CPS 536 F
$\operatorname{Jar} 13,2022$
Goal next 1 to 2 classes:
(1) describe current oper problems in Boolean formula size complexity
(2) introduce same sample formula problems that use

- probabilistic method
- spectral methods to count \#trees with
n leaves

Last time! we defined a formula,

$$
s=\neg\left(\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1}\right)\right)
$$

on!
variables! $x_{1, \ldots,} x_{n}$
here $n=2,3, \ldots$

$$
\begin{aligned}
& \text { allowed }\left\{\begin{array}{l}
\text { operations } \\
g \underline{a t e s}
\end{array}\right\}: \square \text { (neg) } \\
& \wedge \text { (AND, conyudion) } \\
& \checkmark \text { (or) }
\end{aligned}
$$

A formula with only $7, \wedge, V$ gates has a "normal form" where we push the 7 to the leaves
de Margin laws:

$$
\begin{aligned}
& \neg(p \wedge q)=(\neg p) \vee(\neg q) \\
& \neg(p \vee q)=(\neg p) \wedge(\neg q) \\
& S=\neg\left(\left(\left(\neg x_{2}\right) \wedge\left(x_{2}\right)\right) \vee\left(f x_{1}\right)\right)
\end{aligned}
$$

\longleftrightarrow tree

So

Hence ariginal fermula/tree is equivelent to

$$
\begin{aligned}
& \lim _{\nu^{k}}^{\wedge} \sum_{x_{1}}^{\wedge}\left(\neg x_{1} \vee x_{2}\right) \wedge x_{1} \\
& \left(7 x_{1}^{7} x_{2}\right)^{x_{1}}
\end{aligned}
$$

Remark:
7 really a function or ane boded variable

$$
x_{1} \cdots \cdots \quad \neg x_{1}
$$

\(\left|\begin{array}{c|c|}x_{1} \& \neg x_{1} \\
\hline F \& T \\

T \& F\end{array}\right|\) or $|$| x_{1} | $\neg x_{1}$ |
| :---: | :---: |
| Θ | 1 |
| 1 | 0 |

offer switch $F \Leftrightarrow 0$

$$
T \leftrightarrow 1
$$

0lemurt: There are 4 function on 1 Baden variable.

Fix finite set, S,
It functras frem $S \rightarrow\{c, 1\}$
is $\quad 2^{|s|} \quad|S|=\operatorname{siz}$ of

$$
\text { also uritto }=\# S
$$

A Boclen furrtion an n variables
(semetines on n-variate Bodecon functiwn) is just a function

$$
\begin{aligned}
& f=f\left(x_{1}, \ldots, x_{n}\right), \\
& \{F, T\}^{n} \rightarrow\left\{F_{1} T\right\} \\
& \{C, 1\}^{n} \rightarrow\{c, 1\}
\end{aligned}
$$

You cor specify any Becker function on n variables by its truth table" eng.

total A functions $2^{\left(2^{n}\right)}=\begin{aligned} & \text { for } n=2 \\ & 2^{4}=16\end{aligned}$

A mare general notion of "an

$$
\text { Called }\left\{\begin{array}{l}
\text { "sequential" } a r \\
\text { 'Straight line" }
\end{array}\right\} \text { program }
$$

Start with $\underbrace{x_{1}, x_{2, \ldots-} x_{n}}_{\text {Variables }}$

$$
\begin{aligned}
& \text { add } \neg x_{1, \ldots}, \neg x_{n} \\
& \text { AND, OR } \\
& y_{1}=x_{i_{1}} O x_{i_{2}} \\
& Y_{i}=\begin{array}{l}
\text { some } \\
\text { literal } \\
\text { or } y_{j} \\
j<i
\end{array}\left\{\begin{array}{l}
\text { AND } \\
\text { OR }
\end{array}\right\}\left(\begin{array}{l}
\text { sine } \\
\text { literal } \\
\text { or } \\
y_{k}, k_{<} j_{1}
\end{array}\right.
\end{aligned}
$$

Formula! a tree, where
varicblesi $x_{1,-1}, x_{n}$ literal! $x_{1, \ldots, x_{n}, \neg x_{1}, \rightarrow x_{2, \ldots,}, x_{n}}$
formula \leftrightarrow tree, interior nodes are gates, each either

outclegree is 1
Circuit ! Scene, but outdegree arbitarry

A practical question before 1970's (before P vs $N P$) was given a task, es.

- add 2 m-bit numbers
-multiph "い "

$$
\begin{aligned}
& \lambda \uparrow \uparrow \uparrow \uparrow \text { cont to } \\
& b_{1} b_{2} \ldots b_{m} b_{1}^{\prime} \ldots b_{m}^{\prime} \quad \text { ? } \\
& \left(b_{1} \ldots b_{m}\right)+\left(b_{1}^{\prime} \ldots b_{m}^{\prime}\right), \\
& \text { (") } \\
& \text { etc. }
\end{aligned}
$$

P vs. NP can be sicted in terms of eircuits and speciffirally whet is the $\left\{\begin{array}{cc}\text { Shartest } & \text { circuit } \\ " & \text { Straight lim progran } \\ \text { min sibe ciscuit }\end{array}\right\}$ to compuke cestain functions?

We will discuss min fermula ribe needed to cowpate cestain functions,

5 minute break:

$$
10!17-10: 22
$$

Pus IVP as a problem in arcuit Complexity
Source:
CPSTC $421 / 501$ textbook by M. Sipser, $[$ Sip $]$, Chapter 9

Take 3 colour on a graph with N vertices (\mathbb{V}^{∞} each $1 \leqslant i<j \leqslant N$ either

$$
\left\{\begin{array}{l}
\text { there is an edge } i-j \\
\text { ther isn't }
\end{array}\right.
$$

A graph wirh N vertices verlices is described by $\quad\binom{v}{z}=n$

Bodken varicbles $x_{12}, x_{13, \ldots,} x_{n-1, n}$

$$
\begin{aligned}
& V_{i j} \bar{T}\left(V_{j}\right) \\
& x_{i j}=F, T
\end{aligned}
$$

Any prop of a graph on N vertices, becames a function on $n=\binom{N}{2}$ Bodecus vasiables
so there is a function:

$$
\begin{aligned}
& 3 \operatorname{coloun}\left(X_{12}, X_{13,}, \ldots, X_{n-1 n}\right) \\
& =\left\{\begin{array}{l}
T \text { if graph described by } X_{i j} \\
\text { has a legal } 3 \text { collowrny } \\
F \text { if not }
\end{array}\right.
\end{aligned}
$$

erg.
3 colon or 10 vertices is really
a furetion

$$
\{F, T\}^{\binom{10}{2}} \rightarrow\{F, T\}
$$

Conj: Consider $L=L(n)$ to be the
smallest size circuit that computes
3 colour or $h=\binom{N}{2}$ (for some $N=1,2, \ldots)$ varichles.

$$
3 \operatorname{colar}\left(\begin{array}{r}
x_{12} \\
1 \\
1
\end{array}\right), N=2, n=\binom{2}{2}=1
$$

$3 \operatorname{cocin}\binom{x_{13} \sum_{0}^{\infty} x_{23}}{0 x_{i 2} 2}, N=3$

$$
\begin{aligned}
& n=\left(\begin{array}{l}
8 \\
3 \\
2
\end{array}\right), \text { vars } \quad X_{12}, x_{23}, X_{13} \\
\cdots \quad & N=1, n=\binom{4}{2}=6 \text { vars } \begin{array}{l}
X_{18}, x_{33}, X_{14}, \\
X_{23}, x_{24}, X_{34}
\end{array}
\end{aligned}
$$

This gives function
Bcolour: $\{f, T\}^{\binom{N}{2}} \rightarrow\{f, T\}$
So

$$
\text { 3cclour : }\{E, T\}^{n} \rightarrow\{F, T\}
$$

for those n of the form $n=\binom{N}{2}$

$$
n=1,3,6,10, \ldots
$$

Conjucture! For any fixed

$$
k=1,2,3, \ldots, \quad L(n) \geq n^{k}
$$

far n sufficiently, large Ire. $L(n)$ grows faster then any polynomial!

It's a bid subtle:
$P=N P$ ifs $L(n)$ grows polynamiclt

We will mention a paper of Rczborw that proves this far CLIqUE functions but for
morotone furmulus.
We'll mention a poper of Histad (Haastad, Hastad) on the shrinkage expanent

This will glee a furction-
Andreev's function - that can comparteb with pady(n) size circuits whose min fermuln size is

Relative
Easy observations:
Thmlifor sufficiently large n, the majority of the $\eta^{\left(2^{n}\right)}$ Bedew functions or n variables require a formula of size $\geq 2^{n} / 3$ to be described.

Throne 2: Any Bodem function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}, \quad f:\{\overline{1},\}^{n} \rightarrow\{\bar{t}, 1\}
$$

Can be descirthed by a "deMargas fermuln"
(i.e. trees with $x_{1}, \ldots, x_{n}, 7 x_{1}, \ldots, 7 x_{n}$ as leaves, and \wedge, v as gates) of sibe $\leq n 2^{n}$.
-
Why is \#hearen 2 true?
Idea: use the truth table of the function.
Thme is a mare difficult calculction.

Thim 2 con be imparved to

$$
\begin{aligned}
& \left(2^{n} n\right) / 2 \ldots \\
= & \ldots \\
= & \\
= &
\end{aligned}
$$

