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Goal next 1 to 2 classes :

(1) describe current open problems

in Boolean formula size complexity
(2) introduce some sample

formula problems that use

- probabilistic method

- spectral methods to

count # trees with

n leaves



Last time !
we defined a formula

,

e. ga

s :-(c- ✗ in ✗a) vex ,
) )

on : §
here

variables ? ✗
\ ,

- - ,
✗
n n°-2,3 ,- -

allowed operations{ gates } ! 7 (neg)
n CAND

, Congleton)

v ( or )

A formula with only 7 , ^ ,V
gates has a " normal form

"

where we push the 7 to the leaves



de Morgen laws !

- ( png)
= tip )v Gq)

7 ( pvq) = ← pl ^ 1^97

s :-( M④^- ☒D) "④±H
←

tree

¥¥¥÷¥:÷÷leaven ⇐ 11¥



①
on

•

Ignf q ⑦ ⑦

⇐ ¥¥¥



⇐
^

-
'

ai- -
' pi /
i

1 i

II. I
/

' T
'

- ,

n - p ⇐) p



③ ^

÷
'

f
i

✗
,

I ×? ✗
z

t
-
-

"

⇐
\

.

gig ,T n

± . ±.

I

¥
.
I .



④ ^

.

1 if 4
TX

, Xz
'
ii
Hence original formula /tree

is equivalent to

My C- ✗intr ×
,

i "I



Remark :

7 really a function
or

one boden variable

✗
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often switch f- to

1-⇐ 1

Remark : There are 4 function on

1 Boden variable
.



Fix finite set
,
S
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functions from S → { 91}
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A Boden cnet.in
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( sometimes an n-variate Boolean
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You can specify any Bab-fwct.in

en n variables by its
"

truth table
"

e.g .
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A more general notion of
'
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is a circuit
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Called
"

sequential
"

§ program{ "straight line"
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Fcrmvk ! a tree
,
where

variables : X
, ,
- i ,Xn

literal ! ✗
, ,
-
- ,Xn ,

7×1 .tt/z--iXn

formula ⇒ tree
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out degree is 1

Circuit ! Same
,
but outdegree arbitrary



A practical question before 1970's

( before P vs NP ) was given

a task
, e.g .
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Pus
.

HP
can be stated in

terms of saircuits and

specifically what is the

shortest circuit

{ n straight line program}
min size circuit

to compute certain functions ?
-

We will discuss mm formula sik

needed to compute certain functions
,



5 minute break !

10 ! 17 - 10:22
t

p vs HP as a problem in circuit

complexity
source :

CP☒c 421/501 textbook by

M . Sipser ,
[ Sip] , Chapter 9

Take 3 COLOUR on a graph with

N vertices ④w④
eiach If i e je N either



{
there is an edge i - j

or}there isn't

A graph with N vertices vertices
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Any prop of a graph on
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,
becomes a function en

n :( F) Bookman variables



so there is a function !

3 COLOUR ( ✗
☒ Xp , - - , ✗n.in )

= { T if graph described by Xij
has

a legal 3. colouring
( f if not

eig ,

3 COLOUR or 10 vertices is really
(E)a fwet.in

{ f. T] → { Fit}

Conj : Consider L=LlM to be the



smallest site circuit that computes
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This
gives

function

(E)
3cover : ( f.Tf → { fit}

So

3 colour :{ F ,Tj → {F. T)
f- those n of the farm n :( ¥)
n : 1,3 , 6,10 , - - -

Écnjuctwe ! For
any
fixed

1<=42,3 , - - , Llnl > nk

fer n sufficiently large
I.e

,

Un) grows faster than any polynomial,



It's a bit subtle :

P=Hp iff
Un) grows

polynomial}

AND ( You can build
poly in) sized

circuits to

compute 3.COLOUR
n

, .my
, a.

=

We will mention a paper of

that proves this

for CLIQUE functions but for
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in the shrinkage exponent

This will give a function -

Andreev 's function - that can

computed with poly Cnl size circuits

whosemrn site is

_÷÷ir⇒ "

Hosni.
k fixed



Relatively
Easy observations i

Think ! For sufficiently large
n
,
the majority of the 2

""

Boolean functions on n variables

require a formula of size

7 243 to be described
.

thn-nIIANYBodemfwd.im#
f :{on}h→{gig ,

f :{Gif:



Can be described by a
"

deMargin formula
"

( i.e. trees with Xi
,
- - ,¥n , 7×4--5/4

as leaves
,
and n

,
v -

as gates )
of site

E
n 2h

.
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Why is tthecnm 2 true ?

Idea ! use the truth table of

the function .

Thml is a more difficult calculation
,



Fhm 2 can be improved to

a-n)µ .
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