
OUR COVERAGE OF CHAPTER 1 OF SIPSER

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2014. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

The following is an outline of what I plan to cover and test on in Sipser’s textbook
Chapter 1.

(1) The definition of a finite automaton (DFA, the D to emphasize “determin-
istic”) and of a non-deterministic finite automata (NFA).

(2) The Myhill-Nerode Theorem (Exercise 1.52 in Sipser’s textbook) to deter-
mine which languages can be recognized by a DFA and how many states
are required; and

(3) the use of NFA’s and a comparison of NFA’s to DFA’s.

In class we will cover some of the sample exam problems given in the Sample
Exam Problem section below.

To save you some time, once you see the definition of a finite automaton (see
Section 1.1 of Sipser) you should be able to do all the exercises below, provided you
know the following information (all of which is found in various places in Chapter 1
of Sipser’s textbook):

(1) a finite automaton is called a DFA, the “D” for deterministic;
(2) NFA’s are just like DFA’s except that (1) you can transition to any number

of states upon reading a letter, and (2) for convenience you can transition
on the “empty string”;

(3) For any language, L ⊂ Σ∗ and word w ∈ Σ∗ we set the “future of L after
seeing w” to be

Future(L,w) = {u ∈ Σ∗ | wu ∈ L};
the number of futures of a language is precisely the minimum number of
states in a minimal DFA recognizing L (if this number of futures is infinite
then there is no DFA recognizing L).

(4) Any NFA whose state set is Q can be viewed as a DFA where the set of
states is 2Q = Power(Q), i.e., the set of all subsets of Q. In practice:
(a) Consider an NFA whose state set is Q. To see if the NFA recognizes a

word w ∈ Σ∗, we need only remember which states of Q can be reached
each time we process a letter of w; this information is a Boolean string
of size |Q|. This means that an NFA can be run in roughly |Q| times
the work it would take if it were a DFA.

(b) Given two DFA’s, the concatenation of the languages they recognize
can be recognized by an NFA which consists of the two DFA’s, where
the initial state of the NFA is the initial state of the DFA for the first

Research supported in part by an NSERC grant.

1

2 JOEL FRIEDMAN

language, and where the final states of the first DFA each have an
“empty word” transition to the second DFA.

(c) Similarly, the “star” of a regular language is easy to describe as an
NFA.

Again, the above material is all we will cover, and we will not cover (1) GNFA’s
and the formal procedure to convert a DFA to a regular expression (is there any
practical reason to do this?); (2) the Pumping Lemma (an easy consequence of the
Myhill-Nerode theorem, based on the clever observation that if u and uv have the
same future, then this same future is shared also by uv2, uv3, . . .).

In class we will solve some of the problems below.

Sample Exam Problems

(1) For the following languages, give a diagram of a DFA that recognizes any
of languages in Sipser Exercises 1.4, 1.5, and 1.6.

(2) For the following alphabets, Σ, and languages, L ⊂ Σ∗, compute
Future(L,w) for every w ∈ Σ∗ and use this to construct the DFA with
the minimum number of states for the language, L.
(a) Σ = {1}, L is the langauge of words with at least three 1’s.
(b) Σ = {0, 1}, L is the langauge of words with at least three 1’s.
(c) Σ = {1}, L is the langauge of words with exactly three 1’s.
(d) Σ = {0, 1}, L is the langauge of words with exactly three 1’s.
(e) Σ = {1}, L is the langauge of words with an odd number of 1’s.
(f) Σ = {0, 1}, L is the langauge of words with at least three 1’s and at

least two 1’s.
(g) Σ = {0, 1}, L = {0∗1∗};
(h) Σ = {0, 1}, L = {10∗1∗};

(3) Show that the following languages, L ⊂ Σ∗, cannot be recognized by a DFA
by that there are infinitely many futures for L (i.e., Future(L,w) takes on
infinitely many values):
(a) Σ = {1}, L = {1n such that n is a perfect square} [Hint: consider

wm = 1m
2+1, and use the fact that there is no perfect square between

m2 + 1 and m2 + 2m.]
(b) Σ = {1}, L = {1n such that n is a prime number} [Hint: use the fact

that the number of primes is infinite, and show that for m ≥ 2 there
is no prime number between m! + 2 and m! + m.]

(c) Σ = {0, 1}, L = {0n1n} [Hint: show that Future(L, 0m) contains 1m

but does not contain any other string of 1’s.]
(d) Σ = {0, 1}, L = {0n1n+2} [Hint: show that Future(L, 0m) contains

1m+2 but does not contain any other string of 1’s.]
(e) Σ = {0, 1}, L = {0n12n} [Hint: show that Future(L, 0m) contains 12m

but does not contain any other string of 1’s.]
(4) Explain the following the questions regarding NFA’s:

(a) Write an NFA for the languages in Sipser Exercise 1.7
(b) Any NFA with k states can be written as a DFA with 2k states. Would

you want to use this observation to implement an NFA in practice?

OUR COVERAGE OF CHAPTER 1 OF SIPSER 3

(c) Why are NFA’s convenient to show that the concatenation of two
regular languages is regular?

(d) Why are NFA’s convenient to show that the star of a regular language
is regular?

(e) Under which circumstances is it useful to do the following:
(i) convert a regular expression to an NFA;

(ii) convert a regular expression to a DFA; and
(iii) convert a DFA or NFA to a regular expression.

(5) Argue that the class of regular languages is closed under the following
operations: (1) complementation, (2) intersection, (3) concatenation, (4)
union, and (5) star. Explain why it is easy to do (1)–(3) by considering
DFA’s alone, while to show (4) and (5) it is easier to consider NFA’s.

(6) Show that a language and its complement have the same number of futures
by arguing that

Future(Lcomp, w) =
(
Future(L,w)

)comp

where complementation in both cases means complementation with respect
to Σ∗ where Σ is the alphabet over which L is defined.

(7) Show that if for a language L ⊂ Σ∗ and w1, w2 ∈ Σ∗ we have

Future(L,w1) = Future(L,w1w2)

then for any m = 2, 3, . . . we have

Future(L,w1) = Future
(
L,w1(w2)m

)
.

(This is the basic idea behind the “Pumping Lemma.”)

Solutions to some problems appearing two pages from now

4 JOEL FRIEDMAN

Solutions to some problems appear starting on the next page

OUR COVERAGE OF CHAPTER 1 OF SIPSER 5

Solutions to Some Problems

Note that Problems (2) and (3) contain many parts which are all variants of the
same question; hence we provide only one or two solutions from these problems.

(1) Some solutions are given in Siper’s textbook.
(2) (a) Σ = {1}, L is the langauge of words with at least three 1’s. Solution:

Future(L, 1n) is 1∗ for n ≥ 3, and for n < 3 this is the set of words
with at least 3− n 1’s; hence there are four possible futures, and they
form the following DFA: the initial state is represented by the future
L = 131∗; which transitions under 1 to 121∗; which transitions under
1 to 11∗; which transitions under 1 to 1∗; which transitions to itself.
This is a four state DFA.

(b) Σ = {0, 1}, L is the langauge of words with at least three 1’s. So-
lution: Here Future(L,w) is just as in the previous problem, except
that any occurrence of 0 in w is ignored. Hence we get the futures
consisting of all u that has at least 3−n 1’s in them, for n = 0, 1, 2, 3,
and we get the same four state DFA except that upon reading the
letter 0 we simply transition to the same state.

(3) Show that the following languages, L ⊂ Σ∗, cannot be recognized by a DFA
by that there are infinitely many futures for L (i.e., Future(L,w) takes on
infinitely many values):
(a) Σ = {1}, L = {1n such that n is a perfect square} [Hint: consider

wm = 1m
2+1, and use the fact that there is no perfect square between

m2 + 1 and m2 + 2m.] Solution: The future of a word wm = 1m
2+1

contains 12m but nothing smaller. Hence the futures of all these wm

are distinct.
Alernate solution: Since the number of perfect squares is infinite,
the future of any word contains some word 1k. If there were a finite
number of futures, then there would be a k0 such that each future

would contain some 1k with k ≤ k0. But the word wm = 1m
2+1

contains no 1k with k < 2m, so it is impossible to have a finite number
of words.

The other solutions are very similar to the first part, given the hints.
(4) Explain the following the questions regarding NFA’s:

(a) Sipser Exercise 1.7: Some solutions given in the text.
(b) Any NFA with k states can be written as a DFA with 2k states. Would

you want to use this observation to implement an NFA in practice?
Solution: No. To implement an NFA with Q states takes roughly
only |Q| time longer than if it was a DFA (we simply have to record
what possible states we are in after reading each letter, and this record
is essentially a binary string over |Q|). To write out all states and
transitions in the associated DFA would take exponential time on |Q|.

(c) Why are NFA’s convenient to show that the concatenation of two
regular languages is regular? Solution: Given in the previous section.

(d) Why are NFA’s convenient to show that the star of a regular language
is regular? Solution: Given a DFA, to “star” the recognized language

6 JOEL FRIEDMAN

we simple add “empty word” transitions from each final state to the
initial state.

(e) Under which circumstances is it useful to do the following:
(i) convert a regular expression to an NFA; Solution: certainly

when dealing with regular expressions that allow for concatena-
tions or stars;

(ii) convert a regular expression to a DFA; Solution: when working
with very limited regular expressions (e.g., that search for strings
individual strings), where NFA’s are not needed;

(iii) convert a DFA or NFA to a regular expression Solution: I don’t
know of any situation where it is beneficial to convert a DFA or
NFA into a regular expression. Theoretically it is interesting to
know the equalence of regular languages with those described by
regular expressions.

(5) Argue that the class of regular languages is closed under the following
operations: Solution:
(a) complementation: interchange the final and non-final states;
(b) intersection and union: form the product of the two DFA’s (i.e., the

new DFA has state set Q1×Q2 where Q1, Q2 are the state sets of the
original DFA’s); the constructions are similar except for the set of final
states; note that to implement the product of two DFA’s you can leave
the DFA’s alone and simply compute the product state upon reading
a letter, i.e., which state you would be in for each of the two DFA’s
separately;

(c) concatenation and star: described in the previous section.
(6) Show that a language and its complement have the same number of futures

by arguing that

Future(Lcomp, w) =
(
Future(L,w)

)comp

where complementation in both cases means complementation with respect
to Σ∗ where Σ is the alphabet over which L is defined. Solution: This is
straightforward: for any u we have that wu ∈ Lcomp iff wu /∈ L; but the
set of u such that wu /∈ L is precisely the complement of the set of u such
that wu ∈ L. The futures of Lcomp are in one-to-one correspondence with
their complements in Σ∗, and by the previous sentence these are precisely
the futures of L.

(7) Show that if for a language L ⊂ Σ∗ and w1, w2 ∈ Σ∗ we have

Future(L,w1) = Future(L,w1w2)

then for any m = 2, 3, . . . we have

Future(L,w1) = Future
(
L,w1(w2)m

)
.

(This is the basic idea behind the “Pumping Lemma.”) Solution: Let

F = Future(L,w1) = Future(L,w1w2)

Then for any u ∈ Σ∗ we have

(0.1) w2u ∈ F ⇐⇒ u ∈ F .

OUR COVERAGE OF CHAPTER 1 OF SIPSER 7

Taking u = w2u
′ in (0.1) we have

w2w2u
′ ∈ F ⇐⇒ w2u

′ ∈ F
but taking u = u′ in (0.1) we have

w2u
′ ∈ F ⇐⇒ u′ ∈ F

Hence for any u′ we have

(w2)2u′ ∈ F ⇐⇒ u′ ∈ F .
Similarly it then follows that

(w2)3u′ ∈ F ⇐⇒ u′ ∈ F ,
and then the same if (w2)3 is replaced by (w2)m for any m = 4, 5, . . . But

Future
(
L,w1(w2)m

)
= {u | w1(w2)mu ∈ L} = {u | (w2)mu ∈ F},

which, by the above, is the same as

{u | u ∈ F} = Future(L,w1).

Solution 2: Consider the minimal DFA for L. Then w1 and w2 are in
the same state; call this state q. It follows that if we are in state q, and we
follow w2 from state q, we wind up again in state q. Hence w1(w2)m also
winds up in state q. But any two words in state q have the same future, so
w1(w2)m has the same future, for m = 0, 1, 2,

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,

Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf

