
UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421

JOEL FRIEDMAN

Contents

1. Some “Paradoxes” 2
2. Dealing with Paradoxes 3
3. Counting, The Pigeon Hole Principle, and Computability 3
3.1. The Finite Pigeon Hole Principle 4
3.2. Finite Programs and Languages 4
4. Some Infinite Pigeon Hole Principles 5
4.1. Russell’s Paradox 8
5. Assumptions Regarding Programs and Universal Programs 8
5.1. Intuitive Description 8
5.2. The Language 421Simple 9
5.3. The Language 421TRAN 10
6. Deciding and Recognizing 11
6.1. The Axioms and Main Theorems 11
6.2. Settings Where the Axioms Hold 15
6.3. Remarks on the Axioms 15
6.4. The Proof of Theorem 6.6 16
6.5. The Proof of Theorem 6.10 17
7. Learning Goals and Sample Exam Problems 17
7.1. Paradoxes (Sections 1 and 2) 17
7.2. Counting (Sections 3 and 4) 19
7.3. Decidability and Recognizability (Sections 5 and 6) 20
Appendix A. Logic in Complexity Theory and Gödel’s Incompleteness

Theorems 21
A.1. Gödel’s Incompleteness Theorems 21
A.2. False Proofs of Fermat’s Last Theorem 23
A.3. A False Proof That 1 + 1 6= 0 23
A.4. The Baker-Gill-Soloway Theorem 23
References 24

Copyright: Copyright Joel Friedman 2014. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

Research supported in part by an NSERC grant.

1

2 JOEL FRIEDMAN

The most subtle questions in any introductory computation theory course—such
as CPSC 421—is to determine which problems cannot be solved in various models
of computation. An example of this is “P versus NP,” the most famous (and
fundamental) open problem in computer science, and worth $1,000,000.

Another well known example is the fact that the Halting Problem is undecidable.
This proof typically takes a few lines once the proper terminology and definitions
are given, although this proof is quite subtle. This proof is fairly “universal,” in
that it holds regardless of which classical notion of computation one uses (e.g., a
Turning machine, a Random-Access Machine, a C++ program).

We shall begin CPSC 421 by describing the general ideas used to prove various
uncomputability results, which are for a very general notion of computation. We
shall then formally describe Turing machine computations, and revisit the principles
described in this article. We will cover regular languages and context-free languages
at the end of the course, as these topics are of much less interest to present day
mainstream computer science.

A secondary goal of this article is to discuss how various “paradoxes” (real or
apparent) in mathematics relate to the undecidability of the Halting problem.

Unfortunately, this article may well “ruin the surprises” in CPSC 421. Perhaps
the most interesting surprises are:

(1) “self-referencing” leads to wonderful “paradoxes,” which can give interest-
ing theorems (e.g., the Halting Problem is undecidable);

(2) certain discrete math problems can “simulate” computers, so that if you
could solve these problems you could solve any problem solvable by such
computers (NP-completeness).

For the first few weeks of CPSC 421/501, we will study computability in an ab-
stract setting, and describe why we usually get problems that are not “computable”
in some sense. We will then try to make this precise but concrete, and we will see
why Turning machines are popular for doing this. We shall also see many related
problems and “paradoxes” in other fields. Sipser’s text (or almost any introductory
theory text) will explain the Halting Problem in more detail, and we shall later
return to the Halting Problem and cover it rigorously.

1. Some “Paradoxes”

The two main results of this course are perhaps (1) the unsolvabilitiy of the
halting problem, and (2) NP-completeness. Both results are linked with a number
of other remarkable results in logic and computing, and appear as paradoxes:

(1) I am lying.
(2) This statement is a lie.
(3) This sentence refers to the smallest positive integer not defined by a sentence

of thirty words or fewer.
(4) This statement has no proof that it is correct.
(5) I write about those who don’t write about themselves.
(6) This is the set of sets that do not contain themselves.
(7) This is a C program that takes a string, s, as input and (i) loops infinitely

if s is a valid C program that halts on input s, and (ii) halts otherwise.

One thing that these statements have in common is that they all either explicity
“refer to themselves” or can be “applied to themselves.” Another is that they

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 3

involve fundamental ideas in logic or computing. Another is that on some naive
level they lead to a “paradox.”

Consider the first statement, “I am lying,” famously used, of course, by Captain
Kirk and Mr. Spock1 to destroy the leader of an army of robots. This leads to a
paradox: if the speaker is telling the truth, then he is lying (“I am lying”), but if
he is lying, then he is lying that he is lying, meaning he is telling the truth. Either
way we get a contradition.

All the other statements lead to “paradoxes” (of somewhat different types); this
will be discussed in class and the exercises.

2. Dealing with Paradoxes

There are a number of approaches to dealing with paradoxes. They include:

(1) Ignore the paradox. Carry on regardless.
(2) Admit the paradox, but claim it doesn’t matter in practice.
(3) State the paradox in precise terms.

In this course we take approach (3), which can lead to a number of results, such as:

(1) The paradox goes away when things are stated precisely.
(2) The paradox doesn’t go away, and you have to change your theory if you

want it free of contradictions.
(3) The paradox doesn’t go away, but only if certain things are true. Therefore

(assuming your setting is free of contradictions) you have a theorem that
one of these certain things must be false.

As examples, the “smallest number” paradox gives result (1), i.e., the paradox goes
away when things are stated precisely; the set theory paradox gives result (2), i.e.,
it does not go away, and set theory had to be rewritten so as not to allow the
formation of concepts like, “the set of all sets that blah blah blah.” The halting
problem is an example of result (3), and gives us a theorem (!) about a problem
that cannot be solved by an algorithm or computer.

In order to show the Halting Problem is undecidable, we need to make our setting
precise.

3. Counting, The Pigeon Hole Principle, and Computability

A simple way to show that there exist problems that cannot be solved an
algorithm—in computational complexity theory—is to show that there are more
“problem instances” to be solved than there are algorithms. This idea—in a vastly
more general sense—is often called the pigeon hole principle. This principle is easy
to understand when it involves finite sets; the point is that one can make sense of
this principle even when the sets are infinite.

In practice, most notions of a computer program (in C, in Java, Turing machines,
RAM machines, etc.) describe each individual program by information which can
be viewed as a finite string over some finite alphabet. This implies that there
are only countably many computer programs. Since usually the programs recognize
languages over some fixed alphabet, this implies that set of languages is uncountable.
This implies that—in most notions of computer programs—there are languages
which are not recognized by any computer program.

1Thanks to Benjamin Israel for pointing out an earlier inaccuracy.

4 JOEL FRIEDMAN

3.1. The Finite Pigeon Hole Principle. The pigeon hole (or drawers) principle
is the simple observation that if there are more pigeons than pigeon holes, then
some pigeon hole has more than one pigeon. Here are some simple special cases:

(1) In any set of at least 8 people, at least two people were born on the same
day of the week.

(2) In any set of at least 367 people, at least two people have the same birthday
(in the Gregorian calendar).

(3) In any set of at least 1001 people, at least two people have the same last
three digits in their phone numbers.

(4) If you are trying to sort 10 names in alphabetical order using comparisons
(i.e., you are allowed to take any two names and ask which come first in
alphabetical order), then you need at least 24 comparisons (since 223 is
strictly less than 10!).

3.2. Finite Programs and Languages. Imagine a computational problem which
is supposed to determine some property of the numbers from one to ten. Formally,
a property of {1, . . . , 10} is just a subset of {1, . . . , 10} such as

PRIMES = {2, 3, 5, 7}, EVEN = {2, 4, 6, 8, 10}, SQUARES = {1, 4, 9};
one can equivalently say that a property of {1, . . . , 10} is a function

{1, . . . , 10} → {yes, no};
for example, PRIMES can be equivalently viewed as the function, Primes, with

Primes(1) = no, Primes(2) = yes, Primes(3) = yes, Primes(4) = no,

. . . , Primes(7) = yes, Primes(8) = no, Primes(9) = no, Primes(10) = no.

One often sees {true, false} instead of {yes, no}.
For a computer program to “recognize” the prime numbers from one to ten, we

usually view the computer as being given an element of the set of inputs,

Inputs = {1, . . . , 10};
the computer then does some computations, following the computer program’s in-
structions, and returns an element of the set of outputs,

Outputs = {yes, no};
the computer program “recognizes” the prime numbers, i.e., the set PRIMES, i.e.,
the function Primes, provided that the function it computes from inputs to outputs
is the function Primes. Let us introduce some standard definitions.

Definition 3.1. Let I be a set. By a language on input set I we mean a subset
of I. A program on I is a function P : I → {yes, no}; furthermore we say that P
recognizes the language

L = {I ∈ I | P (I) = yes}.

It is common to use all capital letters for a language; for example

PRIMES = {2, 3, 5, 7} ⊂ I = {1, . . . , 10},
so we can view PRIMES as a language over the input set I = {1, . . . , 10}. The
above definition doesn’t care how the program works, just what it outputs on each
of its possible inputs.

The pigeon hole principle gives the following easy theorem.

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 5

Theorem 3.2. Let I be a set, P a set of programs on I, and L a set of languages.
If |P| < |L|, then some language is not recognized by any element of P.

Proof. (This proof is quite informal.) For the sake of contradiction, assume that
each language L ∈ L is recognized by a program P ∈ P. Then, by the pigeon hole
principle, there are two languages that are recongnized by the same program; but
each program recognizes only one language. �

For example, if you have a collection, P, consisting of two programs on
{1, . . . , 10}, then one of the three languages

{PRIMES,EVEN,SQUARES}
is not recognized by any program in P.

Corollary 3.3. Let I be a set, P a set of programs in I. If

|P| < 2I ,

then there is some language, L ⊂ I, that is not recognized by any program in P.

This discussion is quite easy when P and I are finite sets. The main point of
this section is that the above corollary is also true when P and I are infinite sets,
provided that we can make sense of the inequality

(3.1) |P| < 2|I|.

Notice that this corollary doesn’t necessarily give you a quick way of finding a
languages not recognized by P; in principle you might have to examine each P ∈ P,
see which language of I each P recognizes, and then give some language missed by
all the P ∈ P.

4. Some Infinite Pigeon Hole Principles

We now want to interpret (3.1) when P and I are infinite sets. In the typical
applications, the set of programs, P, and the set of inputs, I, are infinite, but only
countably infinite (this is the “smallest” size of infinity). It turns out that (3.1) still
holds.

To talk about different sizes of infinity, one would usually discuss some general
aspects about set theory, as done in Sipser’s textbook in Section 4.2 (on the Halting
Problem); here we want to avoid this, and only talk about countable sets versus
uncountable sets.

Definition 4.1. The natural numbers, denoted N, is the set

N = {1, 2, 3, . . .}.
A set S is countable if any of the equivalent conditions hold:

(1) There is a sequence of elements of S,

s1, s2, s3, . . .

such that each element of S appears at least once in this sequence.
(2) Either S is a finite set, or there is a bijection f : N→ S.
(3) There is an injective map S → N.

A set is uncountable if it is not countable. A set is countably infinite if it is countable
and infinite.

6 JOEL FRIEDMAN

It is not hard to prove that all the conditions are actually equivalent; there are
analogous statements for set in general (that may be uncountably infinite), but this
requires more set theory.

Example 4.2. The set of integers is countable, the set of rational numbers is
countable. The set of real numbers is uncountable (see Sipser, Section 4.2 for a
proof). Any subset of a countable set is countable. Any superset of an uncountable
set is uncountable.

Let’s discuss the case of interest to us.

Definition 4.3. Let A be a set. A word over (the alphabet) A is a finite sequence
of elements of A; we understand that this includes a single sequece of length zero,
the empty string. We often omit the phrase “the alphabet.” We denote (1) the
empty string by ε, (2) the set of all words over A by A∗, and (3) the set of strings
of length k (where k is a non-negative integer) by Ak.

For example,
{a, b}2 = {aa, ab, ba, bb}

(here ab denotes the sequence whose first element is a, and second element is b, and
similarly for all words), and

{c, d}∗ = {ε, c, d, cc, cd, dc, dd, ccc, ccd, . . .}.

Theorem 4.4. Let A be a non-empty set that is either finite or countably infinite.
Then A∗ is countably infinite.

Proof. Since A is non-empty, it contains some element, a ∈ A. Then A∗ contains
the distinct words

ε, a, aa, aaa, a4, a5, . . .

(here a4 is short for aaaa, and similarly for an for all integers n), and hence A∗ is
infinite. To show that A∗ is countable, we use the following lemma.

Lemma 4.5. The set N∗, i.e., the set of all words over N, i.e., of all finite sequences
of elements of N, is countable.

Proof. For any finite sequence of natural numbers, i1, . . . , ik, define

(4.1) weight(i1, . . . , ik) = i1 + i2 + · · ·+ ik,

and weight of the empty sequence to be 0 (this—in a sense—already follows from
(4.1)). We claim that the number of elements of N∗ with a given weight is finite
(homework). Hence we can list all sequences of weight zero, then all of weight
one, then all of weight two, etc., we get a countable sequence which contains all of
N∗. �

Returning to the proof of Theorem 4.4, since A is countable, there is a sequence

a1, a2, a3, . . .

such that each element of A is some element of this sequence. But then the map
N∗ → A∗ given by

(i1, . . . , ik) 7→ aiiai2 . . . aik
is surjective. Since N∗ is countable, this surjection shows that A∗ is countable. �

Theorem 4.4 can also be proved from some more general lemmas below, whose
proofs are homework.

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 7

Lemma 4.6. Let A and B be countable sets. Then

A× B = {(a, b) | a ∈ A, b ∈ B}
is countable.

Corollary 4.7. If A is countable, then for any integer k, Ak is countable.

Lemma 4.8. If A1,A2, . . . are countable sets, then⋃
i∈N
Ai

is a countable set.

Aside from the set of real numbers, there is a very important example of an
uncountable set.

Notation 4.9. If I is any set, then we denote by 2I and Power(I) the set of
subsets of I.

Theorem 4.10. Let I be any set. Then there is no bijection (i.e., one-to-one
correspondence) between I and 2I , the set of subsets of I. In particular, if I is
countably infinite, then 2I is uncountable.

We remark that if I is finite, this implies that n < 2n for any natural number,
n.

Proof. For the first assertion, say that f : I → 2I is a bijection. Let

J = {j ∈ I | j /∈ f(j)}.
We claim that J there is no i ∈ I such that f(i) = J ; indeed, if such an i exsited,
then

(1) it is impossible that i ∈ J : otherwise, by definition of the set J , this would
imply that i /∈ f(i) = J , so i /∈ J , which contradicts the fact that i ∈ J ;

(2) it is impossible that i /∈ J : otherwise, by definition of the set J , this would
imply that i ∈ f(i) = J , so i ∈ J , which contradicts the fact that i /∈ J .

Hence it is impossible that f(i) = J for any i ∈ I, which means that J lies nowhere
in the image of f , which was assumed to be a bijection. This proves the first
assertion.

For the second assertion of the theorem, assume that I is countably infinite.
Since 2I contains each singleton set, {i}, for i ∈ I, it follows that 2I is infinite. If
2I were countable, then there would exist a bijection between 2I and N; since I
is countably infinite, there exists a bijection bewteen N and I, which would then
imply that there is a bijection between 2I and I. But this contradicts the first
assertion. �

We note that the above proof (1) is reminiscient of self-referrencing, and (2)
is called diagonalization in Sipser’s textbook. We shall explore these ideas in the
exercises.

At this point we have a fundamental result regarding many notions of a “com-
puter program” and the languages they recognize. Most computer programs—such
as those in C, those in Java, Turing machines, RAM machines, etc.—are described
by a finite string over a fixed alphabet. Hence the set of all such programs is count-
able. Also, we generally regard the inputs to these programs to be the set of all
strings over a fixed, finite alphabet, A.

8 JOEL FRIEDMAN

Corollary 4.11. Let A be a non-empty set. Let P be a countable set of programs on
the input set consisting of the words over the alphabet A. Then there is a language
in the alphabet A that is not recognized by any element of P.

4.1. Russell’s Paradox. You should be aware that the discussion in this section
used the language of set theory. Russell’s Paradox will show you that there are
some pitfalls in set theory, and that one needs to procede carefully in such matters.
The paradox is

Let S be the set of all sets that do not contain themselves.

It is easy to see that both S ∈ S and S /∈ S lead to contradictions (the details will
be done in class). We had something similar in the proof of Theorem 4.10. However,
this technique in the proof of Theorem 4.10 was used to prove a new theorem; in
Russell’s paradox, it serves to show us that one cannot have a set theory in which
the collection of all sets is a set.

Indeed, consider the usual way of resolving the paradox. It seems bizarre that a
set should be able to contain itself, so let’s assume this is impossible. In this case,
the above collection, S, consists of all sets. The question is whether the collection
of all sets is itself a set: if so, then we get Russell’s paradox. This means that the
collection of all sets should not be a set, but something larger: it turns out that
(1) a collection this large is called a class, and (2) one has to be careful that a set
of axioms in set theory does not permit ourselves to speak of the collection all sets
as a set. Point (2) is a bit subtle, because we do want the collection of all subsets
of a set, T , (denoted Power(T) or 2T) to still be a set.

So in practice one can (1) ignore Russell’s paradox, (2) have faith that set theo-
rists have worked out axioms for set theory (such as Zermelo-Fraenkel set theory)
which get around this paradox, or (3) embark upon further study of set theory. In
any case, you should know that set theory allows for certain constructions to be
sets, but that the collection of all sets is no allowed to be a set.

5. Assumptions Regarding Programs and Universal Programs

In the next section we describe explicit languages that are not recognized by any
computer program. This is true for a number of notions of what is meant by a
“computer programs.” Here we describe intuitively our assumptions regarding the
context of such programs.

5.1. Intuitive Description. Consider a program in C (or BASIC, Fortran, Lisp or
Scheme, Java, etc.). Each such program can be described by a set of ASCII char-
acters (the ASCII alphabet is an essentially standard 256 letter alphabet which
includes all English letters and punctuation marks, the digits 0–9, a “carriage re-
turn,” etc.). It can take its input in a number of fashions, one of which is called
the “standard input” stream (in modern language), and can give its output in a
number of fashions, such as outputting to a file, to the “standard output” and the
“standard error.” One has analogous statements regarding theoretical computation
models, such as Turing machines. We will following assumptions on our computing
environment:

(1) Our programs can take an arbitrarily long ASCII string as input; typically
this involves scanning an input array (or stream) during program execution,

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 9

where there is a special designated ASCII character which is the “end-of-
stream” character, letting us know that this is the end of the input string.

(2) Our programs can output an arbitrarily sequence of ASCII characters on
some device/stream/file/array/etc.

(3) Generally speaking, we simplify things by assuming there is one designated
input array, and one designated output array; we also assume that the
program has another infinite read/write array at its disposal to perform
computations.

(4) For simplicity, for now we assume that all programs output one of two
strings: a yes string (or “true”), and a no string (or “false”). Later we
will use programs (Turing machines) that compute functions, that take an
input string and output an arbitrary ASCII string.

(5) On a given input, a program either never halts (possibly—but not
necessarily—due to some “infinite loop”), or halts. When a program halts,
its output is determined by what it has written to the output array.

(6) There exist universal programs (see below).

A universal program is a computer program, U , that takes as input an encoding
of a pair (p, i), where p is a program and i is an input; the program is given as
an ASCII string, followed by the “end-of-stream” character, followed by the input
(which ends in another “end-of-stream” character). The universal program then
“simulates” what would happen if the program p is run on input i, usually “step-
by-step”; so if p doesn’t halt when given input i, then U shouldn’t halt either;
otherwise, when U is given (p, i) as input, it should halt and output exactly what
p would have outputed on input i.

It is not hard to convince yourself that you could write a universal program (if
you had a lot of spare time) for any of the standard languages and for Turning
machines (once you learn how Turing machines work).

In the next section we write down axioms that are satified in any of the above
mentioned notions of “computer programs.” They are fairly abstract, and—as in
Sections 3 and 4—we view a program as a function from the inputs to a fixed set
of outputs: so we do not care how these programs are actually running.

5.2. The Language 421Simple. The following programming language is very
simple, akin to how a Turing machine works. We shall call it “421Simple.”

It has a set of reserve words; any other word is interpreted as an integer variable,
taking on the values 1, 2, 3, . . . Each line of the program begins with a positive
integer, giving its “line number.” The reserved words are:

(1) INPUT,WORKTAPE, OUTPUT, which are arrays indexed on the positive integers
whose compents take values in the 256 set of ASCII characters, so that
“INPUT[3]” refers to the third character of the array INPUT;

(2) GOTO is an instruction to jump to a certain line number;
(3) IF and THEN GOTO instruct the computer to jump to a certain line number

if the Boolean expression between IF and THEN GOTO evaluates to true.
(4) AUG, DEC, RESET are intructions to augment a variable by one (i.e., add 1

to it), decrement by one (i.e., subtract 1 from it), and reset its value to 1;
(5) EOF is the ASCII character “end of file” character;
(6) = is used to test equality of ASCII characters or of integers;

10 JOEL FRIEDMAN

(7) LET is the beginning of an assignment statement, such as “LET COUNTER =

3”;
(8) character constants are quoted ASCII characters, such as “LET OUTPUT[3]

= ”C””;
(9) END means that the program halts at this statement;

(10) COMMENT means that anything following this word until the next “end of
line” character is a comment, to be ignored.

Here is a sample program example:

10 RESET COUNTER

20 COMMENT Here is a loop

30 IF INPUT[COUNTER] = EOF THEN GOTO 60

40 AUG COUNTER

50 GOTO 30

60 COMMENT The loop is over, and the counter is on the INPUT EOF

70 DEC COUNTER

80 IF INPUT[COUNTER] = "0" THEN GOTO 110

90 LET OUTPUT[1] = "0"

100 END

110 LET OUTPUT[1] = "1"

120 END

This program outputs a “0” (as the first cell/component/character of OUTPUT)
if the last character of INPUT is not equal to “0,” and otherwise outputs a “1”.

We claim that any C program can be written as a 421Simple program. This will
take some time to see.

Notice how primitive this language is: for example, lines 10–50 form what would
be called a “for” loop (one or two lines in the language C), although we have to
write this in terms of an “if-then” loop.

The language 421Simple is very close to the classical model of a Turing machine.

5.3. The Language 421TRAN. In this subsection we describe another language
which we will call “421TRAN,” which is more powerful than 421Simple, as an
intermediary between 421Simple and programming languages in use, such as C,
Java, awk, Python, etc.

To describe 421TRAN we will simply add some more reserve words and more
variable types. Specifically we wish to add:

(1) ADD is a function that takes two integers and adds them, and this requires
a (and) to be matching parenthesis to describe the arguments of the ADD

function, and requires LET in the beginning, such as

10 LET C = ADD(A,B) .

(2) ARRAY is a word that declares the word the follows to be an infinite array
of 64-bit positive integers, such as

10 ARRAY A

which declares means that we can use A[1], A[2], . . .
(3) We could add some logical functions, and/or more integer functions such

as subtraction, multiplication.
(4) We could add some more loops, such as some form of “while” loops, “for”

loops, etc.

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 11

(5) We could add subroutines or subfunctions.

It should be easy to see that all the above can be expressed in the language
421Simple (the WORKTAPE array would be used for all the ARRAY variables, so this
would be quite tedious). Yet 421TRAN looks a lot closer to modern programming
languages, so we may feel more comfortable writing such programs.

6. Deciding and Recognizing

In this section we want to give an explicit description of a language that cannot
be recognized by any C program (or Java program, or Turing machine). In the last
section we used counting and an infinite pigeon hole principle to show that such a
language exists, although we did not have a simple description of such a language.

The trade-off is that we have to make some stronger assumptions about our
computer programs.

6.1. The Axioms and Main Theorems. In this section we will list all the ax-
ioms we need to make about our notion of computing; with these axioms we will
be able to describe certain specific languages cannot be solved with a computer
program; we will also need two refinements of this notion of “solved,” namely de-
ciding and recognizing (sometimes recognizing is called accepting). We will also give
illustrative examples of the main theorems that we prove, leaving the proofs and a
fuller discussion for later subsections.

These axioms will hold for programs in most standard computer languages (C,
Java, etc.) and for ideal models of computers (Turning machines, RAMs, etc.)

We will explain these axioms in the subsections that follow; however, we feel it
best to put all axioms on the table.

We remind the reader that our notion of a program in the previous sections does
not refer to the program description or how it works: we only care what results it
returns on certain inputs. For this reason, our axioms will seem fairly abstract.

We will also give some definitions and our main theorems.

Axiom 1. We are given sets, P (the “programs”), I (the “inputs”), and a map:

Result : P × I → R,
where R = {yes, no, NoHalt} (the “results”).

Intuitively, this means that our programs may never stop running, or can halt
and output “yes” or “no.” Computer programs that never stop running may have
some sort of “infinite loop” or they may not; we don’t really care which, and the
term NoHalt is used for any computation that never stops.

The above axiom permits two distinct programs in P to yield the same result
on any input; it would be extremely unrealistic to assume otherwise (see the home-
work).

One can also consider programs as taking an input and—if they halt—giving an
output that is larger than the set {yes, no}. This has advantages and disadvantages
(see the homework).

Definition 6.1. By a language we mean a subset of I.

Definition 6.2. We say that a program, P ∈ P, is a decider if the result of P is
never NoHalt, i.e.,

∀i ∈ I, Result(P, i) ∈ {yes, no}.

12 JOEL FRIEDMAN

A program P ∈ P is said to recognize the language

LP = {i ∈ I | Result(P, i) = yes}.
We say that P decides the language L if (1) L is recognized by P and (2) P is a
decider. We say that a language, L, is decidable if it is decided by some P ∈ P;
othewise we say that L is undecidable. We say that a language, L, is recognizable if
it is recognized by some P ∈ P; othewise we say that L is unrecognizable.

So Axiom 1 allows us to define what is meant by a language, and the most fun-
damental properties of a language. The next axiom says that there is a “universal
machine” in our setup.

Axiom 2. There is a fixed injection EncodeBoth: P × I → I, and a U ∈ P such
that for all P ∈ P and x ∈ I,

Result(U,EncodeBoth(P, x)) = Result(P, x)

The injection EncodeBoth is fixed as part of the axioms; there is typically more than
one program U ∈ P as above, and any such U ∈ P is called a universal program.

Intuitively, the function EncodeBoth takes an arbitrary program and an input,
and encodes both of them as a single element of I (i.e., a single input).

Notation 6.3. We use 〈P, i〉 to denote EncodeBoth(P, i). We use P [i] to denote
Result(P, i).

The notation 〈P, i〉 is the notation used in Sipser’s textbook; it emphasizes that
〈P, i〉 is the description (as a string) of the pair (P, i); this is less cumbersome that
writing EncodeBoth everywhere. We introduce the second notation to make things
less cumbersome. We emphasize that in making things less cumbersome, we must
be careful to remember the precise meaning of the notation; otherwise our proofs
may seem deceivingly short.

For example, a universal program, U , as defined in Axiom 2, can be described
via the condition

∀P ∈ P, ∀i ∈ I, U [〈P, i〉] = P [i].

Definition 6.4. The Accepting Problem is the language

AP = {〈P, x〉 | P ∈ P, x ∈ I, P [x] = yes}
(this conforms to Sipser’s textbook’s notation, except that Sipser TM is used be-
cause he only discusses this for Turing machines). The Halting Problem is the
language

HALTP = {〈P, x〉 | P ∈ P, x ∈ I, P [x] 6= NoHalt}.

Now we know some langauges that we suspect are not decidable. Sipser’s text-
book uses ATM and HALTTM in Section 4.2 since his model of a computer program
is a Turing machine.

Recall that R denotes the set {yes, no, NoHalt}, and intuitively speaking de-
scribes the possible results of a program running on a given input. We shall make
use of the negation function defined as follows.

Definition 6.5. By the negation function, denoted ¬, we mean the function from
R to R defined by

¬(yes) = no, ¬(no) = yes, ¬(NoHalt) = NoHalt.

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 13

Axiom 3. Let f : R → R be any function with f(NoHalt) = NoHalt. Given any
program, P ∈ P, there is a program, P ′, such that

∀i ∈ I, P ′[i] = f
(
P [i]

)
.

The negation is an example of a function f : R → R that satisfies f(NoHalt) =
NoHalt. This axiom intuitively says that any program P can be modified so that
when it halts and gives yes or no, we can change its result on either of these to any
of the three possible results in R. This axiom seems simple, but this will be crucial
in constructing a sort of “paradoxical program.”

Axiom 4. There is a fixed injection EncodeProg : P → I. For any Q ∈ P, we
use 〈Q〉 to denote EncodeProg(Q). Given any program, P , there is a program, P ′,
such that

∀Q ∈ P, P ′[〈Q〉] = P [〈Q, 〈Q〉〉].

This means that part of the axioms include a fixed way to encode any program,
Q, as an input string 〈Q〉 ∈ I; furthermore, any program, P , can be modified
so that when it reads 〈Q〉 it runs as if it saw the input representing (Q, 〈Q〉). In
most applications P ′ works by (1) converting 〈Q〉 to (Q, 〈Q〉) by a preliminary
calculation, and then (2) running P on (Q, 〈Q〉).

We remark that we are following the notation 〈Q〉 in Sipser’s textbook to denote
EncodeProg(Q); in this textbook, angle brackets always mean “the description as
a string of whatever is inside the angle brackets.” However, this leads to nested
angle brackets, which is (1) could be confusing, and (2) tempts the reader to gloss
too quickly over what is really going on (at least when I am the reader. . .). So you
should always en garde to the fact that

〈Q, 〈Q〉〉 = EncodeBoth(Q,EncodeProg(Q)).

You should also remember that there are many choices involved as to what con-
ventions one uses to define EncodeProg, and to define EncodeBoth, and that these
conventions must (almost always) be viewed as fixed.

Axiom 4, which intuitively gives us the power to take a string of the form 〈Q〉
and convert it to the string representing (Q, 〈Q〉), is crucial—along with Axioms 2
and 3—to constructing a sort of “paradoxical program.”

Theorem 6.6. Under Axioms 1–4, AP is undecidable.

We remark that, as best we can tell, Axioms 1–4 do not enable us to prove that
the Halting Problem, HALTP , is undecidable (see Axiom 6 below).

Axiom 5. For any programs, P,Q, there is a program, C, such that for all i ∈ I
we have

P [i] = yes and Q[i] 6= yes ⇒ C[i] = yes,

and
Q[i] = yes and P [i] 6= yes ⇒ C[i] = no.

Intuitively this means we can run P and Q together, say alternating one step
between each machine; provided that either P or Q says “yes” and the other doesn’t
(i.e., says “no” or loops infinitely), then the result of C is “yes” or “no” according
to which of P or Q says “yes.” Note that we do not care what C[i] is if neither of
P [i] or Q[i] equals yes.

The following theorems are easy to prove.

14 JOEL FRIEDMAN

Theorem 6.7. If a language, L, and its complement (L = I \L) are recognizable,
then L (and its complement) are decidable. In particular, if L is recognizable but
not decidable, then L is not recongnizable.

Proof. The first statement follows immediately from Axiom 5. The second state-
ment is a consequence of the first. �

Theorem 6.8. The languages AP and HALTP are recognizable.

Proof. Let U be any universal program, and let f : R → R be given by

f(yes) = yes, f(no) = NoHalt, f(NoHalt) = NoHalt.

Applying Axiom 3 with the above choice of f and with P = U , there is a program
U ′ ∈ P such that

∀i ∈ I, U ′[i] = f
(
U [i]

)
.

Then AP is recognized by U ′.
Similarly we show that HALTP is recognizable, with the same argument except

that we replace the above f by the function, f , given by

f(yes) = yes, f(no) = yes, f(NoHalt) = NoHalt.

�

Corollary 6.9. The complement of AP is unrecognizable.

The point of these axioms and theorems is to show that any “sufficiently rich”
programming or computing environment (and we don’t need that much richness. . .)
has a type of Acceptance Problem that cannot be “solved” by a computer program.

It is not clear to us that Axioms 1–4 allow us to conclude that the Halting
Problem, i.e., HALTP of Definition 6.4, is undecidable. To do this we will add an
axiom that is a stronger form of Axiom 3.

Axiom 6. Let f : R → R be any function with f(NoHalt) = NoHalt. There is a
map Composef : P → P, such that

(1) using f ◦ P to denote Composef (P), we have that

∀i ∈ I, (f ◦ P)[i] = f
(
P [i]

)
;

and
(2) given any program, R ∈ P, there is a program, R′, such that

∀Q ∈ P, ∀i ∈ I, R′[〈Q, i〉] = R[〈f ◦Q, i〉].

The first assertion in this axiom is just Axiom 3. The second assertion will hold
in all our applications because (1) there is a way to take modify any program, P , by
“tacking on” some “extra lines of code” (or some “extra states” if we are working
with Turning machines) to P to get f ◦ P , and (2) this “tacking on” process can
be done on the level of the description of (P, i); hence we can implement R′ by
converting 〈P, i〉 to 〈f ◦ P, i〉, and feeding the latter into R.

Theorem 6.10. Under Axioms 1,2 4, and 6, HALTP is undecidable.

Corollary 6.11. Under Axioms 1,2 and 4—6, the complement of HALTP is un-
recognizable.

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 15

6.2. Settings Where the Axioms Hold. You should be able to take almost
any standard programming language (C, C++, Fortran, Basic, Jave, awk, Python,
etc.), that can be written as a finite ASCII string, and solve the following problems:

(1) What are the sets P and I, and what is the function Result?
(2) What are the maps EncodeProg and EncodeBoth?
(3) Show that Axioms 1–6 hold.

6.3. Remarks on the Axioms. In this subsection we make some remarks about
the above axioms and definitions.

Terms such as “recognizable” have a lot of variations in the literature. In particu-
lar, the term “recognizable” is sometimes called “acceptable,” “Turing-acceptable”
(in the context of Turing machines), and recursively enumerable. The term “decid-
able” is sometimes called “recursive.”

In the literature (but not in this course), notions such as “recognizable” and
“decidable” may depend on P, in which case we may write P-recognizable and P-
decidable. Generally speaking, these are usually discussed in the model of Turing
machine computations; however, these notions are essentially the same when a
Turing machine is replaced by C programs, Fortran programs, etc.

Our choice of the terms “recognize” and “decide” are the ones that are used in
Sipser’s textbook; he also uses the terminology “P accepts i” to mean

P [i] = yes.

For this reason it would be confusing to use the term “accepts” or “Turing-accepts”
when speaking of languages.

Our axioms intuitively speak of machine computations, but you could write the
same definitions and obtain the same theorems for any situations where the axioms
hold.

The fact that there is an injection EncodeProg : P → I means that P is of
cardinality (intuitively the number of elements of P) at most that of I. This also
holds if I is infinite (assuming that you have a notion of set theory where the
“cardinality of a set” behaves well enough). For example, if I is countably infinite
(which will hold for our applications), then P is automatically at most countable,
and hence there are automatically languages that are not recognized by any element
of P.

You should be able to convince yourself that in the settings described in Section 5,
all the axioms given here hold, and all the terminology is the usual terminology.

Once we know that AP is undecidable, and that its complement is unrecog-
nizable, we can say the same about a number of related problems. Some of these
problems depend on the specific programming context. For example, a line of “dead
code” in a computer program is a line in the program (in languages such as C, For-
tran, Java, Python, etc.) that is never used on any input. So, for example, consider
the pairs (F, `) where F is a Fortran program and ` is an integer between 1 and
the number of lines in the program F ; from such pairs we can form two languages:

(1) F-DEAD-CODE, consisting of those pairs (F, `) such that the `-th line of
F is “dead code,” i.e., never reached when F is run on any input, and

(2) F-LIVE-CODE, consisting of those pairs (F, `) such that the `-th line of F
is reached at least once when F is run on some input.

Using Theorems 6.6 and 6.7 it is easy to see that F-LIVE-CODE is undecidable,
and that F-DEAD-CODE is unrecognizable. Hence no Fortran compiler will be

16 JOEL FRIEDMAN

able to remove all lines of “dead code” (keeping its lines of “live code”) from an
arbitrary Fortran program. Of course, in our axioms we do not look at how the
program runs, and there is no simple way to say that a P ∈ P has a “line of dead
code.”

We remark that one can give a different presentation of all these axioms by
allowing programs to compute functions in some fashion. For example, one could
add to P and I another set, one of “functions,” denoted F , where the result of a
function and an input is I ∪ {NoHalt}; this gives us functions that either return a
value that is an arbitrary element of I, rather than just a value in the set {yes, no}
(in addition to the possibility of the result being NoHalt). This may be a more
realistic setting to work in; this probably makes some of our axioms simpler, at the
cost of complicating some of the notation (and blurring some of the issues, such as
the need for an additional axiom to show that HALTP is undecidable).

6.4. The Proof of Theorem 6.6. In this subsection we give the proof of Theo-
rem 6.6. It is subtle, and we will proceed very carefully (and slowly).

Proof of Theorem 6.6. We will assume that AP is decidable and get a contradiction;
hence we will conclude that AP is not decidable.

Assume for the sake of contradiction, that AP is decidable, and let H ∈ P be a
program deciding AP ; hence

(6.1) ∀Q ∈ P, H[〈Q, i〉] =

{
yes if Q[i] = yes, and
no otherwise.

We shall obtain a contradiction, using Axioms 1–4.
According to Axiom 3, where f is the negation function, there exists a program,

E ∈ P, such that

(6.2) ∀Q ∈ P, E[〈Q, i〉] =

{
no if Q[i] = yes, and
yes otherwise.

Since E takes on only the values yes and no, it follows that E is a decider. Then
using Axiom 4, it follows that there is a program, D, such that

∀Q ∈ P, D[〈Q〉] = E[〈Q, 〈Q〉〉].

In view of (6.2), one can describe D by

(6.3) ∀Q ∈ P, D[〈Q〉] = ¬P [〈Q, 〈Q〉〉];

Combining (6.1) and (6.3) gives us that

(6.4) D[〈Q〉] =

{
no if Q[〈Q〉] = yes, and
yes otherwise.

Furthermore, since E is a decider, then if D is given any input of the form i = 〈Q〉,
then D[i] = D[〈Q〉] is either yes or no.

Now consider what D does on input 〈D〉; by the previous sentence (previous
paragraph), we have that either

(1) D[〈D〉] = no, or
(2) D[〈D〉] = yes.

We shall show that both of these are impossibe; we then conclude that our assump-
tion that AP is decidable leads to a contradiction.

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 17

Observe that (6.4) implies that

(6.5) D[〈D〉] =

{
no if D[〈D〉] = yes, and
yes otherwise.

Hence in the first case, where D[〈D〉] = no, then (6.4) gives us

no =

{
no if D[〈D〉] = yes, and
yes otherwise,

which implies that D[〈D〉] = yes, which is impossible. Similarly, in the second
case, where D[〈D〉] = yes, then (6.4) gives us

yes =

{
no if D[〈D〉] = yes, and
yes otherwise,

which implies that D[〈D〉] 6= yes, which is impossible.
It follows that our assumption that AP is decidable leads to a contradiction, and

hence AP is undecidable. �

6.5. The Proof of Theorem 6.10. In this subsection we prove Theorem 6.10
using Theorem 6.6.

Proof of Theorem 6.10. Let f : R → R be given by

f(yes) = yes, f(no) = NoHalt, f(NoHalt) = NoHalt.

Assume (for the sake of contradiction) that HALTP is recognized by a decider
R ∈ P. Then it follows that there exists a decider R′ ∈ P such that

∀Q ∈ P, ∀i ∈ I, R′[〈Q, i〉] = R[〈f ◦Q, i〉] =

{
yes if Q[i] = yes, and
no otherwise.

It follows that R′ is a decider for AP , which, by Theorem 6.10 is impossible.
Hence our assumption that HALTP is decidable leads to a contradiction; hence

HALTP is undecidable. �

7. Learning Goals and Sample Exam Problems

It seems best to make general learning goals concrete by connecting them with
sample exam problems.

7.1. Paradoxes (Sections 1 and 2).

Learning Goals:

(1) You should be familiar with the “paradoxes” of Sections 1 and you should
know the standard way of dealing with
(a) Paradox 3, the “Berry Paradox” (first discussed by Russell, who at-

tributed the paradox to Berry); (see Exercises 7.1.1, 7.1.2, 7.1.3);
(b) Paradox 4, related to Gödel’s Incompleteness Theorems (see Exer-

cises 7.1.4, 7.1.5);
(c) Paradoxes 5 and 6, relating to Russell’s Paradox (see Exercises 7.1.6,

7.1.7).
(d) Paradox 7, relating to the Acceptance Problem and the Halting Prob-

lem (see the exercises in Subsection ??).

18 JOEL FRIEDMAN

(2) Given a paradox that is similar to the paradoxes in Section 1, you should be
able to identify to which paradox it is similar, and in which of the following
categories it belongs:
(a) The paradox goes away when things are stated precisely.
(b) The paradox doesn’t go away, and you have to change your theory if

you want it free of contradictions.
(c) The paradox doesn’t go away, but only if certain things are true.

Therefore (assuming your setting is free of contradictions) you have
a theorem that one of these certain things must be false.

See Exercises 7.1.8 and 7.1.9. See also the Wikipedia entry “List of Para-
doxes,” http://en.wikipedia.org/wiki/List_of_paradoxes; some (but
not all) examples there fall into one of the above categories.

Sample Exam Problems

Exercise 7.1.1. Consider Paradox 3 of Section 1. [This is usually called the “Berry
Paradox;” feel free to look it up somewhere.] Let W be the four element set

W = {one, two, plus, times}.
Ascribe a “meaning” to each sentence with words from W (i.e., each string over
the alphabet W) in the usual way of evaluating expressions, so that

one plus two times two means 1 + 2× 2 = 5,

plus times two plus is meaningless,

and each sentence either “means” some positive integer or is “meaningless.”

(1) Show that every positive integer is the “meaning” of some sentence with
words from W .

(2) Can one form a paradox akin to Paradox 3 in the framework of sentences
in W ∗ and the above notion of the meaning of a sentence? Explain.

Exercise 7.1.2. Consider the five element set

U = W ∪ {moo},
where W is the set in Exercise 7.1.1 with the ascribed meanings there, and where
moo has the following meaning:

(1) if it appears anywhere after the first word of a sentence, then the sentence
is meaningless,

(2) if it appears only once and at the beginning of a sentence, then we evaluate
the rest of the sentence (as usual), and
(a) if the rest evaluates to the integer k, then the sentence means “the

smallest positive integer not described by a sentence of k words or
fewer,” and

(b) if the rest evaluates to meaningless, then the sentence is meaningless.

For example, “moo moo” and “moo plus times two” are meaningless, and “moo
two times two” means “the smallest positive integer not described by a sentence
of four words or fewer.”

(1) What is the meaning of “moo one”?
(2) What seems paradoxical in trying to ascribe a meaning to “moo two”?
(3) Explain why this “paradox” is similar to Paradox 3 of Section 1.
(4) Give one way of resolving this paradox.

http://en.wikipedia.org/wiki/List_of_paradoxes

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 19

Exercise 7.1.3. Explain the standard way of resolving Paradox 3 (the “Berry
Paradox”). Do we get a new theorem from this paradox?

Exercise 7.1.4. Consider Paradox 4 of Section 1. [This is the basis for Gödel’s
Incompleteness Theorems.] Assume that there is some setting such that you have
a statement, S, which asserts that

“There is no proof that S is correct.”

The word “setting” is imprecise and a bit of a loaded; see Appendix A; informally,
this means that you have an alphabet, including ∃,¬, (,),⇒, that allows you to
make “statements,” which are certain strings over the alphabet, which are true/false
assertions in the “usual sense.” Argue informally that if (1) S must be true or false,
(2) S cannot be both true and false, and (3) any statement that has a proof that
it is correct is a true statement, then S must be true but not provably true.

Exercise 7.1.5. Summarize the signficance Paradox 4 and its role in Gödel’s In-
completeness Theorems.

Exercise 7.1.6. Assume that you have a form of set theory in which no set can
contain itself. How does this lead to the standard way of resolving Russell’s paradox
(Paradox 6 of Section 1).

Exercise 7.1.7. Discuss how one can resolve the paradoxical statement “I write
about those who don’t write about themselves.” Does this paradox give a new
theorem?

Exercise 7.1.8. Consider the three general categories of “paradoxes:”

(1) The paradox goes away when things are stated precisely.
(2) The paradox doesn’t go away, and you have to change your theory if you

want it free of contradictions.
(3) The paradox doesn’t go away, but only if certain things are true. Therefore

(assuming your setting is free of contradictions) you have a theorem that
one of these certain things must be false.

For Paradoxes 1–7 of Section 1, say in which category (or categories) it lies, and
give a brief justification.

Exercise 7.1.9. Identify the “paradox” in the following statements and resolve
the following paradoxes (in the sense of Exercise 7.1.8):

(1) “I know that I know nothing.”
(2) “A hair dresser in town dresses the hair of anyone who does not dress their

own hair.”
(3) “If you remove a grain of sand from a heap of sand, you still have a heap

of sand.” By removing grains of sand, one by one, you conclude that a
collection of zero grains of sand is a heap.

(4) “All things in moderation.”

7.2. Counting (Sections 3 and 4).

Learning Goals:

(1) You should be familiar with the standard methods of showing that a set is
countable (Exercises 7.2.1, 7.2.2, 7.2.3, 7.2.4).

20 JOEL FRIEDMAN

(2) You should be able to explain what technique in Sipser’s textbook (in Sec-
tion 4.2) is called “diagonalization” and how to use this idea in a number of
different contexts to show that a set is uncountable (Exercises 7.2.5, 7.2.6,
7.2.7).

Sample Exam Problems

Exercise 7.2.1. Show that a countable union of countable sets is countable; i.e.,
if C1, C2, . . . are countable sets, show that C1 ∪ C2 ∪ · · · is countable.

Exercise 7.2.2. Let A and B be countable sets. Show that

A× B = {(a, b) | a ∈ A, b ∈ B}
is countable.

Exercise 7.2.3. Use the statements in Exercises 7.2.1 and 7.2.2 to show that if Σ
is countable, then Σ∗ is countable. [That is, do not simply quote Theorem 4.4.]

Exercise 7.2.4. Show that the set of rational numbers (including 0 and negative
rational numbers) is countable.

Exercise 7.2.5. Summarize the proof in Sipser’s textbook that the real numbers
are uncountable. Explain why this is proof called “diagonalization.”

Exercise 7.2.6. Let F be the set of functions from the integers to the integers.
Show from scratch, by “diagonlization,” that F is uncountable.

Exercise 7.2.7. Let C be any countable set of real numbers, and let C = R \ C
be the complement of C (i.e., the set of reals numbers that do not lie in C). Show
that C is uncountable. [Hint: Use “diagonalization.”]

7.3. Decidability and Recognizability (Sections 5 and 6).

Learning Goals:

(1) You should be able to show that for most common programming languages
(C, awk, Fortran, Python, etc.) and Turing Machines, Axioms 1–6 hold
under some reasonable conditions. See Exercises 7.3.1 and 7.3.2.

(2) You should be able to show that some problems related to “the acceptance
problem” and “the halting problem” are undecidable or even unrecogniz-
able; generally, you do this by assuming—for the sake of contradiction—
that the related problem is recognizable or decidable, and then show that
this implies that the acceptance problem or the halting problem is decid-
able. See Exercise 7.3.3.

(3) You should be able to write some 421Simple code and—once we define
Turing machines (Section 3.1 of Sipser’s textbook)—some complete Turing
machines descriptions for relatively simple problems. See Exercise 7.3.4.

Exercise 7.3.1. Pick a standard programming language (C, Python, Java, awk,
perl, etc.), and outline in a few paragraphs that they satisfy Axioms 1–6. (Axioms 2
and 4 are the only serious issues.)

Exercise 7.3.2. (As soon as we define Turing machines, Chapter 3, Section 1:)
Show that if we represent Turing machines in one of the “standard ways” as binary
strings, and allow only Σ = {0, 1} to be the alphabet of the inputs to our Turing
machines, then we can define a suitable “EncodeBoth” function so that Axioms 1–6

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 21

hold. Describe your answer in rough terms in a few paragraphs. (Axioms 2 and 4
are the only serious issues.)

Exercise 7.3.3.
Consider the languages:

(1) 421Simple programs and inputs such that running that program on that
input leads to the assignment of at least one value of OUTPUT; i.e., reach
a statement that begins with “LET OUTPUT”;

(2) 421Simple programs that reach line number 40 on at least one input;
(3) 421Simple programs that give identical outputs on every input.

Explain why each of these problems is recognizable by a 421Simple program (or a C
program, or a Python program, etc.); argue that each of these problems is not de-
cidable. [Argue, for any of the above problems, that if this problem were decidable,
then the Halting problem or Acceptance problem would have to be decidable.]

Exercise 7.3.4. Write out a complete 421Simple program and a complete Tur-
ing machine description (on the level of listing the “δ-function”) for the following
problems:

(1) the language of strings that are palindromes over {0, 1} (i.e., the string
equal to its own reversal, such as 110010011);

(2) the language of strings over {0, 1} which have twice as many 0’s as 1’s (see
Sipser’s text).

Appendix A. Logic in Complexity Theory and Gödel’s Incompleteness
Theorems

In this course we will prove that certain techniques will not be able to resolve
the problem of P versus NP. This will be done by using a standard set of ideas from
logic; this idea is also used to study notions in logic such as Gödel’s incompleteness
theorems. Let us explain these ideas.

A.1. Gödel’s Incompleteness Theorems. Many things we do in logic can be
described in intuitive terms, although it can be equally valuable to describe things
precisely. We shall give the precise setting of one of Gödel’s incompleteness theo-
rems, although we refer to [End01] for details.

To summarize this subsection, the setting consists of

(1) an alphabet, A, which is capable of expressing basic logical statements (in-
volving “not,” “and,” “implies,” etc.), the quantifiers ∀ and ∃ (one of which
is unnecessary, if we have a letter for “not”), some arithmetic functions,
parenthesis, and a sequence of variables;

(2) a subset S ⊂ A∗, called statements, which is a subset of the words over the
alphabet which can be viewed as true/false assertions;

(3) a theory, which is a subset of the statements, which might be
(a) consistent, meaning that for each statement φ ∈ S we have that φ and

its negation do not both lie in S; and
(b) complete, meaning that for each statement φ ∈ S we have that either

φ or its negation lies in S;
(4) a set of axioms, Σ ⊂ S, and a method of deriving a set of consequences,

Cn(Σ), which are intuitively the “theorems” that result when Σ is taken to
be the set of axioms.

22 JOEL FRIEDMAN

One form of Gödel’s Incompleteness Theorems say that if the alphabet A is
“sufficiently expressive” to express the usual logic and number theory, and S is
defined in the “usual way,” then for any finite set of axioms, Σ ⊂ S, the theory
consisting of Cn(Σ), the consequences of Σ, must be either (1) incomplete, or (2)
inconsistent. The basic approach of Gödel here is to build a statement, S, which
expresses the fact that “S is a statement that is not provably true.” Furthermore,
this is also true if the set of axioms is infinite but can be listed as an infinite sequence
by a Turing machine.

We refer to [End01] for the details of the above setting and theorems, although
below we will roughly describe what this looks like.

First we begin with an alphabet. Here we could take the alphabet to be

ANumThy = {(,),¬,⇒,=,∀,∃,∧, <, 0, 1,+,×} ∪ {v1, v2, . . .}

This alphabet is rather limited, but will suffice for our purposes. The rough idea is
to express statements about the natural numbers

N = {0, 1, 2, . . .}

as strings in ANumThy, where ANumThy strings are interpreted in their usual sense
(∨ is the logical “or,” ∧ the “and,” and v1, v2, . . . are variables at our disposal).

For example, one can assert that for every v1 ∈ N , there is a prime number
greater than v1 (this is one way of saying that there are infinitely many primes,
and this avoids the need to use concepts in set theory such as “the set of prime
numbers”); one can write this as:

For any v1 ∈ N there is a v2 ∈ N such that v2 > v1 and for any
v3, v4 ∈ N , if v3 × v4 = v2 then either v3 = 1 or v4 = 1.

Now let us express this statement in the above alphabet; we may write

For any v1 ∈ N as ∀v1
understanding that ∀ is an abbreviation for “for all natural numbers;” as another
abbreviation, we never write the phrase “such that,” as it can be inferred in context;
we will write

if v3 × v4 = v2 then either v3 = 1 or v4 = 1

in its logically equivalent form

(v3 × v4 = v2)⇒ (v3 = 1) ∧ (v4 = 1).

Hence we can write the above quoted assertion as

∀v1∃v2((v2 > v1) ∧ (∀v3∀v4(v3 × v4 = v2)⇒ (v3 = 1) ∧ (v4 = 1)))

Of course, many strings in ANumThy aren’t statements, for various reasons: for
example ∀+∃ is not meaningful, and ¬(v1 = 1+1) is an assertion that depends on v1
(which is a “free” or “unbound” variable). However, one can give rules to describe a
distinguished subset, S, of A∗NumThy that represents statements to be true or false.

This requires some technical details (see [End01]), although it would yield what you
expect. We call S the set of statements, and in the literature S has other names,
such as the set of “well-formed formulas without unbounded variables.” The set of
statements, S, has various properties that you would expect, such as if φ ∈ S, then
the string ¬(φ) (or simply ¬φ) also lies in S; i.e., if φ is a statement, then so is its
negation.

UNCOMPUTABILITY AND SELF-REFERENCING IN CPSC 421 23

There are a number of variants of the above alphabet; for example in [End01]
one uses S to mean “the successor,” so that S0 refers to 1, SS0 refers to 2, etc.
One could, of course, eliminate one of ∨ or ∧ by De Morgan’s laws.

The basic idea of Gödel is that in ANumThy, if we interpret statements in S as
referring to statements about the natural numbers (where the letters of ANumThy

have their usual meaning), then for any finite set Σ ⊂ S, one can build a statement,
S = S(Σ), which says that

“We have S /∈ Cn(Σ), i.e., the statement S has no proof that it is
true based on taking the set Σ as our axioms.”

So let T ⊂ S be the statements that are true when interpreted as statements in
number theory. It is not hard to see that all statements of S (when build in the
“usual” way) are either true or false. It follows that S is either true or false, and
it is easy to see that this implies that Cn(Σ) is either incomplete or inconsistent.
(See Exercise 7.1.4.)

Remark A.1. Since T ⊂ S is the set of statements that are true in number theory,
it is not hard to see that T is consistent and complete. Hence we can set Σ = T
to be our set of axioms, and then Cn(T), the consequences of T , is just T itself.
So if we take T to be the “axioms” of our theory, we get a complete and consistent
theory. The problem is that there is not easy way to generate all of the axioms T
with a Turing machine; so not only is T an infinite set (it is, however, countable,
assuming that the alphabet is countable), but it is hard to describe. For example,
any way of generating T would have to figure out some difficult statements in
number theory, such as

∀v1∃v2((v2 > v1)∧(∀v3∀v4((v3×v4 = v2)∨(v3×v4 = v2+1+1))⇒ (v3 = 1)∧(v4 = 1)))

(i.e., the twin prime conjecture).

A.2. False Proofs of Fermat’s Last Theorem. Imagine that you or someone
else claims to have a proof of that for any positive integers x, y, z, n with n ≥ 3 one
cannot have

xn + yn = zn.

Say that you suspect that the claimed proof is not correct, but this claimed proof
involves some tedious calculations.

Here is one way to refute some of the many false proofs of the above “Fermat’s
Last Theorem.” If the proof does not make use of the fact that x, y, z are integers,
and would work even for x, y, z being any positive real numbers, then the proof
must be false: indeed, there are many solutions to the above equation for integers
n ≥ 3 and positive real numbers x, y, z.

The above is a commonly used idea in logic. Let’s explore this a bit more.

A.3. A False Proof That 1 + 1 6= 0.

A.4. The Baker-Gill-Soloway Theorem. At the end of this course we will de-
scribe a number of interesting early theorems regarding problems that cannot be
solved in polynomial time; the question is could these methods be used to resolve
the P versus NP problem. Let us reason as in the previous subsection.

24 JOEL FRIEDMAN

References

[End01] Herbert B. Enderton, A mathematical introduction to logic, second ed., Har-
court/Academic Press, Burlington, MA, 2001. MR 1801397 (2001h:03001)

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf

	1. Some ``Paradoxes''
	2. Dealing with Paradoxes
	3. Counting, The Pigeon Hole Principle, and Computability
	3.1. The Finite Pigeon Hole Principle
	3.2. Finite Programs and Languages

	4. Some Infinite Pigeon Hole Principles
	4.1. Russell's Paradox

	5. Assumptions Regarding Programs and Universal Programs
	5.1. Intuitive Description
	5.2. The Language 421Simple
	5.3. The Language 421TRAN

	6. Deciding and Recognizing
	6.1. The Axioms and Main Theorems
	6.2. Settings Where the Axioms Hold
	6.3. Remarks on the Axioms
	6.4. The Proof of Theorem 6.6
	6.5. The Proof of Theorem 6.10

	7. Learning Goals and Sample Exam Problems
	7.1. Paradoxes (Sections 1 and 2)
	7.2. Counting (Sections 3 and 4)
	7.3. Decidability and Recognizability (Sections 5 and 6)

	Appendix A. Logic in Complexity Theory and Gödel's Incompleteness Theorems
	A.1. Gödel's Incompleteness Theorems
	A.2. False Proofs of Fermat's Last Theorem
	A.3. A False Proof That 1+1=0
	A.4. The Baker-Gill-Soloway Theorem

	References

