CPSC 536F March 10,2022
Last time! really used

$$
e(u, w)=\frac{d}{h}|u||w| \pm \rho \sqrt{|u||w|}
$$

really took $A_{G} \rightarrow\left(A_{G}\right)^{\text {k }}$

$$
\begin{aligned}
\left\lvert\, \begin{array}{c}
\text { \# walks length } \\
k \text { fran U to } w
\end{array}\right. & \left.-\frac{d^{k}}{n}|u||w| \right\rvert\, \\
& \leqslant \rho^{k} \sqrt{|0||w|}
\end{aligned}
$$

U, ω single vertices, $|U|=|\omega|=1$
\Rightarrow "tales from am, wales tom any lo a th dor g k

$$
\geqslant \frac{d^{k}}{n}-\rho^{k}
$$

this is >0 when

$$
\frac{d^{k}}{n}>\rho^{k}
$$

so $\frac{d^{k}}{\rho^{k}}>n$ so $k>\frac{\log n}{\log (d / \rho)}$
Gives:
diameter of G
$\stackrel{d e f}{=}$
\max (distance from V_{1} to V_{2})

$$
\begin{aligned}
v_{1}, v_{2} & \in V_{G} \\
& \leq \frac{\log n}{\log (d / \rho)}+1
\end{aligned}
$$

Today stert!
(1) If G is duregulor a n vertices, d fixed, $n \rightarrow \infty$ $\operatorname{Bapparaq}_{\text {Alan }}^{\operatorname{Bra}} \lambda_{2}(G) \geq 2 \sqrt{d-1}-O_{n}(1)$ specifically

$$
\lambda_{2}(G) \geqslant 2 \sqrt{d-1}\left(1-\frac{c}{\left(\log _{d-1} n\right)^{2}}\right)
$$

(2) If $d \geq 4$, even, fixel, then most d-reguls graphe ar r vertizes have - for ary fized ε ——

$$
\lambda_{2}(G) \leqslant 2 \sqrt{d-1}+\varepsilon\left[M_{e}\right]
$$

first regutt

$$
\begin{aligned}
\lambda_{2}(G) \geqslant & d^{1 / 2}(2 \sqrt{d-1})^{1 / 2}+\varepsilon \\
& (\text { Broder-Shamir) } \\
& \begin{array}{l}
\text { Srd }
\end{array} \\
& \text { Adjacena } G
\end{aligned}
$$

Uring

$$
\left\{\begin{array}{c}
\text { non-backtruckn } \\
\text { Hashimoto }
\end{array}\right\}
$$

get a better result.
Why $2 \sqrt{d-1} \ldots$

If G is any graph, A_{G} symmetric, not necessarily regular, then

$$
\underbrace{\lambda_{1}\left(A_{G}\right)} \geqslant \lambda_{2} \geq \ldots \geq \lambda_{n}(G)
$$

e. g.

Lock at strings I's, O's sit. no $O 0$ occurs as a substring "Fibonacci data"
strings length 3!

| 111 | | |
| :--- | :--- | :--- | :--- |
| 011 | not 001 | |
| 101 | 100 | |
| 110 | | 000 |
| 010 | | |

Similarly loo at strings Col's sit. between two l's, at least d O's occur at most k D's occur

$$
\text { " }(d, k) \text {-constrained data" }
$$

Fibovacei dota!

all Eihararei deta can be obtared by walks on this grapl
stort at v_{1} end v_{1} v_{2}

$$
=
$$

$Q_{0}^{1} \quad \operatorname{Adj}=[2]$
\angle nrodels strings 0,1 unconstramed

Sharnaris theory:
say you have a directed graph
$\left.\begin{array}{c}\text { \# words off } \\ \text { length } k\end{array} \lambda^{k} \lambda_{1}\right)^{k}$
hiding constants demerol an graph
Let's make this precise...
The: Say that digraph G that is strongly conneded
if. for any $v_{1}, v_{2} \in G$ there is a path from V_{1} to V_{Z}
[Mirrors the notion of an irreducible phorkow chair.]

Then there is a single longest positive eigenvalue ir absolute value, and all other eigenvalues have absolute value $\leq \lambda_{1}$.

If G ass c grephi

$$
\begin{array}{ll}
\lambda_{l}\left(A_{G}\right) \geq \ldots & \geq \lambda_{n}\left(A_{G}\right) \\
\text { positive } & \jmath_{0} \\
\text { pormolto then } \\
& -\lambda_{1}\left(A_{G}\right)
\end{array}
$$

Take any duregulo graph G

Wart to shew

$$
\begin{aligned}
\lambda_{2}(G) \geqslant & 2 \sqrt{d-1} \\
& + \text { small }
\end{aligned}
$$

Strategy:
take any vertex $v_{1} \in V_{G}$. Take a v_{2} sit. distance v_{1} to v_{2} is as large as possible

$$
\begin{aligned}
& H_{\text {vertices }} \text { dist } \mid \text { to } v_{1} \leq d \\
& \text { い } \quad \text {. } 2 \text { to } v_{1} \leq d(d-1) \\
& \quad 3 \text { to } v_{1} \leq d(d-1)^{2} \\
& \text { if } \\
& f(k)=1+d+d(d-1)+d(d-1)^{2}+\ldots t d(d-1)^{k} \\
& <h
\end{aligned}
$$

then some vertex has distance k

So

$$
\begin{aligned}
f(k)= & d(d-1)^{k_{2}}\left(1+\frac{1}{d-1}+\ldots+\frac{1}{(d-1)^{k-1}}\right) \\
& +1+d
\end{aligned}
$$

So if $d \geqslant 3,1+\frac{1}{d-1}+\frac{1}{(d-1)^{2} \ldots} \leq 2$

$$
d(d-1)^{k} 2<n-d-1
$$

there is $\& V_{2}$ of distonce $k+1$ to v_{1}.
© iber toke $k \geqslant \frac{\log \left(\frac{n-\alpha-1}{2 d}\right)}{\log (d-1)}-1$

$$
\geqslant \frac{\log n}{\log (d-1)}-c^{\prime}
$$

so

$$
\begin{aligned}
& \text { dium }=\operatorname{dist} \frac{\log n}{\operatorname{leg} d-1}-c^{\prime} \\
& v_{1} \\
& v_{2}
\end{aligned}
$$

If diam= diometor of G

of distance

$$
\leqslant \frac{\text { diam }}{2}-3
$$

$T_{i}=$ set of vertices of distance
$\leq \frac{\text { diam }}{2}-3$ from v_{i}

Claim: d-regule graph G, and any subgrepp of vertices of distance k fran a $v_{1} \in T$

Then

$$
\begin{aligned}
& \lambda_{1}\left(\begin{array}{cc}
\text { Induced subgraph } \\
\text { or } \\
\lambda_{1} & \text { by } \\
G
\end{array}\right. \\
& \geq 2 \sqrt{d-1}-\underbrace{\operatorname{functin}(k)}_{\rightarrow 0 \text { as } k \rightarrow \infty}
\end{aligned}
$$

eeg. If G is locally a tree

bottom: dey caldbe 1.

Thu! If G_{1} is the induced graph by G taking a subset V_{1} as above,

$$
\lambda_{1}\left(G_{1}\right) \geqslant 2 \sqrt{d-1}+O_{k}(1)
$$

Thu: If you have

Ides behind Weyl's law, max-min

Then

$$
\begin{aligned}
& \lambda_{2}(G) \geqslant \\
& \operatorname{mir}\left(\lambda_{1}\left(G_{1}\right), \lambda_{q}\left(G_{2}\right)\right) \\
= & \text { similuh }
\end{aligned}
$$

$$
\lambda_{3}(G) \geqslant \min \left(\begin{array}{r}
\lambda_{1}\left(G_{1}\right), \\
\lambda_{1}\left(G_{2}\right), \\
\lambda_{1}\left(G_{3}\right)
\end{array}\right)
$$

Mih-max \& max-min principles!
say ych have symmetric $n \times n$ matrix, A, eigenvelurs

$$
\lambda_{1,-},_{1} \lambda_{n}
$$

Reyleigh quotiart: $\vec{v} \neq 0, \vec{v} \in \mathbb{R}^{n}$

$$
R(\vec{v})=\frac{(A \vec{v}) \cdot \vec{v}}{\stackrel{\rightharpoonup}{v} \cdot \vec{v}}
$$

Rem: If $\alpha \neq 0, \alpha \in \mathbb{R}$

$$
R(\alpha \vec{v})=\frac{(A \vec{v} \alpha) \cdot(\vec{v} \alpha)}{(\vec{v} \alpha) \cdot \vec{v} \alpha}=R(\stackrel{\rightharpoonup}{v})
$$

Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be arthenormal eigerbasis, $\quad A \vec{v}_{i}=\lambda_{i} \vec{V}_{i}$
Ther if $\vec{v} \in \mathbb{R}^{h}$

$$
\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}
$$

where

$$
\begin{aligned}
c_{i} & =\vec{v} \cdot \vec{v} i \\
\vec{v} \cdot \vec{v} & =\left(c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}\right) v\left(c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}\right) \\
& =c_{1}^{2}+c_{2}^{2}+\ldots+c_{n}^{2}
\end{aligned}
$$

(Pythegaras' law)

$$
\begin{aligned}
& R(\vec{v})=\frac{\left(A\left(c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}\right)\right) \cdot\left(a_{1} \vec{v}_{1}++c_{n} \vec{v}_{n}\right)}{\vec{v} \cdot \vec{v}} \\
& =\frac{\left(c_{1} \vec{v}_{1} \lambda_{1}+\ldots+c_{n} \vec{v}_{n} \lambda_{n}\right) \cdot(}{c_{1}^{2}+c_{2}^{2}+\ldots+c_{n}^{2}} \\
& =\frac{\lambda_{1} c_{1}^{2}+\lambda_{2} c_{2}^{2}+\ldots+\lambda_{n} c_{n}^{2}}{c_{1}^{2}+\ldots+c_{n}^{2}} \\
& =\lambda_{1}\left(\frac{c_{1}^{2}}{c_{1}^{2}+\ldots+c_{n}^{2}}\right)+\lambda_{2}\left(\frac{c_{2}^{2}}{c_{1}^{2}+\ldots+c_{n}^{2}}\right)+\ldots
\end{aligned}
$$

For any $\vec{v} \neq 0$
Rem! $R(\vec{v}) \leq \lambda_{1}$,

$$
\begin{aligned}
& \text { Since } \\
& R(v)=\lambda_{1}()^{n}+\lambda_{n}^{n o n-n_{e g}} \text { real, sum } 1 \\
& \leqslant \lambda_{1}()+\ldots+\lambda_{1}() \\
&=\lambda_{1}
\end{aligned}
$$

and $R\left(\vec{v}_{1}\right)=\lambda_{1}$
If $W \subset \mathbb{R}^{n}, \operatorname{dim}(W)=2$, then some $\vec{\omega} \in \bar{W}, \vec{\omega} \neq 0$ sit.

$$
R(\omega) \leqslant \lambda_{2}
$$

Why: $\bar{w}=\operatorname{spir}\left(\vec{w}_{1}, \vec{w}_{2}\right)$
Claim: There is a nan-zerso α_{1}, α_{2} sit.

$$
\left(\alpha_{1} \vec{w}_{1}+\alpha_{2} \vec{w}_{2}\right) \cdot \vec{v}_{1}=0
$$

Why?

$$
\alpha_{1}\left(\vec{w}_{1} \cdot \vec{v}_{1}\right)+\alpha_{2}\left(\vec{w}_{2}-\vec{v}_{1}\right)=0
$$

fact! Any linear system or m variables on $m-1$ equations has
a nonutriadial solution.
So there are α_{1}, α_{2}, not all O si,

$$
\vec{w}=\alpha_{1} \vec{w}_{1}+\alpha_{2} \vec{w}_{2} \neq \overrightarrow{0}
$$

is orthegenol to $\overrightarrow{1}$, So

$$
\begin{gathered}
\stackrel{\rightharpoonup}{\omega}=\underbrace{c_{1}} \vec{v}_{1}+c_{2} \vec{v}_{2} t \ldots t c_{n} \stackrel{\rightharpoonup}{v}_{n} \\
\hat{c}_{1}=\stackrel{\rightharpoonup}{w} \cdot \overrightarrow{v_{1}}=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Hence } \\
& \left.R(\vec{\omega})=\$_{1}\left(\frac{c_{1}^{2}}{\varepsilon c_{1}^{2}}\right)+\lambda_{2}\left(\frac{c_{z}^{2}}{\sum c_{1}^{2}}\right)\right) ~
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda_{\eta}\left(\frac{c_{2}^{2}}{\sum_{i} c_{i}^{2}}\right)+\ldots+\lambda_{r}\left(\frac{c_{r}^{2}}{\sum c_{i}^{2}}\right) \\
& \left.\leq \lambda_{2}()+\ldots+\lambda_{2}()\right) \\
& \leqslant \lambda_{2} . \\
& =S_{0} \operatorname{dim}(w)=2 \quad(\text { or } \geq 2)
\end{aligned}
$$ then some $\vec{\omega} \neq \omega, \vec{\omega} \neq 0$ has $\vec{\omega} \perp \vec{v}_{1}$, hence

$$
R(\vec{\omega}) \leq \lambda_{n}
$$

Gives (over band or λ_{2}.

Also, if $\omega=S_{p m}\left(\vec{v}_{1}, \vec{v}_{2}\right)$
then $\forall \vec{w} \in W$,

$$
\begin{aligned}
& \vec{\omega}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \\
& R_{A}(\omega)=\frac{c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{2}}{c_{1}^{2}+c_{2}^{2}} \\
& \\
& \gg \frac{c_{1}^{2} \lambda_{2}+c_{2}^{2} \lambda_{2}}{c_{1}^{2}+c_{2}^{2}}=\lambda_{2} \\
& = \\
& \operatorname{dim}(\omega)=2, \omega \subset \mathbb{R}^{n}\left(\begin{array}{l}
\min _{\vec{\omega} \in w}^{\vec{\omega} \neq 0}
\end{array} R_{A}\left(\frac{1}{\omega}\right)\right)
\end{aligned}
$$

$$
=\lambda_{2}
$$

\max - mir principle
$=$
In pertizutr $\operatorname{dim}(\omega)=2$
\Rightarrow

$$
\lambda_{2} \geq \min _{\vec{w} \in w}^{\vec{w} \neq 0} \mid ~ \mathbb{R}(\vec{\omega})
$$

ide

