CPSC 536F March 22,2022
Last time:

- Defined covering maps and
étale maps.
$($ - Stated! If H, G are graphs sit, there exists an étcle mas $\Perp \rightarrow G$, on hold then

$$
\lambda_{1}(H) \leq \lambda_{1}(G)
$$

with equality if $H \rightarrow G$ is a covering
map

- Question: What are examples of étale and covering maps?

Fer Alcn-Boppore the:
Truncated Vertices distance at level $\ell \longrightarrow l$ of dreg tree d-regulr graph

G
$=$

$$
\lambda_{1}(1-1) \leqslant \lambda_{1}(\sigma)
$$

user "lifting lemma".

Examples!
3 to l covering

(1) put 3 'copies of eccl vertex in 6 "above"
(2) For ecol edge in G, put a perfect matching "above".

Galois theory al graphs:
If h is any greph,

$$
A_{u} t(H)=\left\{\begin{array}{c}
\text { Xu: } H \rightarrow H \text { that are } \\
\text { iscmaphisms }
\end{array}\right\}
$$

If $\pi: H \rightarrow G$ is any marphison,

$$
\left.\begin{array}{rl}
\operatorname{Aut}_{G}(H)=\{ & \mu \in \operatorname{Aut}(H) s t t_{1} \\
& H \xrightarrow{\mu} H \\
\pi \searrow{ }_{G} \ell \pi, \\
& \text { ie. } \pi \mu=\pi
\end{array}\right\}
$$

Example: Say $\pi: H \rightarrow G$ is a $2-t_{c}-1$ covering map:

If $\mu: V_{H} \rightarrow V_{H}$

$$
E_{N}^{d w} \rightarrow E_{N}^{d w}
$$

$\mu=$ swap with other thing mappers to same vertex of G

Then $\mu \neq i d$, but $\pi \mu=\pi$

The: If G, H connected,
$\pi: N \rightarrow G$ is a $k-t_{0}-1$
covering mop,

$$
\left|A_{v_{G}}(H)\right| \leq k
$$

Def! Ir this theorem, if

$$
\left|\operatorname{Aut}_{G}(1 \lambda)\right|=k
$$

we say $\pi: N \rightarrow G$ is Galois.

Remark above: If $\pi: H \rightarrow G$ is $2-t_{0}-1$, then π is Galois.

Remark: If $\pi: H \rightarrow G$ is of degree 2, then
eigenpeirs of A_{H} (Adjacency do H) car be obtained from A_{G}, \widetilde{A}_{G}

Give, mere generslly a groph (J, with symmetay of order 2:

Worm up to
Homewerk :

W has symmotry of order 2

$$
\left.\begin{array}{lll}
c & b & c \\
c & 1 & 1 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{array}\right]
$$

what are λ^{\prime} ' of A_{H} ?
Say $f: V_{H} \rightarrow \mathbb{R}$
is (1) even if $f \mu=f$

$$
\begin{aligned}
&(2) o d d: \quad f \mu=-f \\
&= \\
& / \searrow(a): f=\frac{f+f \mu}{2}+\frac{f-f \mu}{2} \\
& f(b)=f(c)
\end{aligned}
$$

$$
\begin{aligned}
& f(c)<x \\
& f: \quad f(b)=y \\
& f(c)=z
\end{aligned}
$$

Mare simply

"even"
 "od ${ }^{\prime \prime}$
A_{14} ever \rightarrow ever

$$
o d d \rightarrow o d d
$$

as c matrix

So or ever

so $A_{H}(y)=l$ so

$$
\begin{aligned}
A_{H}\binom{\bar{X}}{Y} & =\binom{2 Y}{2 T+\underset{X}{Y}} \\
& =\left(\begin{array}{ll}
0 & 2 \\
1 & 2
\end{array}\right)\left(\begin{array}{l}
\dot{X} \\
\tilde{Y} \\
i
\end{array}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
A_{H}\left(\begin{array}{c}
0 \\
\Lambda_{\tau} \\
=-\tau
\end{array}\right) & ={ }_{-2 \zeta}^{0} \partial_{2 \tau} \\
& =(-2) \dot{\partial}_{\zeta}
\end{aligned}
$$

So

$$
\begin{aligned}
& A_{H}\left(1_{1}^{0}\right.=1 \\
&=(-2) \\
& 1=-1
\end{aligned}
$$

Think of ever functions

$$
\text { sit. }(y=z)
$$

Think of: any ever function

ever, ever, $\begin{gathered}\text { are a basis }\end{gathered}$ for all functions

$$
A_{H}\left(\Delta_{0}^{\circ}\right)=\left(\Delta_{1}^{0}\right)
$$

$$
A_{H}(\text { even, })=\text { even }_{2}
$$

$$
A_{H}\left(\text { even }_{2}\right)=A_{H}\left(<_{1}^{0}\right)
$$

$$
=\binom{\dot{0}_{2}^{2}}{0_{2}}
$$

$$
=2 \text { ever, }+2 \text { ever } 2
$$

So
A_{H} even, even 2

$$
A_{H} \text { ever }_{2}=\sum_{\text {ever }}^{1} \text { t } \text { ever }_{2}
$$

$$
\begin{aligned}
& A_{H}\left(\alpha \text { even } n_{1}+\beta \text { ever _2 }\right) \\
& =(2 \beta) \text { ever, }+(2 \alpha+2 \beta) \text { ever }_{2}
\end{aligned}
$$

In bans even, ever z,

$$
A_{H}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \rightarrow\left[\begin{array}{c}
2 \beta \\
2 \alpha+2 \beta
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

WW: Ched that this glves 3 ON eigerveturs $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$
(1)

$$
A_{H} \vec{v}_{i}=\lambda_{i} \vec{v}
$$

(2)

$$
(\text { any even }) \cdot(\text { ary codd })=0
$$

Break
Deg 2 covering mapr $W \rightarrow G$.

Ever firetians

Ever functions: $V_{H} \rightarrow \mathbb{\mathbb { Z }}$

(1) Ever functurs, i.e. f! $\bar{V}_{H} \rightarrow \mathbb{R}$ sit. $f \mu=f$
come from G

$$
\{\text { evea functars }\}=\left\{\begin{array}{cc}
\text { ery } & \text { furctin } \\
a & G
\end{array}\right\} \pi
$$

Fars sucl Eundions:

$$
A_{H}\left(\begin{array}{c}
x \\
i x \\
i x \\
i
\end{array}\right.
$$

Sc if

$$
\int_{1}^{0}, \quad A_{G}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

π is covering map, vertices of $(ل$ ste same local picture as π of the vertex ar G

Rem: If $\pi: N \rightarrow G$ is any covers mar!

π

$$
f: V_{G} \rightarrow \mathbb{R}
$$

sit.

$$
A_{G} f=\lambda f
$$

then

$$
A_{H}(f \pi)=\lambda(f \pi)
$$

Goad news: dey 2 cavers
Pretty good news: "abelian covers" Not so geed news...

G

$$
A_{\mathbb{G}}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

$$
A_{N}\left(\begin{array}{cc}
y_{y}^{x} & -x \\
-y & \\
z=\frac{z}{z}
\end{array}\right)=
$$

Herce eigrpurs of A_{H}

$$
\begin{aligned}
& \Leftrightarrow \text { eig-npurs cl even } \\
& +\left[\begin{array}{lll}
c & 1 & 1 \\
1 & c & 1 \\
1 & 1 & 0
\end{array}\right]=A_{G} \\
& \cdots
\end{aligned} \quad \cdots \quad \text { \&dd }\left[\begin{array}{ccc}
c & 1 & 1 \\
1 & c & -1 \\
1 & -1 & 0
\end{array}\right]=\hat{A}_{c}
$$

signed ($\pm 1)$ adjacerey madrlx:

1 for purcllel edges $-1 \quad$ crossed 11

Next tine

But $\operatorname{Aut}_{G}(1-1)=\{i d\}$

