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You may work on homework in groups, but you must write up your own
solutions individually and must acknowledge with whom you worked.
You must also acknowledge any sources you have used beyond the textbooks and
other course references. You must use the notation we use in class and/or the
course references.

(1) In this exercise, logarithms are base e. Explain why the fact that f(x) =
log(x) is monotone gives

log(1) + · · ·+ log(n− 1) ≤
∫ n

t=1

log(t) dt ≤ log(2) + · · ·+ log(n)

Use this to show (n/e)n ≤ n! ≤ (n/e)nn.

(2) In this exercise, logarithms are base e. Assume that f : R → R is twice
continuously differentiable.
(a) Show for any x0 ∈ R, the function

F (h) = −2hf(x0) +

∫ t=x0+h

t=x0−h
f(t) dt

satisfies F (0) = F ′(0) = F ′′(0) = 0 and F ′′′(h) = f ′′(x0−h)+f ′′(x0 +
h).

(b) Use Taylor’s theorem to conclude the “midpoint rule,”∫ t=x0+h

t=x0−h
f(t) dt = 2hf(x0) + (1/3)h2f ′′(ξ)

for some ξ ∈ [x0 − h, x0 + h].
(c) Estimate ∫ t=n+(1/2)

t=1/2

log(t) dt

using the midpoint rule to show that for some constants c1, c2 > 0 we
have

c1(n/e)n
√
n ≤ n! ≤ c2(n/e)n

√
n.
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(d) From Taylor’s theorem we have |x| ≤ 1/2 we have log(1 + x) = x +
O(x2). Use this to show that for any constant C, the series

g(n) =

n∏
m=1

(1 + C/m2) = (1 + C)(1 + C/4)(1 + C/9) . . . (1 + C/n2)

has a finite limit, and, similarly,

h(n) =

n∏
m≥C+1

(1− C/m2)

has a finite limit.
(e) Show that if f(n) = n!/(n1/2(n/e)n), then f(n + 1)/f(n) = 1 +

O(1/n2).
(f) Conclude that for some constant c > 0 we have n! ∼ c

√
n(n/e)n, i.e.,

lim
n→∞

n!

c
√
n(n/e)n

= 1

(3) The Central Limit Theorem (typically proven using Fourier analysis) im-
plies that for any real a < b, if X1, . . . , Xn are n independent random
variables, each set to 0, 1 with probability 1/2 then the probability, then∫ b

a

1√
2π
e−x

2/2 dx

equals the limit as n→∞ of that probability that

a ≤ X1 + · · ·+Xn − nµ
σ
√
n

≤ b

where µ = 1/2 (i.e., the average value of each Xi) and σ = 1/2 (i.e., the
variance of each Xi, i.e., the square root of the expected value of (Xi −
1/2)2). Taking a < 0 < b and both a, b near 0, show that the previous

exercise implies that n! ∼ c
√
n(n/e)n where c =

√
2π.

(4) Consider the number, C = C(s, n) of circuits of size s in Boolean variables
x1, . . . , xn over the gates ∨,∧,¬. In other words, we can wiew a circuit as
a “straight-line program,” with y1, . . . , ys where yi = xi for i ≤ n, and for
i ≥ n+ 1 there are j, k < i such that either (1) yi = ¬yj , (2) yi = yj ∨ yk,

(3) yi = yj ∧yk. Since for i ≥ n+1 there are i−1 choices for (1), and
(
i−1
2

)
for (2) and (3), we conclude that C(i, n) ≤ (i2 − 1)C(i− 1, n).
(a) Using the simpler estimate C(i, n) ≤ i2C(i − 1, n) we can conclude

that
C(s, n) ≤

(
(n+ 1)(n+ 2) · · · s

)2
.

Use this to show that for large n, most Boolean functions on n-variables
require circuits of size c(2n/n) for some constant c.

(b) If we use the cruder but simpler bound C(i, n) ≤ s2C(i − 1, n) for
i ≤ s, we get

C(s, n) ≤ (s2)s.

If we use this cruder bound to show that most Boolean functions on
n-variables require circuits of size c′(2n/n) for some constant c′, do we
get the same constant c′ as c in the previous item? Explain.
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(5) Let T (n) be the number of binary trees on n. Setting T (1) = 1 we explained
why

T (n) ≤ T (1)T (n− 1) + T (2)T (n− 2) + · · ·+ T (n− 1)T (1).

(a) Does this inequality still hold for the number of arbitrary trees on n
leaves?

(b) Find a formula for the sequence T defined by T (1) = 1 and for n ≥ 2,

T (n) = T (1)T (n− 1) + T (2)T (n− 2) + · · ·+ T (n)T (1).

Do this by setting

G(z) =
∑
n=1

znT (n)

as a formal power series G(z) that satisfies (G(z))2 = G(z) − z, and
hence G2 −G+ z = 0 as formal power series.

(i) Argue that T (n) ≤ cn for some c > 0. [Hint: you can argue that
T (n) equals the number of sequences of 2n of matching left and
right parenthesis, and hence T (n) ≤ 22n].

(ii) Use this to argue that G(z) is a convergent series for |z| suffi-
ciently small, and hence for all sufficiently small |z|,

G(z) =
1±
√

1− 4z

2
.

(iii) Expand (1 − 4z)1/2 as a power series near z = 0 (via Taylor’s
theorem) to find a simple formula for T (n). [You are implicitly
using the theorem that if G1(z) and G2(z) are formally power
series that both converge for |z| sufficiently small, then G1, G2

are the same power series iff G1(z) = G2(z) for all |z| sufficiently
small. You can assume this.]

(6) Consider Andreev’s function on parameters N, ` given by (1) identifying
functions f : {0, 1}N → {0, 1} with an 2N set of Boolean variables (arranged
by the 2N truth table values of f in some reasonable way), (2) letting
z1, . . . , z` be Boolean variables of N -bits each, and (3) setting

AN,`(f, z
1, . . . , z`) = f(z1 ⊕ . . .⊕ z`).

Hence AN,` is a function of 2N + N` variables. For these questions, for
simplicity let N be a power of 2, set n/2 = 2N = N` so that n = 2N+1

and ` = n/(2N) = 2N−log2N are integers. (And AN,` has n/2 variables
describing f , and n/2 variables devoted to the zi’s.

In more detail, assume that we identifiy functions f : {0, 1}N → {0, 1}
with Boolean variables x0, . . . , x2N−1 where xi is the value of f(baseTwo(i))
where baseTwo(i) is the N -bit base two representation of i viewed as an
element of {0, 1}N .
(a) Show that AN,` above can be computed by a formula of size O(n3).
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(b) In the N` array of variables that z1, . . . , z`, the probability that a
random choice of m variables entirely misses the i-th -component of
z1, . . . , z` for a fixed i ∈ [N ] is bounded by(

N`− `
m

)/ (
N`

m

)
,

(c) Explain why if we randomly restrict all but m of the n/2 = N` vari-
ables amoung the z1, . . . , z` to {0, 1}, the probability that there exists
a j ∈ {1, . . . , N} such that all of the j-th components of z1, . . . , z`

have been restricted is at most

(1) N

(
N`− `
m

)/ (
N`

m

)
.

(d) Show that for any three positive integers p ≤ q ≤ r,

(r/q)p ≤
(
r

p

)/ (
q

p

)
≤
(
(r − p+ 1)/(q − p+ 1)

)p
.

(e) Show that from some constant c, if we take m = c(log n)2 then the
expression in (1) is less than 1/2, and give an explicit c. [Hint: one
way to do this is to bound the ratio of binomial coefficients from above
using the previous part.]

(f) Say that we randomly restrict all but m = c(log n)2 of the variables
in z1, . . . , z` to {0, 1}, and pick a particular choice of the N variables
representing f , that a size L formula for AN,` must be of size at least
2N/C log2(N) for some constant C.

(g) Say that we can prove that any formula of size L on n Boolean vari-
ables shrinks to size at most L(m/n)γ when we randomly choose all
but m of the formula’s variables and restrict their values to 0, 1 as in
Subbotovskaya’s result (of γ = 3/2). Show that Andreev’s AN,` with
parameters as above requires formula size at least c1n

1+γ/(log n)c2 for
constants c1, c2 and n sufficiently large; give a value for c2.

(7) Consider the following variant of Subbotovskaya’s method: we take a for-
mula of size L in n variables, randomly (uniformly) choose n−m variables
and restrict their values to be 0, 1 in any way (rather than each being in-
dependently set to 0, 1, each value with probability 1/2), such that we can
show L shrinks to size CL(m/n)γ for some constants C, γ. Does this change
our conclusions regarding the parity function and Andreev’s function?

(8) An alternating AND/OR formula of depth d we mean a De Morgan formula
that is a complete binary tree of depth d, with d ≥ 2 a positive even integer,
such that the root has an AND gate, its two children have OR gates, and
the AND and OR and or gates keeps alternating on each level (i.e., if a gate
is of distance d′ < d to the root, then it is an AND gate if d′ is even, and
an OR gate if d′ is odd). For example, an alternating AND/OR formula of
depth 4 is a formula of the form:

(p0 ∨ p1) ∧ (p2 ∨ p3),
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where for i = 1, . . . , 4,

pi = (z4i ∨ z4i+1) ∧ (z4i+2 ∨ z4i+3),

and z0, . . . , z15 are literals. Show that any function computed by De Morgan
formula of depth D can also be computed by an alternating AND/OR
fromula of depth at most 2D.

(9) Recall that NAND is the Boolean function defined as NAND(x1, x2) =
¬(x1 ∧ x2). Show that any fucntion computed by a De Morgan formula of
depth d can be computed by a NAND formula of depth at most 2d, i.e., a
tree where only NAND gates are allowed (i.e., on the interior nodes) with
literals on the leaves.

(10) (a) Show that any Boolean function {0, 1}n → {0, 1} can be expressed by
a formula of size 2n+1−2 1 [Hint: for n = 1 this is clear. Use induction,
noting that a function f = f(x1, . . . , xn) can be written as x1 and g
or ¬x1 and h, where g, h are functions of x2, . . . , xn.]

(b) Show that the above strategy carries over to monotone Boolean func-
tions and monotone Boolean formulas; i.e., show that any monotone
Boolean function {0, 1}n → {0, 1} can be expressed by a monotone
formula (i.e., where the leaves are the variables x1, . . . , xn and we do
not allow the negated variables ¬x1, . . . ,¬xn) of size at most 2n−1.

(11) Does Spira’s lemma hold — in some modified form — for monotone Boolean
functions and monotone Boolean formulas? Explain.

(12) In class we showed that for even n, the number of monotone Boolean func-
tions {0, 1}n → {0, 1} is at least 2r where r =

(
n
n/2

)
(a similar bound holds

for n odd, with n/2 rounded up or down). Use this to show that for large
n, most monotone Boolean funcitons are not expressed by formulas of size
c2n/(n1/2 log n) for some constant c > 0. [Hint: you can use the proof of
the analogous result for general Boolean functions.]

(13) Show that there is no 4×4 matrix that satisfies the condition of a “Valiant
gadget” where “permanent” is replaced with “determinant.” In other
words, show that there is no 4 × 4 matrix, X, that satisfies the follow-
ing conditions: (i) detX = 0, (ii) detX(1; 1) = 0, (iii) detX(4; 4) = 0, (iii)
detX(1, 4; 1, 4) = 0, and (iii) detX(1; 4) = detX(4; 1) is nonzero. (where
we use X(A;B) to denote X with the rows of A and columns of B removed).
Show the same with 4 everywhere replaced by any integer greater than 4.
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1 This improvement to the stated bound in class was pointed out in 2022 by Victor Wang.


