$$
\text { CPSC } 536 \mathrm{~F} \quad \mathrm{Feb} 10
$$

Valiant: \# Perfect Mctahings is complete for \#p, i.e.
if you can count the number of perfect matchmgs in a
graph in poly time, then

$$
P=N P
$$

Valiant's gadgets:

$$
X=\left(\begin{array}{cccc}
0 & 1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 1 & 3 & 0
\end{array}\right)
$$

has: Perm $X=0$,
$\operatorname{Perm} X(1 ; 1)=\operatorname{Perm} X(4 ; 4)$

$$
=\operatorname{Parm} X(1,4 ; 1,4)=0
$$

and
$\operatorname{Perm} X(1 ; 4)=\operatorname{Perm} X(4 ; 1)=4$

plus downowed arrews \wedge ${ }^{2}$ interchange

SAT $=\left\{\begin{array}{l}\text { Bolos formulas } \\ f \text { that are in 3CNF }\end{array}\right.$
form sit.
f has a satisfying assignment \}
aCNE!

$$
\begin{gathered}
f=\left(C_{1}\right) \text { AND }\left(C_{2}\right) \text { AND } \\
\cdots \cdots A D\left(C_{m}\right) \\
C_{i}=l_{i+} t_{1}^{i} \text { OR lit }{ }_{2}^{i} \text { OR lit }{ }_{3}^{\prime}
\end{gathered}
$$

$$
\begin{aligned}
& \quad \text { lqtarl }=x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n} \\
& = \\
& \text { iden! } \\
& f=\left(x_{1} \text { an } x_{2} \text { cr } \bar{x}_{3}\right) \text { AND } \\
& \left(x_{5} \text { ar } \bar{x}_{1} \text { ar } x_{2}\right) \text { AND } \\
& \text { 3SAT }=\left\{\begin{array}{l}
\text { f in } 3 C N E
\end{array}\right\} \text { that }
\end{aligned}
$$

$$
\text { haur a ratiffifing assignmatt }\}
$$

satisffying assignment!
$x_{1, \ldots}, x_{n}$ sel to T, f
sit.

$$
f\left(x_{1}, \rightarrow x_{n}\right)=\operatorname{trce}
$$

$=$
\# 3 SAT is the problem of given
f in 3CIVf, print out the number of satisfying asrigmment!

$$
f=f\left(x_{1},-, x_{n}\right)
$$

\& satisfying assignments $\leq 2^{n}$
So this \# can be expressed in n-bits

For many" NP, complete problems
3COLOUR,...
If you can determine \#3SAT,
the you cen determine "3coloun
$=$ \# legal 3-colurrys of a
graph

Mort people guess that
3SNT cant be solved in polytime (i.e. $P \neq N P$)

Certcival):
If youran solve \# 3 SAT, then you can tell if this 東 is >0 of $=0$, so yah can solve 3SAT.
$=$
On the other hand, given a bipartite graph

na

- n
a perfect matching is just
a subgraph

There is a stewdord "augmentry path algorithm" to do this. Surprise! if you can
solve \# Perfect Metchings, i.e. given n and subset of pars $\{(1,-y, n\}$, and you hare a subratme to cant perfed matahrys, then you can solve \#35AT, \#3colark, etc.
And $X \in\{c, 1\}^{h_{0 r}}$, so

$$
X=\left(x_{i j}\right)_{i, j \in\{1,-, h\}} \text { there } \operatorname{Perm}(X)=
$$

So if you con count \# Perfect Metchngs $\underset{\text { 内人 }}{\boldsymbol{T}}$ ply time, then $P=N P$; most people think $P_{ \pm N P}$, then count EPPesfeat $M_{\text {atchrgs }}$ should not have a short $\left\{\begin{array}{l}\text { formula } \\ \text { cirwit }\end{array}\right.$ Today $(2022$, Fob) we can prove min formula size for Perm $\geq c \cdot n^{2}$.

Todon! Valiant's result!
if you're glen an

$$
f=\left(\begin{array}{lll}
\downarrow & { }^{2} & y
\end{array}\right) \begin{aligned}
& \text { easier } \\
& \text { or } 3 \text { layouts }
\end{aligned}
$$

ANS

AND

1
1

$$
\left(1^{\text {AND }}\right.
$$

even

$$
(\quad) \leftrightarrow(\text { on on on or })
$$

then \# x_{1}, x_{n} sit, $f\left(x_{1, \ldots}, x_{n}\right)=T$

Ca be solved by sotuing a poly number of \#perfecthathy problems on computing a Permarent.

$$
\begin{aligned}
& \text { Permenent }(X): \quad X \in \mathbb{e}^{n \times n} \\
& 1, \stackrel{x_{11}}{x_{12}} \cdot 1 \quad\{0,1\}^{n \times n} \\
& 2-\underset{1}{2} \\
& 3 \circ 03
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Perm}({\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) } \\
&= \sum x_{1 \sigma(1)} x_{2 \gamma(2) \ldots,} x_{n \sigma(n)} \\
& \sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, h\}
\end{aligned}
$$

$=$
Here $\sigma:\left\{1,->^{n}\right\} \rightarrow\{1, つ n\}$
Can view σ as haring a cyclic structure:

$$
\left.\sigma_{(1 .)} 1 \rightarrow \sigma(1): 3 \rightarrow \sigma(3): 2\right)
$$

$$
\sigma: S_{1 \rightarrow 3 \rightarrow 2}
$$

Thimk of a direotel graph on 3 vertizes:

$n=5$ ojcliz stricter

Each r gives you a subgraph of the complete digraph en n vertices that goes into each vertex ane and out of each vertex once, cowering all vertices as a union of cycles.

1 st Observation:

If you con compute

$$
\operatorname{Perm}(X)
$$

where entries $X_{i j} \in\{-1, \mathbb{O}, \|, 2,3\}$
then you con count
\# solutions of a Boslew forme,

$$
f=f\left(x_{1,-}, x_{n}\right) \text { in } 3(\nmid f
$$

form

Take on f in 3 CNE form:

$$
\begin{aligned}
& \left(x_{1} \text { on } x_{2} \text { on } \bar{x}_{3}\right)_{\text {AND }} \\
& \left(x_{5} \text { on } x_{9} \text { on } \bar{x}_{1}\right)_{\text {AND }} \\
& \left(x_{1} \text { on } \bar{x}_{1} \text { on } x_{z}\right)_{\text {AND }}
\end{aligned}
$$

create from this permentert question of size roughly the size of the formula

Construction:
frost gad jet!

Complete digraph an 4 vertroos, weight the edges as

$$
X=\left(\begin{array}{rrrr}
0 & 1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 1 & 3 & 0
\end{array}\right)
$$

Clam!

$$
\operatorname{Perm}(x)=0
$$

So

$$
\begin{aligned}
& \text { So } \\
& \operatorname{Parm}\left(Y_{1}\right) \text { and } Y=\left(\begin{array}{ccc}
\text { any } & \left(\begin{array}{cccc}
0 & 1 & -1 & 1 \\
1 & -1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 2 & 0
\end{array}\right)
\end{array}\right) \text { andy }
\end{aligned}
$$

if term

$$
\begin{aligned}
\operatorname{Perm}\binom{v}{\imath} & =\{ \\
& \sigma:\{1,-,, m\} \rightarrow(1,-, m)
\end{aligned}
$$

but sum our all
σ tales $\{1,-, 4\} \rightarrow\{1, ., 4\}$
then

$$
\underbrace{y_{1 \sigma(1)} Y_{2 \sigma(2)}}_{f_{\text {inst } \text { gar }}} y_{m \sigma(n)}
$$

σ

Next:

$$
\begin{aligned}
& \operatorname{Perm}(\underbrace{X(1 ; 1)}_{X \text { with row t } 1}) \\
& \text { col } 1+1 \\
& \text { deleted, } \\
& =O \\
& \operatorname{Parm}(X(4 ; 4)) \\
& \operatorname{Perm}(X(1,4 ; 1,4))=0
\end{aligned}
$$

e.g,

$$
\begin{aligned}
& x(1,4 ; 1,4)=
\end{aligned}
$$

left wil

$$
=\quad \operatorname{Perm}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)=0
$$

but
$\left.\begin{array}{l}\operatorname{Peman} X(1 ; 4) \\ \operatorname{Perm} X(4 ; 1)\end{array}\right\}=4$

$$
\begin{aligned}
& X=\left(\begin{array}{cccc}
0 & 1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 1 & 3 & 0
\end{array}\right) \\
& =
\end{aligned}
$$

HW! The same con't hupper to any squer matrix if Perm $\sim \sim \sim$ rephce Det.

Claim:

Graph:
with Valiant's weights

plus, then Perm \uparrow is

in e, when we sum over all
σ bijectians an vertex set,
look at cyclic structure,

$$
\operatorname{Perm}\left(\operatorname{Big}_{\mathrm{j}} G_{\text {sip }}\right)=4^{\text {Vdradibese }} \operatorname{Perm}(\operatorname{sminher})
$$

Pern' meaning each
nes has to tranderse

OR

$$
\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{2}
\end{array}
$$

Braw:

$$
10!26-10!31
$$

Think about this step...

Perm

then
cyclic structure of σ break into conn comp, you cant have

$$
\begin{aligned}
& \operatorname{Perm}\left(X^{8 \times 8}\right) \\
& =\sum_{\sigma_{s}^{\prime}}
\end{aligned}
$$

portitivg σ_{s}^{\prime} wish
$\{1,7\}$
a glven
petctition
of vertex
set, pech port in a cyok

$$
=\sum x_{1 \sigma(1)} \cdots x_{\delta \sigma(8)}
$$

σ sit.
cycles break $\{1,-, 8\}$
into cylce on $1,4,5,8$

$$
\begin{array}{lll}
i & 4 & 2,3 \\
i & \cdots & 6,7
\end{array}
$$

$$
+\sum_{\sigma}-\text { all-other pertinius }
$$

$$
\sigma!\{1,-8) \rightarrow\{1, \ldots \delta\}
$$

σ

$$
\hat{i}
$$

partition una

$$
\left\{1,,^{8}\right\}
$$

into

$$
\begin{array}{|c|c}
\{1,4,5,8\} \\
\text { some cycle }
\end{array} \underset{\begin{array}{c}
\{2,3\} \\
\text { some } \\
\text { cycle }
\end{array}}{\substack{\{6,7\} \\
\text { some } \\
\text { cycle }}} \begin{array}{|c}
\\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { Cycles an } 1,4,5,8 \\
& 1 \rightarrow 4 \rightarrow 5 \rightarrow 8 \\
& 1 \rightarrow 5 \rightarrow 8 \rightarrow 4 \\
& 1
\end{aligned}
$$

Subdivide

$$
\sigma:\{1,-, \delta\} \rightarrow\{1,-, 8\}
$$

which parts of

are taken to themselves

The rest:

$$
\begin{aligned}
& \left(x_{1} \text { on } x_{2} \text { or } \bar{x}_{3}\right)_{\text {AND }} \\
& \left(x_{5} \text { on } x_{7} \text { on } \bar{x}_{9}\right)_{\text {AND }}
\end{aligned}
$$

that counts \& solutions of

$$
i-\operatorname{Perm}\binom{U}{l}
$$

Part of Y :

in the clavers

for each clause $\left(x_{1}\right.$ or \bar{x}_{2} or $\left.x_{5}\right)$ interchange:

$$
x_{1} \text { on } \begin{array}{cll}
x_{2} & \text { or } & x_{5}
\end{array}
$$

If yu chaore $x_{1}=T$

none of
there
colos
are
thaverse)
in the
x_{1} pirce

Mess ends

The Complexity of Computry the Permanent

$$
1979
$$

