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The point of these notes is to state some results regarding the eigenvalues of
graphs and Markov chains, as they apply to expansion and mixing times. We many
not have time to prove them all.

These notes rely on definitions given in class.

1. Examples of Eigenvalues of Regular Graphs

If AG is a d-regular graph, then AG/d is a Markov matrix. This is important in
thinking of examples.

We will discuss the eigenvalues of the following graph:

(1) the cycle of length n;
(2) the cartesian product of k cycles (possibly of different lengths), which is

a 2k-regular “k-dimensional grid graph,” and only a weak expander for k
fixed and number of vertices large;

(3) the Boolean hypercube;
(4) more generally, the cartesian product G1 ×G2 of any two graphs in terms

of the eigenvalues/vectors of G1 and G2;
(5) other products;
(6) Cayley graphs of abelian groups and (some remarks) about non-abelian

groups.

For fixed d, it is known that if AG is any d-regular graph on n vertices, then

λ2 ≥ 2
√
d− 1

(
1− 1/(logd−1 n)2

)
;

the bound of Alon-Boppana bound gives the same with logd−1 n instead of
(logd−1 n)2; the tighter bound was proven independently by Nabil Kahale and me.
The Broder-Shamir bound says that most d-regular graphs on n vertices (con-
structed from d/2 permutations on n vertices) has ρ = maxi>1 |λi| bounded by
2d3/4 + ε for any ε > 0, and one can ultimately improve this to 2

√
d− 1 + ε (this

was proven by me, and is a rather long story). The 2
√
d− 1 is also the L2 norm of

the adjacency operator on the d-regular (infinite) tree, and this is not a coincidence.
The Boolean cube is a good model for various “configuration models,” where

the second eigenvalue is very close to the first, but far enough separated to have
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algorithmic consequences. For example, if G is a bipartite graph on 2N with each
vertex connected to only one other vertex, then the set of all matchings (not perfect
matching, of which there is only one...), where the adjacency matrix is to delete or
add an edge, is simply a walk on the Boolean hypercube of dimension N . Hence
n = 2N is the number of configurations (vertices), this is a d = N regular graph,
and the second eigenvalue is of size d− 2 = N − 2.

2. Expansion and Mixing via Eigenvalues Regular Graphs

Many theorems in algebraic graph theory are simpler for regular graphs; hence
we often make this assumption when needed.

Theorem 2.1. Let G be a d-regular graph, and AG its adjacency matrix, and let

d = λ1(G) ≥ · · · ≥ λn(G).

Let ρ = maxi>1 |λi(G)|. Then for any subsets A,B ⊂ VG of vertices, the number
of edges from A to B, denoted e(A,B), satisfies∣∣e(A,B)− d |A| |B|/n

∣∣ ≤ ρ√ |A|(n− |A|)
n

√
|B|(n− |B|)

n
.

The proof follows easily from the more conceptual formula where we show that

AG =
d

n
E + E ,

where E is the all 1’s matrix, and

E =
∑
i>1

λiviv
T
i ,

where v1, . . . , vn are an orthonormal eigenbasis corresponding to the eigenvalues
λ1, . . . , λn. Hence E takes the orthogonal complement of the constant vector 1 to
itself, and has operator norm ρ on this subspace. The projection of the characteristic
vector of A onto this subspace has norm√

|A|(n− |A|)
n

,

and similarly for B.
Notice that Ak

G is the matrix counting the number of walks on a graph to itself
of length k, and the above theorem implies (since Ak

G has the same eigenvectors,
with eigenvalues λki )

Ak
G =

dk

n
E + Ek,

where the L2-norm of Ek is at most ρk.
We remark that √

|A|(n− |A|)
n

≤
√
|A|,

and the simpler right-hand-side gives up a factor of
√

2 or less when |A| ≤ n/2.
This weaker bound is often called the “Expander Mixing Lemma,” i.e.,∣∣e(A,B)− d |A| |B|/n

∣∣ ≤ ρ√|A| |B|.
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2.1. Why a “Mixing Lemma”? To see why this is called a “mixing lemma,”
we use the above theorem to get a (generally weak) bound on the mixing time
of AG as a Markov chain. The associated Markov matrix to a d-regular graph is
P = AG/d, i.e., the Markov chain that traverses each edge out of a vertex with
probability 1/d. The mixing time of an n× n Markov matrix, P , is usually defined
as the smallest value of t = tmix such that if e1, . . . , en denotes the standard basis
of Rn (interpreted as a stochasitc vector), then

‖P tei − 1/n‖L1 ≤ 1/2.

This implies that1 that for any k ∈ N we have

TotalVar(P ktei,1/n) = (1/2)‖P ktei − 1/n‖L1 ≤ 1/2k+1.

The reason why eigenvalue bounds tend to be weak is that eigenvalue bounds are
better suited to estimate the L2-norm.

If P = AG/d and ρ is as above, we easily see that ei − 1/n has zero projection
to 1, and 1/n is fixed by P . Hence for any t ∈ N,

‖P t(ei − 1/n)‖L2 = ‖P tei − 1/n)‖L2 ≤ (ρ/d)t‖ei − 1/n‖L2 ≤ (ρ/d)t
√

(n− 1)/n

(since ei is the characteristic vector of a set, A, of vertices of size 1); this is likely
a pretty good bound. The problem is that we have ‖v‖L1

≤
√
n‖v‖L2

(which is
optimal when all components of v are of the same absolute value), and so to bound
the mixing time we have to use the the bound

‖P t(ei − 1/n)‖L1 ≤
√
n(ρ/d)t

√
(n− 1)/n = (ρ/d)t

√
n− 1,

which is at most 1/2 when t ≥ (1/2) log(4(n− 1))/ log(ρ/d), which tends to be an
overestimate of the true mixing time.

Similarly, for any real ε > 0 one defines the ε-mixing time to be the smallest
t = tmix(ε) such that for all i ∈ [n]

Total Variation(P tei,1/n) = (1/2)‖P tei − 1/n‖L1 ≤ ε,
and we can get a similar estimate of tmix(ε) for any ε > 0.

3. Alon-Boppana Bound and Improvements

We will prove that if G is a d-regular graph of diameter k (largest distance
between two vertices)

λ2(AG) ≥ 2
√
d− 1

(
1− f(k)

)
,

where f(k)→ 0 as k →∞; specifically one can prove that f(k) ≤ C/k2 where C is
an absolute constant (independently discovered by Nabil Kahale and me), although

1 Here are some details: for a general Markov matrix, P , of an irreducible Markov chain with
stationary distribution π, then set d(t) = supi ‖eiP t − π‖TV, where TV is “total variation, which

equals exactly 1/2 the L1 distance, and set d(t) = supi,j ‖eiP t − ejP
t‖TV. Then a coupling

argument shows that d(s+ t) ≤ d(s)d(t); see Markov Chains and Mixing Times, by Levin, Peres,

and Wilmer, Section 4.4. (Our definition of d and d considers only the distributions ei, ej rather
than arbitrary distributions, but this does not alter the definitions given in the above textbook.)

One also sees that d(t) ≤ d(t) ≤ 2d(t). Formally one defines the ε-mixing time, for any real

ε > 0, denoted tmix(ε), as the smallest t such that d(t) ≤ ε; one typically defines tmix to be
tmix(1/4). In applications one is typically interested in tmix(ε) for some ε; however, the above

inequalities imply that d(s + t) ≤ 2d(s)d(t) ≤ 2d(s)d(t), and hence d(kt) ≤ 2k−1d(t), and hence
‖eiPkt − 1/n‖L1 ≤ 1/2k+1.
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it is easier to prove f(k) ≤ C/k. Since the diameter of G is at least logd−1 n − c,
this result implies the usual Alon-Boppana bound

λ2 ≥ 2
√
d− 1

(
1− C/ logd−1 n

)
.

We develop a number of important ideas regarding the spectral analysis of
graphs.

3.1. Max-Min Theorem. We will use the following standard theorem in linear
algebra. Recall that if A is a real n×n matrix, then we define the Rayleigh quotient
of a vector v ∈ Rn at A to be

RA(v) =
(Av) · v
v · v

.

Assuming that A is symmetric, there is an orthonormal eigenbasis v1, . . . , vn for A,
i.e., Avi = λivi for real λi, and we easily check that if v = c1v1 + · · ·+ cnvn, then

RA(v) =
c21λ1 + · · ·+ c2nλn
c21 + · · ·+ c2n

= λ1
c21

c21 + · · ·+ c2n
+ · · ·+ λn

c2n
c21 + · · ·+ c2n

,

which is a “convex linear combination” of λ1, . . . , λn. Hence, for example, if λ1 is
the largest eigenvalue of A, then

RA(v) ≤ λ1
c21

c21 + · · ·+ c2n
+ · · ·+ λ1

c2n
c21 + · · ·+ c2n

= λ1,

and similarly RA(v) ≥ λn if λn is the smallest eigenvalue of A.

Theorem 3.1. Let A be a real n× n symmetric matrix, whose eigenvalues are be
ordered

λ1 ≥ λ2 ≥ · · · ≥ λn.
Let W ⊂ Rn be a subspace of dimension r. Then there exists a nonzero w ∈ W
such that

RA(w) ≤ λr.

Proof. Let v1, . . . , vn be an orthonormal eigenbasis for A, i.e., with Avi = λvi. We
claim that there is a nonzero w ∈ W that is orthogonal to v1, . . . , vr−1: indeed, if
w1, . . . , wr is a basis for W then w = α1w1 + · · ·+αrwr is orthogonal to some vi iff

α1(w1 · vi) + · · ·+ αr(wr · vi) = 0.

Hence if we impose this condition for i = 1, . . . , r − 1, we get r − 1 (homogeneous)
linear equations for the r variables αi, which therefore has a nontrivial solution,
and for any such nontrivial solution w = α1w1 + · · ·+ αrwr is a nonzero vector in
W orthogonal to v1, . . . , vi−1. It follows that such a w can be written as

w = c1v1 + · · ·+ cnvn,

where c1 = . . . = cr = 0. Since c1 = . . . = cr−1 = 0 in the equation for w above,
we have

RA(w) = λr
c2r

c21 + · · ·+ c2n
+ · · ·+ λn

c2n
c21 + · · ·+ c2n

≤ λr
c2r

c21 + · · ·+ c2n
+ · · ·+ λr

c2n
c21 + · · ·+ c2n

= λr.

�
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The above theorem is called the max-min theorem because it can be written

min
w∈W\{0}

RA(w) ≤ λr

for any W of dimension r, and we have equality when W = Span(v1, . . . , vr), since
if w = c1v1 + · · ·+ crvr, then

RA(w) = λ1
c21

c21 + · · ·+ c2r
+ · · ·+ λr

c2r
c21 + · · ·+ c2r

≥ λr
c21

c21 + · · ·+ c2r
+ · · ·+ λr

c2r
c21 + · · ·+ c2r

= λr.

Hence we have

max
dim(W )=r

min
w∈W\{0}

RA(w) = λr.

Similarly, there is a min-max principle by applying the max-min principle to
−A, i.e.,

min
dim(W )=r

max
w∈W\{0}

RA(w) = λn−r.

One often uses the following corollary of Theorem 3.1.

Corollary 3.2. Let A be a real n× n symmetric matrix, whose eigenvalues are be
ordered

λ1 ≥ λ2 ≥ · · · ≥ λn.

Let u1, . . . , ur be non-zero vectors such that for all i 6= j we have ui · uj = 0 and
(Aui) · uj = 0. Then

λr ≥ min
(
RA(u1), . . . ,RA(ur)

)
.

Proof. We may scale each ui so that ui · ui = 1. Let W be the span of u1, . . . , ur.
Then for any w ∈W with w 6= 0 we have w = c1u1 + · · ·+ crur with real c1, . . . , cr
that are not all zero; hence

(Aw) · w =
∑
i,j

cicj(Aui) · uj =
∑
i

c2i (Aui) · ui =
∑
i

RA(ui)

(since ui · ui = 1), and

w · w =
∑
i

c2iui · ui =
∑
i

c2i .

Hence

RA(w) =
∑
i

c2i
c21 + · · ·+ c2r

RA(ui) ≥ min
(
RA(u1), . . . ,RA(ur)

)
.

�
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3.2. Covering and Etale Maps of Digraphs.

Definition 3.3. Let G = (VG, E
dir
G , hG, tG) and H = (VH , E

dir
H , hH , tH) be directed

graphs. By a morphism (often called a graph homomorphism in the literature) from
H to G we mean a pair π = (πV , πE) with πV : VH → VG, and πE : Edir

H → Edir
G that

respect the heads and tails maps in the sense that πEhH = hGπE and πEtH = tGπE ;
in this case we write π : H → G. We say that π is a covering map (respectively, an
étale map) if for each v ∈ VH , both (1) the map πE restricted to

t−1H (v)→ t−1G (πV v)

(so t−1H (v) = {e ∈ Edir
H | tHe = v}) is a bijection (respectively, an injection), and

similarly (2) so is the restriction of πE as a map h−1H (v)→ h−1G (πV v).

In the literature, an étale map is sometimes alternatively called a closed immer-
sion.

Example 3.4. If G′ is a subgraph of G, then the inclusion G′ → G is étale.

Example 3.5. If m,n ∈ N, then ther is a covering map from the cycle of length n
to that of length m iff n is divisible by m.

The following proposition is easy to prove and gives some intuition for covering
maps. (See examples given in class.)

Theorem 3.6. Let G be strongly connected directed graph, and π : H → G a cov-
ering map. Then if for some v ∈ VG we have that π−1V (v) is of size k ∈ N, then for

any v ∈ VG, π−1V (v) is of size k, and for any e ∈ Edir
G , π−1E (e) is of size k. In this

case we say that π is a k-to-1 (covering) map.

Homework: the composition of two covering maps is a covering map; the com-
position of two étale maps is an étale map.

Homework: if π : H → G is an étale map, then there is a graph H ′ such that H
is a subgraph of H ′, there is a covering map π′ : H ′ → G, such that the inclusion
of H to H ′ followed by the covering map H → G equals the map π : H → G.

3.3. The Comparison Lemma for Digraphs. Recall that a walk of length k in
a digraph, G, is an alternating sequences of vertices and directed edges

(v0, e1, v1, . . . , vk−1, ek, vk)

such that for all i = 1, . . . , k, tGei = vi−1 and hGei = vi; such a walk is from v0 to
vk or begins in v0 and ends in vk. For any v, v′ ∈ VG we let walks≤k(v, v′) denote
the number of walks from v to v′ of length at most k.

We recall that the Perron-Frobenius theorem implies that if G is a strongly
connected digraph (i.e., for any v, v′ ∈ VG, there is a walk from v to v′), then its
adjacency matrix, AG has a positive, real, eigenvalue λ1 that is as large in absolute
value as any other eigenvalue; we also call λ1 the Perron-Frobenius eigenvalue of G
and denote it by λPF; furthermore, for any v, v′ ∈ VG,

lim
k→∞

(
walks≤k(v, v′)

)1/k
= λPF(G).

To prove this theorem it is helpful to know the path (or walk) lifting lemma.
Consider any graph morphism π : → H → G and a walk in H

w = (v′0, e
′
1, . . . , e

′
k, v
′
k).
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Then we define π(w) to be the sequence

π(w) = (πV v
′
0, πEe

′
1, . . . , πEe

′
k, πV v

′
k),

which we easily verify is a walk in G.

Theorem 3.7. Let π : H → G be a covering map (respectively, an étale map). Let

w = (v0, e1, v1, . . . , vk−1, ek, vk)

be a walk in G, and let v′0 ∈ VH with π(v′0) = v0. Then there exists a unique
(respectively at most one) walk

w′ = (v′0, e
′
1, v
′
1, . . . , v

′
k−1, e

′
k, v
′
k)

such that π(w′) = w.

Homework: Prove this theorem, using induction on k.

Theorem 3.8. Let H,G be graphs such that there is an étale morphism H → G.
Then λPF(H) ≤ λPF(G). Furthermore equality holds when H is a covering graph.

Proof. Fix any two vertices v, v′ ∈ VH . For every walk of length k from v to v′

w = (v0, e1, v1, . . . , vk−1, e
k, vk),

we easily check that there is a corresponding walk

π(w) =
(
πV (v0), πE(e1), . . . , πE(ek−1), πV (vk)

)
.

By the path lifting lemma, the map π from walks of length at most k from v to v′

is an injection of walks from π(v) to π(v′). Hence

walksH≤k(v, v′) ≤ walksG≤k
(
π(v), π(v′)

)
.

Now we take the 1/k-th power of both sides and take limits. �

3.4. Covering and Etale Maps of Gaphs. Most all of the above notions for
digraphs such as covering maps, étale maps, the path lifting lemma, etc., also
hold for graphs in the following sense: namely, if G = (VG, E

dir
G , hG, tG, ιG) and

H = (VH , E
dir
H , hH , tH , ιH) are graphs, then a morphism of graphs (or graph homo-

morphism π : H → G is any morphism π = (πV , πE) from the underlying directed
graph of H, (VH , E

dir
H , hH , tH), to that of G, (VG, E

dir
G , hG, tG) which, in addition,

respects the edge pairings ιH and ιH in the sense that πιH = ιGπ. We then say
that π is a covering map or étale map if the underlying map of directed graphs is.
A walk in a graph, G, is just a walk in the underlying directed graph.

Hence any theorem above such as the path lifting lemma or the Perron-Frobenius
eigenvalue comparison theorem, therefore holds for graphs just as it holds for di-
graphs.

3.5. The Universal Cover of a Graph. If we fix a graph, G, there is a “largest”
connected graph H such that π : H → G is a covering map, in the sense that
for any covering map π′ : H ′ → G and any vertices v ∈ VH and v′ ∈ VH′ with
π(v) = π′(v′), there is a unique covering map η : H → H ′ such that η(v) = v′. In
this sense, π : H → G is a universal cover.

In fact, H is a tree (therefore, generally infinite). If G is d-regular, then this tree
is the (unique, infinite) d-regular tree, Td.
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Example 3.9. The universal cover of a cycle of length n is the “infinite path,”
whose vertex set is the integers, Z, and where x, y ∈ Z are adjacent (with one edge
from x to y) iff y = x± 1.

Here is one way to build the universal cover π : T → G of a graph, G. By a
non-backtracking walk in G, we mean a walk

w = (v0, e1, v1, . . . , vk−1, ek, vk)

such that for all i = 1, . . . , k − 1, ιei+1 6= ei. We let the vertices of T be the set
of non-backtracking walks; we declare the walk of length k above to be adjacent to
the walk of length k − 1

(v0, e1, v1, . . . , vk−2, ek−1, vk − 1),

provided that k ≥ 1, and—for any k—to any non-backtracking walk that extends
w by one vertex:

(v0, e1, v1, . . . , vk−1, ek, vk, e
′, v′)

with ιe′ 6= ek. We define the map VT → VG to be the map taking the non-
backtracking walk

w = (v0, e1, v1, . . . , vk−1, ek, vk)

to the vertex vk. We extend this to a covering map in the natural way; for example
we define the map Edir

T → Edir
G by mapping the edge from

(v0, e1, v1, . . . , vk−1, ek, vk)

to the walk
(v0, e1, v1, . . . , vk−1, ek, vk, ek+1, vk+1)

to be the edge ek+1.

3.6. The Alon-Boppana Theorem and Stronger Results.

Lemma 3.10. Let Td,` be the d-regular infinite tree, where we pick a vertex, v, in
this tree and take the induced subgraph on all vertices of distance ` to v; we call v
the root of Td,`. Then for fixed d there exist C1, C2 > 0 such that for all `,

2
√
d− 1

(
1− C1/`

2
)
≤ λPF(Td,`) ≤ 2

√
d− 1

(
1− C1/`

2
)
.

To prove this lemma we make a detailed calculation of the Perron-Frobenius
eigenvalue by building the appropriate eigenfunction. Namely, we look for a func-
tion u : Td → R that is everywhere positive, and such that u(w) depends only on
the distance from w to the root of Td,`. If we content ourselves with the weaker
bound, namely

2
√
d− 1

(
1− C1/`

)
≤ λPF(Td,`)

as in the original Alon-Boppana theorem, we take u(w) to be (d− 1)−k/2, where k
is the distance from w to the root. In this case we easily see that

R(u) = 2
√
d− 1

(
1−O(1)/`

)
.

It follows that
R(u) ≤ λPF(Td,`).
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