L_{n} has at least 2^{n} states. [Hint: Show that there is a set of 2^{n} words that are pairwise distinguishable by L_{n}, i.e., such that any two of them x, y that are distinct have the property that for some z, exactly one of $z x, z y$ is accepted by L_{n}.]

