CPSC 536F Feb 15, 2022

Next week is break week.
$=$
After Valiaritts permanent paper,
I'll mention sum e mare results in alg. comp. thy

Then: graphs, eigenvalues,...

Valiant's gadgets:

Valiant's gadgets:

$$
X=\left(\begin{array}{cccc}
0 & 1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 1 & 3 & 0
\end{array}\right)
$$

has: Perm $X=0$,

$$
\begin{aligned}
& \operatorname{Perm} X(1 ; 1)=\operatorname{Perm} X(4 ; 4) \\
& =\operatorname{Parm} X(1,4 ; 1,4)=0
\end{aligned}
$$

and

$$
\operatorname{Perm} X(1 ; 4)=\operatorname{Perm} X(4 ; 1)=4
$$

plus downowed arrews X \downarrow interchange

Pant! Say you hare a graph, made up of

Valiant's 4×4 gadjet
Any edge not shown

$$
\Rightarrow X_{i j}=c
$$

Claim!

Route $=$ a set of cycles
in big graph sit.

- other edges
then the only ren-zoo contrib to permant is
for each Valiant piece, and each such piece car be replaced L_{y}

Idea! consider all union of cycles in $V=\left\{v_{1}, \ldots, v_{m}\right\}$, arb for each Valiant piece, look at

1
the 2,3 vertices aren'4 connected
to exterior nodes, so look at red edges:

2 edges incibten uper V_{1}

2 edres...

$$
v_{4}
$$

| edge , he vertax 1
Qedjes verte 4

l-a) 1
\bigcirc

Sum the permart:

$$
\begin{aligned}
& \sum_{\sigma^{\sigma}:\left\{v_{1,-}, v_{m}\right\} \rightarrow\left\{v_{1,-,}, v_{m}\right\}}
\end{aligned}
$$

subdwite σ 's into their behaviour at each
e.g.

passible:

Cycle decomp of σ

directed greph, each vertex has indegrue 1, atdegree I

Graph

etc,

Consider cycle that on sone

Contrib to perm
has to sum to 0

Since

So 2,3 are taken to themselves under σ, Sum aver all poss

 gives all σ wish
 this peritten Suminy y te
 On

$$
X \in\{-1, c, 1,2,3\}^{m * m}
$$

$$
m=\# \text { vertices }
$$

What about!

Teach internal edge
has indegraee $=1$
outolegree $=1$
Sc sum der all indegree edges in vert $1,2,3,4=$ all antdegnce

recall! on e digraft, the
indegrue $(v)=\#$ edges pointing to V
outdgree $(v)=$ edges pointry awoy from V

hence

irdegre = total exterral outdggree

imposside!
external autdegroe $=1$ external indegree $=2$.

For groph thearetic aressons!
(1) external indegnce $=2$
" outdegrae

any,thin wivk theis otructure
$\Rightarrow C$ contrib to perm
(2) external indegrae $\left.\begin{array}{l}\text { externd outdegra }\end{array}\right\}=1$

Since
$\operatorname{Perm}\left(X\left(\begin{array}{l}\text { elim } \\ \text { row } 1 ; \operatorname{col} \\ \text { col }\end{array}\right)\right)=0$

$$
\operatorname{Perm}(X(1 ; 4))=\operatorname{ferm}(X(4 ; 1))=4
$$

lost case
(3)
external indegacep
 = "1 outdare
no extend edges $=0$

$$
\operatorname{Perm}(X)=O
$$

the sum over all such $\sigma: \bar{V} \rightarrow T$
with this beheviar at is 0 .

By a case analysts, and

$$
\begin{aligned}
& \operatorname{Perm}(x)=\operatorname{Pern}(x(1,4 ; 1,4)) \\
& =\operatorname{Pern}(x(1 ; 1)) \\
& =\operatorname{Perm}(x(4 ; 4))=0
\end{aligned}
$$

bot

$$
\begin{aligned}
\operatorname{Parm}(X(1 ; 4)) & =\operatorname{Pen}(X(1 ; 4)) \\
& =\text { cont, here }=4
\end{aligned}
$$

Perm $(x):$
each \# \& V divan each $4^{\text {contrib piece }}$ Ox

Soy ya hare

$$
\left.\begin{array}{c}
\left(x_{1} \text { or } x_{2}\right. \text { or } \\
7 x_{3}
\end{array}\right)_{\text {AND }}^{c}
$$

()
guild a digraph with edge weights so that \# Satisfying assignments
$=\left(\begin{array}{llll} & 0 & \text { Sum of } \\ & & & \text { litres and clauses }\end{array}\right)$

- (At obdistiling assungnmetr

Digraph graph size is
paly (size of f)

Break 10:18-10:23

Have $f=$ 3CNE formula :
secy the

$$
x_{1}=\tau, x_{2}=f, x_{3}=F_{1-}
$$

satisfies $f\left(x_{1}, \ldots, x_{n}\right)=T$:
F
for $i=1,-, n$, part of the graph w. build $t^{\text {r only edges in at }}$
 $x_{1}:$
there will be stuff Warty edges ingot baton vertex

Cycle must have indegree $=$ outdagres $=1$ at each
whatever piertal
must be invelved in cyctic degamp of

For x_{i} $\sigma: \quad V^{-} \rightarrow T$

Mar preciach

$$
x_{1}
$$

x_{1} occurs in formula?
X_{1} occurs twice
$7 x$, occurs arse

left to right part
add edges

you must traverse at
feast are pick
track for x_{1} !
Claim!

So eithr

if $7 x_{1}$ chosen ad $7 x_{2}$ chosen

if $\neg x_{1}$ chosen, x_{2} chosen

Class ends.

