
CPSC 421/501 Note Sheet for Final Exam, Fall 2014

Copyright: Copyright Joel Friedman 2014. Not to be copied, used, or revised without
explicit written permission from the copyright owner.

A set, S, is countable if we can write

S = {s1, s2, . . .},
and otherwise uncountable, i.e., meaning that any sequence of its elements does not contain
all of the set.

The power set of a set, S, denoted Power(S) or 2S is the set of all subsets of S. We know
that there is no function f : S → Power(S) whose image is all of Power(S).

The set of all strings over a countable set is countable. The set of subsets of a countably
infinite set is uncountable. In many contexts, the set of “programs” or “algorithms” is
countable, while the set of languages is uncountable; in this case, there are many languages
which cannot be “recognized” or “solved” by a program or algorithm.

Axiom 1: There exists a Result function, from P × I to {yes, no, NoHalt}. Axiom 2:
There exists a universal program. Axiom 3: One can modify the yes and no results of a
program. Axiom 4: One can modify a program so that inputs of the form 〈p〉 on the modified
program run the original program on the input 〈p, 〈p〉〉. Axiom 5: One can combine two
programs and wait for one of them to say yes.

A program, p ∈ P recognizes the language

L = Lp = {i ∈ I | P [i] = yes}.
A program is a decider if on any input its result is either yes or no. A langauge is recognizable
if it is recognized by some program, and decidable if it is recognized by a some program that
is a decider.

If a language is recognizable but not decidable, then its complement is unrecognizable
(i.e., not recognized by any element of P).

“421Simple” is an example of a simple programming language that produces algorithms
in a similar way to Turing machines. It has the keywords:

INPUT, WORKTAPE, OUTPUT, RESET, AUG, DEC, LET, EOF,=, IF, THEN, GOTO, END, COMMENT.

A Turing machine is a tuple:

(Q,Σ,Γ, δ, q0, qaccept, qreject)

and an understood “blank” symbol that is in Γ but not in Σ; Q is the set of states, Σ is the
input alphabet, Γ is the worktape alphabet,

δ : Q× Γ→ Q× Γ× {L, R}.
Savitch’s Theorem: NSPACE(f(n)) ⊂ SPACE((f(n))2) provided that f(n) is computable

in SPACE((f(n))2). Hence NPSPACE equals PSPACE.
1



2

Our half of the Baker-Gill-Soloway Theorem: PA = NPA where A is any language complete
for PSPACE.

There are “easy” examples of NP-complete and PSPACE-complete languages:

LNP easy = {〈M, i, 1t〉 | M is a non-det TM that accepts i in time t }
(the term 1t is the string of 1’s of length t, i.e., t written out in unary); and

LPSPACE easy = {〈M, i, 1s〉 | M is a TM that accepts i in space s }.
UTM’s (universal Turing machines) are used to prove the Time Hierarchy Theorem. If

you simulate s steps of a Turing machine by a UTM in time O(s2), then you can conclude
that TIME(na) is a proper subset of TIME(nb) for b > 2a. If you simulate s steps of a
Turing machine by a UTM in time O(s log s), then you can conclude that TIME(na) is a
proper subset of TIME(nb) for b > a.

A DFA is a tuple (Q,Σ, δ, q0, F ) where Q and Σ are finite sets, δ : Q × Σ → Q, q0 ∈ Q,
and F ⊂ Q (F is the set of final or accepting states).

Myhill-Nerode Theorem: For a langauge L ⊂ Σ∗ and w ∈ Σ∗, we define

Future(L,w) = {u ∈ Σ∗ | wu ∈ L}.
Then the number of different futures of a language is the minimum number of states in a
DFA recognizing L.


