
OUR COVERAGE OF CHAPTERS 8 AND 9 OF SIPSER

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2014. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

The following is an outline of what we have covered in Sipser’s textbook Chap-
ters 8 and 9 up to Wednesday, November 13, 2014. The rough idea is (1) to learn
a bit about SPACE complexity (and how it differs from TIME), and (2) to be able

to prove that PA = NPA for certain oracles, and (3) describe how most people are
trying to prove that P is not NP. Specifically we covered the following material:

(1) Savitch’s theorem (8.1).
(2) PSPACE (8.2), which equals NPSPACE by Savitch’s theorem.
(3) in lieu of (8.3), we produced our own PSPACE-complete problem, which is

the language of descriptions < M, i, s > of: (1) a Turing machine, M , an
input i (to M), and s, an integer written in unary (it is crucial that s be
written in unary), such that M accepts i and uses at most space s to do
so; the proof is straightforward.

(4) The Time Hierarchy Theorem, Theorem 9.10 and Corollaries 9.11 and 9.12.
(This was covered in October).

(5) Theorem 9.20, part (2) (more specifically, if A is any PSPACE complete

language (under polynomial time reductions), then PA = NPA = PSPACE.
(6) Theorem 9.30, that a language in TIME(t(n)) has circuit complexity

O(t2(n)) (see Definitions 9.27 and 9.28) in Section 9.3.

Sample Exam Problems

(1) Problems from Sipser: Chapter 8: 8.4 (we will discuss the operation “star”
when we discuss regular languages), 8.6. Chapter 9: 9.1–9.6, 9.9.

(2) Argue that if L1, L2 are in P then so are (1) L1 ∪ L2, (2) L1 ∩ L2, (3) the
complement of L1. Argue that the same is true for P replaced by PA for
any oracle, A.

(3) Do Problem 2 with P replaced by NP for parts (1) and (2). Can you do
this for part (3)?

(4) We have seen two definitions for NP. One was based on a non-deterministic
Turing machine; another was that a language, L, over an alphabet Σ belongs

Research supported in part by an NSERC grant.

1

2 JOEL FRIEDMAN

in NP iff there is a positive integer, c, and a language, L′, such that for all
w ∈ Σ∗ we have

w ∈ L iff there exists a v ∈ Σ∗ with |v| = c|w|c such that (w, v) ∈ L′.

Explain why these two definitions of NP are equivalent. [See Section 7.3
and Theorem 7.20.]

(5) Our first discussion of the Time Hierarchy Theorem was to prove that
for any positive integer, a, we have that TIME(na) is a proper subset of
TIME(n2a+1). We mentioned that a faster universal Turing machine shows
that for any real numbers b > a ≥ 1, we have that TIME(na) is a proper

subset of TIME(nb). For any language, A, define TIMEA(f(n)) to be the
set of languages recognized by Turing machine with oracle A running in
time O(f(n)). Do the hierarchy theorems hold with TIME replaced by

TIMEA for any oracle, A? Outline the proof of the Hierarchy theorem to
justify your claim.

(6) (a) Given a language, A, consider Turing machines endowed with the ora-
cle A. Do Axioms 1–5 (from the handout studied in September) hold
for these Turing machines? Justify your answer (you should do this
axiom by axiom, although Axiom 1 and 3–5 should be almost imme-
diate).

(b) Let A = HALT be the Halting Problem (consisting of a Turing ma-
chine, p, and an input, i, to the Turing machine such that p halts
on input i). If we endow Turing machines with the oracle A, then is
HALT and its complement recognizable by such machines?

(c) Describe a sequence of oracles, A0 = ∅, A1, A2, . . . such that for any
positive integer i, the set of languages recognizable by Turing machines
with oracle Ai−1 is a proper subset of those recognized by Turing
machines with oracle Ai.

(7) (a) Outline the proof of the Time Hierarchy Theorem.
(b) Explain how to modify this proof to show that for any positive real

numbers b > a ≥ 1 there is a language in SPACE(nb) that is not
in SPACE(na). [The only technical point is to show that a Turing
machine that runs in space O(na) can be simulated in space O(nb);
this is not difficult, and much easier than the same claim for “space”
replaced by “time.”]

(8) Let LNP easy consist of all descriptions of a triple, 〈M, i, t〉 where M is a
non-deterministic Turing machine that accepts input i, running in time t
where t is expressed in unary. Write out a careful proof that shows that
this language is NP-complete (with respect to polynomial time reductions).

(9) Let LPSPACE easy consist of all descriptions of a triple, 〈M, i, s〉 where M
is a Turing machine that accepts input i, running in space s where s is
expressed in unary. Write out a careful proof that shows that this language
is PSPACE-complete (with respect to polynomial time reductions).

(10) For any positive integer, n, we may interpret a word of {0, 1}n(n+1) as a
sequence of n + 1 non-negative integers, each of which is specified in base
2 by a sequence of exactly n binary digits. For any positive integer, n, let

SUBSET− SUMn ⊂ {0, 1}n
2+n

OUR COVERAGE OF CHAPTERS 8 AND 9 OF SIPSER 3

be those words whose associated sequence of integers (as above),
m1,m2,mn, t, lie in SUBSET-SUM, i.e., there is an I ⊂ {1, . . . , n} such
that ∑

i∈I
mi = t.

Let f(n) be the minimum sized circuit that computes, for a word in
{0, 1}n(n+1), whether or not the word lies in SUBSET− SUMn. Show that
if we can prove that for any integer, c, we have f(n) ≥ nc for sufficiently
large n, then P 6= NP.

(11) For any positive integer, n, we may interpret a word of {0, 1}n(n−1)/2 as
describing a graph on n vertices, by describing which of the n(n − 1)/2
possible edges are contained in the graph (so by a graph we mean undirected
graphs that have no multiple edges or self-loops). For any positive integer,
n, let

3COLORn ⊂ {0, 1}n(n−1)/2

be those words whose associated graph (as above) is 3-colourable. Let f(n)
be the minimum sized circuit that computes, for a word in {0, 1}n(n−1)/2,
whether or not the word lies in 3COLORn. Show that if we can prove that
for any integer, c, we have f(n) ≥ nc for sufficiently large n, then P 6= NP.

(12) Explain why the set of languages that are decided by a list of circuits
C = (C0, C1, C2, . . .) in size n+ 1 is uncountable. Is the same true with n
replaced by

√
n+ 1? Is the same true with n replaced by 3?

(13) Let 3COLORn be the subset of {0, 1}n(n−1)/2 described in Problem 11. If
we can prove that f(n) ≤ n3 for n sufficiently large, does it necessarily
follow that P = NP?

Solutions to some problems appearing two pages from now

4 JOEL FRIEDMAN

Solutions to some problems appear starting on the next page

OUR COVERAGE OF CHAPTERS 8 AND 9 OF SIPSER 5

Solutions to Some Sample Exam Problems

(1) Problems from Sipser: Chapter 8: 8.4 (we will discuss the operation “star”
when we discuss regular languages), 8.6. Chapter 9: 9.1–9.6, 9.9.

(2) Argue that if L1, L2 are in P then so are (1) L1 ∪ L2, (2) L1 ∩ L2, (3) the
complement of L1. Argue that the same is true for P replaced by PA for
any oracle, A.

Solution: Let M1 and M2 be Turing machines recognizing L1 and L2 re-
spectively in polynomial time. For (3) we simply interchange the accepting
and rejecting states, which works also when M1 is allowed oracle calls.

For (1) and (2) we run M1 and M2 in parallel on the input, which
amounts to forming a new Turing machine, M , as follows:
(a) M has one tape for each tape of M1 and each tape of M2 (so the

number of tapes of M is the sum of the number of tapes of M1 and
M2); we designate the input tape of M1 to be the input tape of M ,
and the first task of M is to copy the input to the tape of M that
represents the first input tape of M2, and then we move all tape heads
to the beginning of their tapes; this task takes time linear in the size
of the input.

(b) We then repeatedly run one step of M1 and one of M2, with a state
set that is the product of the state sets of M1 and M2 (the state set of
M contains this product set, but also has states to perform the first
task above.

This parallel running of M1 and M2 therefore terminates in polynomial
time (which is the time for task one, plus the maximum of the times that
M1 and M2 take). In case (1), L1 ∪ L2, we accept an input if M1 or M2 is
in the accepting state; in case (2), L1 ∩ L2, we accept an input if both M1

and M2 are in the accepting state.
In cases (1) and (2), we can allow for oracles calls; in this case M is

allowed only one oracle tape, so we would have to modify M a bit: one
could keep in M the oracle tapes of M1 and M2 as “fake oracle tapes”
where a word could be written but the oracle tape of M would be an
additional tape. Then at any step where one or both of M1 and M2 make
oracle requests we would write the oracle call of M1 and/or M2 to M ’s
oracle tape and make an oracle call (if both M1 and M2 are making oracle
calls at the same step, M would have to handle these oracle calls one at
a time). The additional work done by M to handle these oracle calls is
linear in the length of the strings in the oracle calls, which are bounded by
the time bounds of M1 and M2, and therefore at most a polynomial in the
input size.

(3) Do Problem 2 with P replaced by NP for parts (1) and (2). Can you do
this for part (3)?

(4) We have seen two definitions for NP. One was based on a non-deterministic
Turing machine; another was that a language, L, over an alphabet Σ belongs
in NP iff there is a positive integer, c, and a language, L′, such that for all
w ∈ Σ∗ we have

w ∈ L iff there exists a v ∈ Σ∗ with |v| = c|w|c such that (w, v) ∈ L′.

6 JOEL FRIEDMAN

Explain why these two definitions of NP are equivalent. [See Section 7.3
and Theorem 7.20.]

(5) Our first discussion of the Time Hierarchy Theorem was to prove that
for any positive integer, a, we have that TIME(na) is a proper subset of
TIME(n2a+1). We mentioned that a faster universal Turing machine shows
that for any real numbers b > a ≥ 1, we have that TIME(na) is a proper

subset of TIME(nb). For any language, A, define TIMEA(f(n)) to be the
set of languages recognized by Turing machine with oracle A running in
time O(f(n)). Do the hierarchy theorems hold with TIME replaced by

TIMEA for any oracle, A? Outline the proof of the Hierarchy theorem to
justify your claim.

(6) (a) Given a language, A, consider Turing machines endowed with the ora-
cle A. Do Axioms 1–5 (from the handout studied in September) hold
for these Turing machines? Justify your answer (you should do this
axiom by axiom, although Axiom 1 and 3–5 should be almost imme-
diate).
Solution: Axiom 1 just says that the Result function is defined, which
is clear. Axiom 2 is the universal Turing machine for oracle machines;
these universal machines work just as regular universal Turing ma-
chines work, except that oracle calls from the simulated machine in-
volve the additional step of writing the contents of the simulated oracle
tape to the oracle tape of the universal machine and calling the oracle
from the universal machine. Axioms 3–5 are very easy and done just
as they are done for Turing machines.

(b) Let A = HALT be the Halting Problem (consisting of a Turing ma-
chine, p, and an input, i, to the Turing machine such that p halts
on input i). If we endow Turing machines with the oracle A, then is
HALT and its complement recognizable by such machines?
Solution: Yes: one oracle call to HALT can tell us if an input to the
Halting Problem will halt or will not, so we can use this recognize both
HALT and its complement.

(c) Describe a sequence of oracles, A0 = ∅, A1, A2, . . . such that for any
positive integer i, the set of languages recognizable by Turing machines
with oracle Ai−1 is a proper subset of those recognized by Turing
machines with oracle Ai.
Solution: Our approach will be to show that for any language, A,
there is a language B = B(A) such that the set of languages recog-
nizable by Turing machines with oracle B is a strict superset of those
with oracle A. Then we set Ai+1 = B(Ai) for i = 0, 1, 2,

For any oracle, A, let HA = HALTA be the halting problem for oracle
Turing machines with oracle A. By the first part of this exercise,
the complement of the Acceptance Problem for Turing machines with
oracle A is not recognizable by any Turing machine with oracle A (since
the set of such oracle Turing machines satisfy Axioms 1–5); hence the
complement of the Halting Problem with oracle A, namely HA, also
cannot be recognized by Turing machines with oracle A. It follows that
if we have a Turing machine that can “call both the oracles A and HA,”
then machines with this oracle can recognize a strict superset of the

OUR COVERAGE OF CHAPTERS 8 AND 9 OF SIPSER 7

languages recognizable with oracle A. It suffices to construct an oracle
that allows one to make oracle query calls to “both A and HA” (in the
evident sense, i.e., simulate the capability of writing a string on the
oracle tape and querying either A or HA).
So fix a Turing machine, and assume that 1 and 2 are letters in the
worktape alphabet of the machine (if not, then just enlarge this alpha-
bet). Let B be the language consisting of strings 1w such that w ∈ A
and 2w such that w ∈ HA. Then by prepending either a 1 or a 2 to a
string, we can call the oracle B to give an oracle call on w to either A
or HA.
It follows that for any language A, there exists a language B = B(A)
such that the set of langauges recognizable with oracle B is a strict
superset of those recognizable with oracle A.

(7) (a) Outline the proof of the Time Hierarchy Theorem.
Solution: There are a number of possible variants; I will describe the
proof we gave in class. We will need the existence of a universal Turing
machine that can simulate cnα steps of a Turing machine, M , on an
input w of length n = |w| in time C log(n)nα, where C = C(M, c, α); in
class we proved a weaker form of this bound, with C log(n)nα replaced
with Cn2α, and this weaker result can be used to get a weaker form
of the Time Hierarchy Theorem.
The result is that for real numbers 1 ≥ α ≥ β, TIME(nα) is a strict
subset of TIME(nβ). To prove this we fix a rational γ between α and
β and build a Turing machine M ′ as follows: on input i, we see if i
begins by describing a Turing machine, i.e., i = 〈M〉w where M is a
Turing machine and w is an additional “dummy padding” of i, and if
so we simulate M on input i. We run our simulation for time |i|γ in
M ′ (since M ′ may need an average of roughly log(|i|) steps to simulate
each step of M , the number of simulated M steps will be fewer). If M
halts on input i after this simulation, then if M accepts i we have M ′

reject i, and if M rejects then M ′ accepts. (We insist that γ is rational
so that we can compute the function f(n) = nγ in time order nγ , so
that we don’t need to spend excessive time computing just computing
nγ .)
Clearly M ′ runs within time order nγ ≤ nβ . However if M0 is a fixed
Turing machine running in time order nα, then for i = 〈M0〉w with
|w| sufficiently large, then M ′ differ on some inputs. The only subtle
point is that the universal Turing machine simulating M0 will never
look at w to perform each step of M0, and so the in the time C log(n)nα

bound for the simulation of cnγ steps of M0, the constant C, which
depends on the description of M0, is unaffected by the added padding
of the description of M0 in the input. (In class we noted that we could
alternatively pad the Turing machine M0 with some “dummy states”
which does the same type of padding that we need.)

(b) Explain how to modify this proof to show that for any positive real
numbers b > a ≥ 1 there is a language in SPACE(nb) that is not
in SPACE(na). [The only technical point is to show that a Turing
machine that runs in space O(na) can be simulated in space O(nb);

8 JOEL FRIEDMAN

this is not difficult, and much easier than the same claim for “space”
replaced by “time.”]
Solution: By the above solution, given real numbers 1 ≤ α < β with
γ rational, we need to show that there is a universal Turing machine
that simulates a machine running M using space bounded by order
nα in a simlutation that doesn’t use more than order nβ space. So
fix a rational number, γ, and simulate M on input w, making sure
to stop the simulation once any of the following hold: (1) M halts;
(2) M takes more than nγ space; and/or (3) M takes more than 2n

γ

time. Since M has a fixed number of tapes, (2) requires at most space
CMn

γ , and (3) requires at most space nγ (for a counter from 1 to 2n
γ

.
Notice that the above universal Turing machine on bounded space
is much easier and stronger than the time bound. Simulating f(n)
steps of a Turing machine, M , can be done easily in time CM (f(n))2,
and by a more difficult simulation in time CMf(n) log(f(n)). But a
simulation of a Turing machine, M , for space f(n), can be done in
time CMf(n) (where the constant CM involves the space of tape of
the simulating machine and a counter so that we stop after Cf(n) steps
to avoid infinite loops); further this proof is quite easy. So the Space
Hierarchy Theorem gets rid of the log(f(n)) factor, and formally says
that if f(n) is computable in space f(n), then SPACE(f(n)) contains
SPACE(g(n)) for any function g(n) with g(n) = o(f(n)).

(8) Let LNP easy consist of all descriptions of a triple, 〈M, i, t〉 where M is a
non-deterministic Turing machine that accepts input i, running in time t
where t is expressed in unary. Write out a careful proof that shows that
this language is NP-complete (with respect to polynomial time reductions).

(9) Let LPSPACE easy consist of all descriptions of a triple, 〈M, i, s〉 where M
is a Turing machine that accepts input i, running in space s where s is
expressed in unary. Write out a careful proof that shows that this language
is PSPACE-complete (with respect to polynomial time reductions).

Solution: First we show that LPSPACE easy is in PSPACE. In fact, this
follows from the universal Turing machine that simulates a Turing machine,
M , on input i, of bounded space s in space as described in Problem 7(b).
We just need to be careful about the resources needed. First we extract i
and copy i onto the worktape of the universal machine; this takes space at
most 〈M, i〉, since we have arranged the input as 〈M, i, s〉, and we do not
need to scan past i. Now the simulation described in Problem 7(b) requires
space CM |s|; we just have to be careful to bound CM by a polynomial in
〈M〉 (which would therefore be bounded by a polynomial in the size of the
input, which is 〈M, i, s〉).

The constant CM comes from the number of tapes of M ; since the tran-
sition function is

δ : Q× Γk → Q× Γk × {L, S,R}k,

multiplexing k tapes with tape symbols Γ is polynomial in the description
of δ. Strictly speaking, if M on input i and space s loops infinitely, then we
are allowed to loop infinitely; hence we don’t have to worry about counting
the number steps to detect an infinite loop (but we could easily do so).

OUR COVERAGE OF CHAPTERS 8 AND 9 OF SIPSER 9

Next we show that if L ∈ PSPACE, then L ≤ LPSPACE easy. Indeed, if
M is Turing machine recognizing L in cna for some integers c, a, then given
input w let

f(w) = 〈M,w, 1c|w|
a

〉.
The function f can be computed in the sum of the following time: (1)
constant time to write down a description of M , (2) time order |w| to tack
on w, (3) time polynomial in |w| to compute c|w|a and tack on this many
1’s to the description of M and w. Hence f can be computed in polynomial
time in w, and clearly

w ∈ L ⇐⇒ f(w) ∈ LPSPACE easy.

(10) For any positive integer, n, we may interpret a word of {0, 1}n(n+1) as a
sequence of n + 1 non-negative integers, each of which is specified in base
2 by a sequence of exactly n binary digits. For any positive integer, n, let

SUBSET− SUMn ⊂ {0, 1}n
2+n

be those words whose associated sequence of integers (as above),
m1,m2,mn, t, lie in SUBSET-SUM, i.e., there is an I ⊂ {1, . . . , n} such
that ∑

i∈I
mi = t.

Let f(n) be the minimum sized circuit that computes, for a word in
{0, 1}n(n+1), whether or not the word lies in SUBSET− SUMn. Show that
if we can prove that for any integer, c, we have f(n) ≥ nc for sufficiently
large n, then P 6= NP.

Solution: The essential idea is that if SUBSET-SUM is in P, then there
are polynomial sized circuits that take a description of a word, w, and
compute whether or not w lies in SUBSET-SUM. Hence there are poly-
nomial size circuits to compute SUBSET-SUM; hence a superpolynomial
lower bound on the size of circuits would contradict that the fact that
SUBSET-SUM is in P.

The only technicality to consider is that w is a word in some alphabet like
Σ = {0, 1, . . . , 9,#}, and the input Boolean variables in the aforementioned
circuits are a list yij which is true iff the i-th letter of w is the j-th letter
of Σ. It is straightforward, albeit a bit tedious, to show that the above yij
give us the xij we desire.

In more detail, any SUBSET-SUM problem in Σn has all its integers
having at most n base 10 digits (recall we are using base 10 for SUBSET-
SUM, but binary xij involve a base 2 representation) and has a total of at
most (n+1)/2 different integers (the integers of this problem are separated
by #’s). Given the xij of such a SUBSET-SUM problem, we can compute
the corresponding yij in a circuit of polynomial size in n (this circuit in-
volves converting base 2 numbers to base 10). Then we can feed the yij
into polynomial size circuits for the SUBSET− SUMn problem, assuming
that SUBSET-SUM is in P . Hence a superpolynomial lower bound on the
size of such circuits would be impossible.

(11) For any positive integer, n, we may interpret a word of {0, 1}n(n−1)/2 as
describing a graph on n vertices, by describing which of the n(n − 1)/2
possible edges are contained in the graph (so by a graph we mean undirected

10 JOEL FRIEDMAN

graphs that have no multiple edges or self-loops). For any positive integer,
n, let

3COLORn ⊂ {0, 1}n(n−1)/2

be those words whose associated graph (as above) is 3-colourable. Let f(n)
be the minimum sized circuit that computes, for a word in {0, 1}n(n−1)/2,
whether or not the word lies in 3COLORn. Show that if we can prove that
for any integer, c, we have f(n) ≥ nc for sufficiently large n, then P 6= NP.

(12) Explain why the set of languages that are decided by a list of circuits
C = (C0, C1, C2, . . .) in size n+ 1 is uncountable. Is the same true with n
replaced by

√
n+ 1? Is the same true with n replaced by 3?

Solution: The same is true with n replaced by 1: consider the Boolean
functions that depend only on the size of the input. If a function for a given
size of input is constant, then it is computed by a circuit of size 1 (provided
that we don’t count the inputs x1, . . . , xn as part of the size; if we do, then
these are circuits of size n + 1). But the number of such functions is as
large as the number of subsets of the positive integers, which uncountable.

(13) Let 3COLORn be the subset of {0, 1}n(n−1)/2 described in Problem 11. If
we can prove that f(n) ≤ n3 for n sufficiently large, does it necessarily
follow that P = NP?

Solution: Not in general. If the circuits are simple enough to be gen-
erated by some Turing machine in polynomial time (such circuits are usu-
ally called “uniform circuits”), then yes. However, there is no reason that
this need be true; indeed, byt last problem, the number of different func-
tions that a sequence C0, C1, C2, . . . can compute is uncountable; so there
certainly are many circuit sequences that cannot be generated by Turing
machines. [Most people believe that there aren’t polynomial sized circuits
for any NP-complete problem, so showing the contrary would be of great
interest.]

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,

Vancouver, BC V6T 1Z2, CANADA.
E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf

