CSC $536 \mathrm{~F} \quad \operatorname{Jar} 25$
If you con functions $f_{n}!\{0,1\}^{n}-\{\{0,1\}$
Boole functions in NP SA,
then P \#NP.
Open problem: find Boulenn functions
$f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$, for some $n \rightarrow \infty$ sit.
(1) Min forming size $\left(f_{n}\right) \geq n^{3.001}$
(2) f_{n} is in NP (or P)
(or...)

Today: "Shrirkuge exporent"
Theorem (as of mid 1990's)!
(t) To comporte XOR, parity

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \in \ldots \in x_{n}
$$

in a D_{E} morgan formula requires

$$
\begin{aligned}
& \geq c n^{2} \text { fize } \\
& \quad \Omega\left(n^{2}\right)=\text { bounded below } \quad \text { by const. } n^{2}
\end{aligned}
$$

(2) There is a finction, Andre'ev functor, thal requives $\Omega\left(n^{3} / \log ^{2} n\right)$ size formules.

Corments!

- Mori Boden findiens require at leasl $2^{n} / \log n$ formule size.
- Any functir thet depads an all of its veruables, $f=f\left(x_{1,-}, x_{n}\right)$ requires at least sibe n.

$$
2^{n} / \log n \text { most }
$$

super polyromiel \longleftarrow hope to prove $\rho+N P$ $\underset{\substack{\text { coment } \\ \text { band }}}{ } n^{3} \xrightarrow{\text { e,g, } n^{\log n}}$ n trvial

However, there are recent works on "communication complexity" that people have looked at recently that might improve on $\Omega\left(n^{3}\right) \ldots$

Parity or XOR

$$
f\left(x_{1, \ldots}, x_{n}\right)=\left\{\begin{array}{cc}
1 & \text { if the number } \\
\text { of } x_{i}=1 \text { is odd } \\
0 \ldots & \text { ever }
\end{array}\right.
$$

One formula!

$$
f\left(x_{1, \ldots,} x_{n}\right)=x_{1} \oplus x_{2} \oplus \ldots \in x_{n}
$$

If y ch allow Θ gates, there is a formula size n that computes parity.

But, in a Dehergan:
(1) There are formulas size n^{2} for parity!

Now:

Car get a formula tries as deep for parity in De Morgan form

So formula depth k in $(\in$ of 2^{k} vars $x_{1}, \ldots x_{2}$ can be convartzol to De Morgan formula size $2^{2 k}=\left(2^{k}\right)^{2}$ So size n^{2} if n is a pour of 2 .

If n is not a pourer of 2 , round h up to the nearest pour of 2 . Gives $O\left(n^{2}\right)$ size formula.

First result, 1961, by Subbctouskaya is thod perity erequires $\geq h^{3 / 2}$ size formula.

More impertently, this peper is probully the fust use of "random restrictions"

Idea!
Tala $f\left(x_{1}, \ldots, x_{n}\right)$ and wish some probability, each x_{1}, \ldots, x_{n} remams untouched with probability P, and otherwise:

Set to 1 prob $\frac{1-p}{2}$
stet to U " $\frac{1-p}{2}$

The ret result:

$$
f\left(x_{1}, \ldots, x_{n}\right)
$$

formula

Roughly np of the variables $x_{1} \ldots, x_{n}$ survive, and the formula simplifies.

Subbatouskaya $(1961!)$ (not improved until 1991 or so..-)

Pick are of x_{1}, \ldots, x_{n} "at random"
uniformly, each with probability

$$
\begin{aligned}
& \frac{1}{n} \text { : Set } \quad x_{i} \text { you pick! } \\
& x_{i}= \begin{cases}0 & \text { prob } 1 / 2 \\
1 & \text { prob } 1 / 2\end{cases}
\end{aligned}
$$

So, you consider one of Zn simplifutions to f :

Claim: Expected / average size of formula L it is $\leqslant L\left(1-\frac{3 / 2}{n}\right)$

Immediate observation (expected) size $\leqslant L \cdot\left(1-\frac{1}{n}\right)$
formula, L leaves, each le ff.
disappears with prob $\frac{1}{n}$,

L leaves

$$
=
$$

But bonsiols: DeMergun

So suy

Now : ane x_{i} restricte $\left\{\begin{array}{lll}0 & \text { proll } 1 / 2 \\ 1 & \cdots . .\end{array}\right.$ then

$$
\begin{array}{ll}
f\left(x_{1}, \ldots, x_{1}\right) \rightarrow & \text { some } \\
& g(n-1 \text { veribles }) \\
\text { and } \\
\operatorname{Avg}\left(\begin{array}{c}
\text { remainy } \\
\text { formk } \\
\text { size }
\end{array}\right) \leqslant L^{l}\left(1-\frac{3 / 2}{n}\right)
\end{array}
$$

This is $n \rightarrow n-1$ varibbles
Now $\quad n-1 \rightarrow n-2 \quad$ -
\therefore - m varicble

After were left with m variables (m will be a content),

$$
\begin{array}{r}
\left.\begin{array}{r}
\begin{array}{c}
\text { Avg Size } \\
\text { formula } \\
\text { or } m \\
\text { vars }
\end{array}
\end{array}\right) \leqslant L\left(1-\frac{3 / 2}{n}\right) \\
\left(1-\frac{3 / 2}{n-1}\right) \\
\vdots \\
\left(1-\frac{3 / 2}{m}\right)
\end{array}
$$

Bol, for any m, n

$$
P=\left(1-\frac{3 / 2}{n}\right)\left(1-\frac{3 / 2}{n-1}\right) \ldots\left(1-\frac{3 / 2}{m}\right)
$$

then

$$
\begin{aligned}
& \log _{e} p(\approx)-\frac{3}{2}\left(\frac{1}{n}+\frac{1}{n-1}+\ldots+\frac{1}{m}\right) \\
& \text { let's } \rightarrow \sim-\frac{3}{2} \int_{m}^{n} \frac{1}{x} d x \\
& \text { precrs } \\
& \begin{array}{r}
\text { afte } \\
\text { breck }
\end{array}=\left(-\frac{3}{2}\right)\left(\log _{e} n-\log _{e} m\right) \\
& \text { So } \\
& \rho \underset{x}{ } e^{(}=\frac{m^{3 / 2}}{n^{3 / 2}}
\end{aligned}
$$

Na take $m=3$

then

$$
L \cdot P \approx L \cdot \frac{c}{n^{3 / 2}}
$$

so
formula size L
shirks to formula size

$$
L \cdot \frac{c}{n^{3 / 2}}
$$

But if $f\left(\alpha_{1},, \alpha_{n}\right)=$ poring
then after setting $n-m$ varicbles te $C_{,} l$ but lecuing m varkbleg the remaining furction is

$$
x_{1} \in x_{2} \in \ldots \in x_{n}
$$

scme are C.I
rest remcir

$$
=X_{i,} \mathbb{Q}_{\ldots} \mathbb{E}_{X_{m}}
$$

or

$$
\neg(\quad \downarrow)
$$

Hence $L \geqslant \frac{n^{3 / 2}}{c}$, or
else Avg
formula <1 site
which is impossible, size
 on all m variables

You cor take $m=1$
(sod all $n-1$ ouherue veriables to be $O_{j} 1$)

$$
x_{1} \in-E x_{n}
$$

cre
conotuts $\oplus X_{j} \in$ conoluts

$$
\begin{array}{ll}
= & \text { left } \\
\text { Afto break: } & \text { parity n-vers } \geq n^{1.5}
\end{array}
$$

Andréev $\geqslant n^{2.5}$

Breck: $10^{\circ}=28-10: 33$
(1) Estimete carefilly to really get $L \leadsto \underset{\substack{\text { size } \\ \text { sug }}}{ } \leqslant L\left(\frac{m}{n}\right)^{3 / 2}$
(2) Andreér intradred 1987
his "Andreiev function," which ghen (1), must have formuk size $\geqslant n^{2.5}$
(3) Subbotoskaya's result can be impravel to $L\left(\frac{m}{n}\right)^{2-\varepsilon}$
for any EDo,
Space parity has De Megan
formula Size $O\left(n^{2}\right)$,
it's impossible that

$$
\left(\begin{array}{c}
A_{\text {vs }} \\
\text { forme } \\
\text { size }
\end{array}\right) \leq L \cdot\left(\frac{m}{n}\right)^{2,00 c c o l}
$$

Since this would imply

$$
\begin{aligned}
& =\quad \text { parity of } n \text { vars } \geq c \cdot n^{2, \text { greco }} \\
& \text { Andre'ev function.requres } \geq n^{3} / \log n
\end{aligned}
$$

Scy that AcMarger fermulas hove shrinkage γ if choosing m af n veriables to remoin in any De margon formula size L ar n qaribles implies that

$$
\left(\begin{array}{c}
\text { avg size } \\
\text { remaing } \\
\text { formule }
\end{array}\right) \leqslant L \cdot c\left(\frac{m}{n}\right)^{V}
$$

c is $c>0$, inderandent of m, n.
Subhotoskayc $1961: \quad V \geq 1.5$
Pasity has n^{2} siza formule: $\gamma \leqslant 2$

Today: Shrinkage exponent in De Morgon formulas, and its story:
History! Sce:
Hastad: The Shrirkenge Expanent of De Margon Fermulas is 2, SIAM J. Compoting, 1998. (recieved 1994, find version 1995) $=$
Subbutovskaja 1961 (!):
Introduces $\gamma=$ Shrinkuge Exponent, shows (1) $\gamma \geqslant 1.5 \quad($ also $\gamma \leq 2)$
(2) Pasity requires n^{γ} size De Margen farmulas

Krapcherko 1971: Parity requires at least $\Omega\left(n^{2}\right)$ size (in a
Demargar formula)
Andre'ev: 1987 Andre'ev's function (which is in P) requites $\Omega\left(n^{1+r} / \log ^{2} n\right)$ size
Nisan \& Impagliazzo 1991 , pub 1993

$$
\gamma \geqslant \frac{21-\sqrt{73}}{8} \approx 1.55
$$

Patterson \& Zwick (same years, a bit

$$
\left(\geqslant \frac{5-\sqrt{3}}{2} \approx 1.63\right.
$$

Hasted publ 1998

$$
\gamma=2-\varepsilon
$$

Let's estimete!

$$
\begin{aligned}
& \left(1-\frac{3 l_{2}}{n}\right)\left(1-\frac{3 l_{2}}{n-1}\right) \ldots\left(1-\frac{3 V_{2}}{m}\right) \\
& \log _{e}\left(1-\frac{3 / 2}{n}\right) \\
= & \log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \cdots
\end{aligned}
$$

fom Toplar series

$$
|x|<1
$$

clso

$$
\log _{e}(1+x)=x+O_{\varepsilon}\left(x^{2}\right)
$$

for $\quad|x| \leqslant 1 / 2 \quad$ (really ary $||x| x)$
via Tapless Thm .

$$
\begin{aligned}
& \log _{e}\left(1-\frac{3 / n}{n}\right) \\
& \underbrace{n}_{-312} \text { the conturt } \\
& x=\frac{-313}{n} \\
& \text { is universel } \\
& \text { (for } n \geq 2 \text {. } \\
& =\frac{-3 / 2}{n}+3 / 2 O\left(\frac{1}{n^{2}}\right) \\
& \log _{e}\left(1-\frac{3 / \pi}{n}\right)+\ldots+\log _{e}\left(1-\frac{31 \pi}{m}\right) \\
& =\frac{-3 / 2}{n}+\ldots-\frac{-3 / 2}{m} \\
& +O\left(\frac{1}{n^{2}}+\frac{1}{(n-1)^{2}} \cdots+\frac{1}{m^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{n^{2}}+\frac{1}{(n-1)^{2}}+\cdots+\frac{1}{m^{2}} \\
\leqslant & \frac{1}{n^{2}}+\frac{1}{(n-1)^{2}}+\cdots+1
\end{aligned}
$$

bauded (as $n \rightarrow \infty$ equels $\frac{\pi^{2}}{6}$)
bound

$$
\frac{1}{n}+\ldots+\frac{1}{m} i
$$

$\leqslant \int_{1 / m-1}^{1 / n} \frac{1}{x} d x$ etc.

$$
\begin{aligned}
& = \\
& \text { Class ends } \\
& =
\end{aligned}
$$

