$\operatorname{CPSC} 536 f \quad \operatorname{Jan} 11,2022$

- Gaels:
(1) Introduction to formula and circuit complexity,
(2) Intro to some tools all CS theoreticians should learn
- probaboulistic methods
- eigenvalues in graph theory,
algorithm expenders and mixing
- uses of symmetry groups
- etc.
(3) Connections to more mathematical ideas: "relativistic approach", sheaf theory, etc. ;illustrated in graph thy

Circuit \& formula Complexity:

- For decades: 1960's - 1990's generated huge amount of the Cs Thea, work
- Still very exciting
- Still inspires resecoteh, but the fundamental open problems are quite difficult.

Probably: $1 / 3-1 / 2$ cause, will include diversions/intros to "probabliotic method" eigenvalues of Laplacrens, symmetry arguments, etc.

Next part af course!
eigenvalues/vuedors
"spectral analysis" of finite
matrices in graph Laplacions
and adjacerta, matrices
Applications! to study certain qualitative properties of graphs
useful in algorithms.

- expansion ir graphs
- quick miring in Markov chains
weighted directed graph with some important properties

Legistics:

- We'll develop all cancepts from srerateh
- Trypically facus an expermples, theorem statements (not proofs)

Groding!
2-3 humewarl sets homewerk pregdens assigned during class, compited into some doeument

Grados:
$\geqslant 95$ strorg encouregament in CS Theory
? 90 enccurages reseach in CS Thary
$\geqslant 85$ students mother fields whe are
just oterthy in CS Thecery, just sterty in CS Thearry, ≥ 80 doesn't eancourege regeach os thy \& study
fulfillod expectations of a
≤ 79 grad stodent very urlikely

No exams...
Alse, dependily on denard, have some students give prescutations, this can be in lien df last problem set.

After break, well begin on the problem of minimum formula size in $\left\{\begin{array}{l}\text { Boolew formulas } \\ \text { algebraic formulas }\end{array}\right.$

Brock at 10:09-10!14

Rough motivation for Boded formula complexity:

$$
\left(P_{\text {vs }} \mid N P\right) \Leftrightarrow \text { a question about }
$$ building circuits for certain Baden functions

A formula is a very restricted class of circuits. Even studying formulas

- appears very difficult
- inspires a lat of regecch questions
- at present? the best lower bound for formula size is roughly \geq adder n^{3}.
- weill study monotura formulas

Definitions:
Let's consider Boole formulas over \rightarrow (negation)
\wedge (AND)
\vee (OR)

Formula! example

$$
\begin{array}{r}
\neg\left(\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \wedge\left(7 x_{1}\right) \\
\left(\neg\left(\left(x_{1} \operatorname{cr} x_{2}\right) \operatorname{AND}\left(x_{3} \text { or } x_{4}\right)\right)\right) \\
\text { AND } \\
\left(\neg x_{1}\right)
\end{array}
$$

View: $\{F, T\}=\left\{f_{\text {false }}\right.$ true $\}$

$\operatorname{OR} \quad\left\{\right.$| \wedge |
| :--- |
| , 1 |$\}$

formula:

$$
S=\neg\left(\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \wedge\left(7 x_{1}\right)
$$

also equivalent tree

Size of a formula def
\# of occurrences of variables
$=$ \# of leaves in the tree

Each formula S (ar tree) gives a Boolean function.

Here: farmuk size is 5

$$
\begin{aligned}
& \text { and }\left\{\begin{array}{l}
\text { computes } \\
\text { describes }
\end{array}\right\} \text { a function } \\
& f=f\left(x_{1}, x_{2}, x_{2}, x_{4}\right), \text { formally } \\
& f!\{F, T\}^{4} \rightarrow\{F, T\} \\
& \text { OR }\{c, 1\}^{4} \rightarrow\{c, 1\}
\end{aligned}
$$

Notc!

$$
\begin{aligned}
& \neg(\text { negction }):\{f, T\} \rightarrow\{f, T] \\
& \neg F=T \\
& \neg T=F
\end{aligned}
$$

(or $F \leftrightarrow 0, T \leftrightarrow 1$

$$
70=1, \quad 71=0
$$

er

$$
7 x=(-x)
$$

But $\wedge A N D, \quad\{F, T\}^{2} \rightarrow\{F, T\}$

$$
\begin{aligned}
& F \wedge E=F \wedge T=T \cap F=F \\
& T \wedge T=T
\end{aligned}
$$

Given a Bodes furction on n variables, $f=f\left(x_{1}, \ldots, x_{n}\right)$, i.e. $f:\{F, T\}^{n} \rightarrow\{E, T\}$ the $\left\{\begin{array}{l}\text { formula size complexity } \\ \text { minimum formula site }\end{array}\right\}$ of f is the size of the smallest formula $\left\{\begin{array}{c}\text { computing } \\ \text { describing }\end{array}\right\}$ f.Understad: \neg, \sim, v the
gates we allow
$=$
Given n :

- the number of Bode functurs $\cos \quad x_{1},-, x_{r}$ is

Aside! we often think of functions in terms of the Baden hypercube:
\mathbb{B}^{\prime}

formats \mathbb{B} set $\{F, T\}$

$$
\begin{aligned}
& \text { B set }\{F, T\}^{2} \\
& =\{F, \tau\} \times[F, T\} \\
= & \{(F, F),(F, T),(T, \Gamma),(T, T)\}
\end{aligned}
$$

We often view
B^{n} as a graph
vertex set is $\left\{F_{j} T\right\}^{n}$
edges between vertices
of distance one

Size of $\left\{F_{1} T\right\}^{n}=2^{n}$
Size of set of functions

$$
\{F, T\}^{n} \rightarrow\{F, T\}
$$

is $2^{\left(2^{n}\right)}$

2 pounts in M

$$
\Rightarrow \quad 2^{2} \text { Bollen furdior }
$$

(1) $f(f)=f \quad f(T)=f$
"constut fundur' F
(2) $f(E)=f, f(T)=T$
identut,
(3) negation $f(F)=T, f(T)=F$
(4) $f(F)=f(T)=T$
"Conotimit function" T

$$
\begin{aligned}
& \begin{array}{ll}
= & (F, T) \\
n=2 & \left(T_{0}\right) T
\end{array} \\
& \xrightarrow[F]{\int_{x_{2}}} \\
& { }_{x_{1}}^{1} x_{2}
\end{aligned}
$$

4 pants m $\{F, T\}^{2}$
$\Rightarrow 2^{4}$ Boolem finction

$$
a n \quad f=f\left(x_{1}, x_{2}\right)
$$

Next time! function on n-Bedim vars
(1) All functions have size forme complexity $\leq n \cdot 2^{n}$
(2) (Shannon) Most functions have complexity

$$
\geqslant 2^{n} / n^{1.0001}
$$

Class ends

Reom ICSS Ran 246

