
DRAFT: THE COOK-LEVIN THEOREM AND HOW TO SOLVE

(AND NOT SOLVE) P VERSUS NP, AND WHAT COMES

AFTER CPSC 421/501

JOEL FRIEDMAN

Contents

1. Overview 2
2. The Setup of the Cook-Levin Theorem as a Theorem on Local Behaviour 3
3. Verifiers, NP, and Statement of the Cook-Levin Theorem 3
4. The Proof of the Cook-Levin Theorem 4
5. UNDER CONSTRUCTION: Continuations of CPSC 421/501 At UBC 6
6. UNDER CONSTRUCTION: History: A Few Recent Approaches to P

Versus NP as of 2021 6
6.1. The Mulmuley-Sohoni Approach 7
6.2. Cohomology Theories for Boolean Functions 8
6.3. Both Roads May Lead to SGA4.1 9
6.4. Approaches for the Near Future 9
7. Majority Functions 9
8. Basic Results on Formula/Circuit Size/Depth 9
9. Tree Symmetries 9
10. UNDER CONSTRUCTION: EXERCISES 10
References 10

Copyright: Copyright Joel Friedman 2022. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 536F: use this material
at your own risk. . .

The point of this article is to identify some problems that can be viewed as
the “long-term goals” in algorithms and complexity theory (which typically fo-
cuses on “lower bounds” on the resources required by algorithms that solve cer-
tain problems). In doing so, we wish to explain the connection to topics stud-
ied in CPCS 421/501, Fall 2021. In particular, we introduct some aspects of the
Mulmuley-Sohoni approach to Permanent Versus Determinant and our simplifica-
tion an variants of their approach that will motivate part of the course material
in CPSC 536F. This includes the classical problems of circuit/formula size/depth

Date: Wednesday 8th December, 2021, at 11:28(get rid of time in final version).
Research supported in part by an NSERC grant.

1

2 JOEL FRIEDMAN

required to compute certain functions, some of which has complete analogs in the
Boolean and algebraic settings.

At present it is unclear how much progress has been made on these “long-term
goals,” but there are certainly a lot of interesting ideas out there that are worth
understanding and pursuing.

As always, please let me know if there corrections needed. And, needless to say,
the notes here are based on my recollections and particular experiences, etc.

1. Overview

The these notes have a few main goals:

(1) to conceptually simplify the proof of the Cook-Levin Theorem in [Sip],
Chapter 7, and to make some remarks about the approaches to solving P
versus NP in Chapter 9 there; and

(2) to indicate what topics are typically studied in a second course in com-
plexity theory; at any point in time this depends on current approaches
to solving questions like P versus NP (and many presumably much easier
questions).

The proof of the Cook-Levin Theorem was one of the surprises of computation
theory at the time; it tends to be taken for granted these days as a starting motiva-
tion for studying the problem P versus NP. Using the notation for Turing machine
configurations of [Sip], Chapter 3, the Cook-Levin Theorem shows the remarkable
power of grid of squares—each connected to only a few of its neighbours—to create
a coherent global computation1.

Unfortunately, the typical proof of the Cook-Levin theorem tends to be buried
underneath a lot of Boolean algebra, which obscures the very elegant and funda-
mental idea behind the proof. The main point of these notes is to conceptually
simplify the proof.

[There is a much longer story here: many classical differential equations2 and
differential operators3 have a similar way of having local structure organize a global
structure. Also there is a lot of work in theoretical physics and probability (some
called percolation theory, Brownian motion, stochastic PDE’s, etc.)—that simi-
larly studies the extent to which local phenomenon can have interesting long-range
effects, and connect to other fields.]

It is also interesting—historically—to see how the “iron curtain” of the “cold
war” that developed in the mid 1940’s to roughly the 1990’s (?) created a system
whereby “the East” and “the West” were not sharing information, which lead to
independent research developments that mirrored each other, although sometimes

1A 2-dimensional in space (and 1-dimensional in time) version of this idea was popularized

as a “game of life,” attributed to John Horton Conway (perhaps others?), around the same time
as the works of Cook and Levin. However, the works of Cook and Levin concern a single-tape
Turing machine, which is 1-dimensional in space, and hence more difficult to work with than a

two or higher dimensional version; the version of Conway (et al.?) can be made more suggestive
of biological creatures; likely a three (or larger) space dimension version (coupled with some form

of virtual reality tech) could be even more compelling.
2e.g., ODE’s, the classical heat equation, etc.; things are a bit different if morally fractional

derivatives are involved, such as the classical wave equation utt = ∆u in odd space dimensions.
3local operators, not, say, pseudo differential operators, invented to study oscillatory integrals,

create a reasonable foundation for quantum mechanics, etc.

P VERSUS NP 3

separated in time by years if not decades. We make some brief remarks that hope-
fully are fair to everyone involved and will also amuse the reader (one can always
hope. . .).

2. The Setup of the Cook-Levin Theorem as a Theorem on Local
Behaviour

Consider the style of configuration representation in Figure 3.4 of [Sip], which
represents this Turing machine configuration as 1011q70111, which represents the
configuation that is (1) in state q7, (2) has the tape head over cell number 5, and
(3) has a single tape with contents 10110111 followed by infinitely many “blank”
cells.

More genearlly one is representing a Turing machineM = (Q,Σ,Γ, δ, q0, qacc, qrej)
configuration as a string over an alphabet Σconfig = Q ∪ Γ, assuming these sets are
disjoint4.

The remarkable fact about viewing a configuration in this way is that we easily
check that the definition of how a Turing machine works implies that for any t =
0, 1, . . . , if at step t and t+ 1 we are respectively in configurations

σ1σ2 . . . , σ′1σ
′
2 . . . ,

then σ′k can be expressed solely as a function of σk−1, σk, σk+1. Hence for any
fixed Turing machine, M , its behaviour can be described by (1) its input, which
determines its configuration in step 0, and (2) a transition rule

(1) σ′k = transM (σk−1, σk, σk+1),

applied to the k-th cell, σ′k, at time t+ 1, to obtain the result of a single step of the
machine from the time t from cells k − 1, k, k + 1, with a fixed function

transM : Σ3
config → Σconfig.

If we are interested in the configuration at the end of and step T , it suffices to
observe cells 1 through T + 1 in steps t = 0, 1, . . . , T (since cells T + 2, T + 3, . . . are
necessarily blank; see Figure 7.38, which delimits adds some extra # characters for
clarity with T = nk, and n the length of the input).

3. Verifiers, NP, and Statement of the Cook-Levin Theorem

In class we reviewed the language SAT, and the classes P (of languages that
can be recognized by a Turing machine in polynomial time), and NP (of languages
verifiable in polynomial time).

NP is traditionally defined as the class of languages, L over some alphabet, that
can be decided by a non-deterministic Turing machines runs in polynomial time; a
more modern—and perhaps more elegant—way to define this in terms of verifiers.
Let us recall roughly this means in the context of NP.

Let p : Z≥0 → N be any function (of course, we think of p as a polynomial when
thinking of NP, the class of languages verifiable in polynomial time). We say that
a languages L over an alphabet Σ can be verified within time p(n) if there exists a

4 This runs into trouble in, say, standardized Turing machines, where by convention Q and Γ

are each taken to be the first so many integers, and so Q and Γ must intersect. When Q and Γ

do intersect, one takes Σconfig = Q q Γ, the disjoint union, a limit that is unique up to unique

isomorphism, but we can ignore this point in this article.

4 JOEL FRIEDMAN

Turing machine (called a verifer of L) M such that for all w ∈ Σ∗, setting n = |w|
(the length of w), we have

(1) if w ∈ L, then there exists a string g = (g1, . . . , gp(n)−n) such that on input
wg, M accepts wg in time at most p(n), and

(2) if w /∈ L, then there exists no string g = (g1, . . . , gp(n)−n) such that on
input wg, M accepts wg in time at most p(n).

The reason that we limit the “guess” g to p(n) − n symbols is that if we run the
algorithm for p(n) steps in total, the computation will only depend on the first p(n)
symbols written on the tape; note that one can let p(n) < n, in which case we can
ignore the guess, and the Turing machine doesn’t even need to look at the input
symbols.

We then used NP to denote the class5 of languages that can be verified in poly-
nomial time, i.e., time O(nk) for some k ∈ N. This is the approach taken in
[Sip], Definition 7.19; then [Sip] defines non-deterministc Turing machines, and
proves in Theorem 7.20 that a language is in NP iff it can be decided by some
non-deterministic Turing machine in polynomial time. See also Exercise ?? for a
standard illustration of algorithms that can take advantage repeated calls to a SAT
oracle.

Theorem 3.1 (Cook-Levin). If SAT ∈ P , then P=NP. More precisely, given an
oracle for SAT over the alphabet

ΣSAT = {AND,OR,NOT, x, 0, 1 . . . , 9, (,)}
and any language L ∈ NP , there is an algorithm, Moracle SAT or MSAT, i.e., an
oracle Turing machine, that on any input of length n can verify whether or not
w ∈ L via (1) some preprocessing that requires at most time polynomial in n, and
then (2) makes a single oracle call to SAT. Similarly with 3SAT replacing SAT.

Even more precisely, one can state that the preprocessing required takes space
O(log(n)), which is a far more restrictive condition than taking time polynomial in
n (this is implicit in Chapter 8 of [Sip]). In class on November 30, 2021, we stated
only the first form of Theorem 3.1, and outlined the proof based on the second
form.

Classically the more precise version of Theorem 3.1 is used to define what is
meant by NP-completeness, and then one states the Cook-Levin theorem using
NP-completeness. However, this is essentially an accident of classes P and NP:
in practice we are unlikely to care how many times the oracle for SAT is called
and when, as long as the resulting algorithm is practical (and even if it isn’t, as a
possible intermediate step to construct something practical).

The motivation for showing that it suffices to have an oracle for 3SAT rather than
for SAT is that it is much simpler to reduce a 3SAT question to many standard NP-
complete languages (e.g., 3COLOUR, SUBSET-SUM, etc.). Hence one can easily
then show that 3COLOUR, SUBSET-SUM, etc., are also examples of a “hardest
problem” in NP. See the numerous examples in Chapter 7 of [Sip].

4. The Proof of the Cook-Levin Theorem

In this section we outline the proof of the Cook-Levin Theorem.

5 One should refer to this as a class, not a set, in common set theory conventions in 2011 unless
one, say, fixes the alphabet Σ or assumes that Σ is standardized.

P VERSUS NP 5

Let p : Z≥0 → N be any function (for the proof we want p to be bounded by Cnk

for some C, k, but for now we can leave the discussion general. Let L be verifiable
in time p(n), and let M = (Q,Σ,Γ, δ, qinit, qacc, qrej) be a verifier for L that runs in
time p(n) (and we assume p(n) ≥ n for all n). By definition, for any w ∈ Σ∗, we
have w ∈ L iff

∃g ∈ Γp(n)−n such that wg is accepted by M.

So consider a Turing machine that has wg on its input tape initially, i.e., at “step
0,” and runs for p(n) steps. Even if the tape head moves right at each step, it will
only reach cell p(n) after p(n) − 1 steps, and hence it is only cells 1 through p(n)
that can affect the computation.

Using the configuaration representation in Section 2, the step 0 configuration is

qinit w1 . . . wn g1 . . . gp(n)−n.

So for i = 1, . . . , p(n) + 1, and t = 0, . . . , p(n), let symbi,t denote the element
of Q ∪ Γ corresponding to the i-th letter (counting left-to-right) at time t. This
“square grid of cells” was depicted in class. [Note that Figure 7.38 of [Sip] is very
similar, except that [Sip] is using a non-deterministic Turing machine, so the start
configuation there has only w following by blanks, and the proof is a variant of the
proof we give.] The machine M accepts wg iff

(1) the symbol symb1,0 = qinit and for i ≥ 2, symbi,0 is the i− 1 symbol of wg;
(2) for t = 1, . . . , p(n) and i = 2, . . . , p(n)− 1 we have

symbi,t = transM
(
symbi−1,t−1, symbi−1,t, symbi+1,t−1,

)
,

where transM is the transition function in (1); and
(3) for some i we have symbi,p(n) = qacc

(here, for simplicity, we keep the Turing machine in qacc until step p(n) if enters
this state earlier, and similarly for qrej). Hence we can write the condition w ∈ L
as iff there is a way of choosing values to the variables

g1, . . . , gp(n)−n ∈ Γ, symb1,0, symb2,0, . . . , symbp(n)+1,p(n) ∈ Q ∪ Γ

such that the conditions (1)–(3) hold. Since gi = symbi−1,0, one can write this
down as a set of logical conditions involving only the variables symbi,t and the
function transM .

Then one reduces this this to a Boolean formula by introducing the Boolean
variables xi,t,s for s ∈ Q ∪ Γ where xi,t,s is true iff symbi,t = s. The task, which is
a bit tedious but not very difficult, is to show that one can write down a Boolean
formula of size polynomial in n whose satisfiability is equivalent to the conditions
above on the variables symbi,t.

Let us indicate how one does this.
There are a few things to note: first, this gives (p(n) + 1)(p(n) + 1)|Q ∪ Γ| =

O(p(n)2) Boolean variables xi,t,s; hence the total number of Boolean variables xi,t,s
is a polynomial in n (that depends on M and p(n), which are both fixed features
of our verifying algorithm).

Next the the choice of a value of symbi,t for a fixed i, t requires xi,t,s to be true
for exactly one value of s, which we can write down as a formula to be satisfied
that is of constant length (the constant depending on M) for each i, t.

One similarly writes down formulas for conditions (1)–(3) above to hold.

6 JOEL FRIEDMAN

With a bit trickier Boolean algebra, one can write this formula in 3CNF form.
It is pretty clear that when combining a bunch of conditions together, each of
which must be satisfied individually, then this is the AND (or conjunction) of some
smaller formulas. However, there are a few clever tricks of Boolean algebra involved
in reducing each of the smaller formulas in 3CNF form, so that ulmitately one can
combine all the conditions into one large 3CNF formula. One of them is that a
condition like

x1 ∨ x2 ∨ . . . ∨ xm

(with m ≥ 4) can be written in an equivalent 3CNF satisfiability form by introduc-
ing new variables y1, . . . , ym−3 and writing the equivalent condition

(x1 ∨ x2y1) ∧ (¬y1 ∨ x3 ∨ y2) ∧ . . . (¬ym−3 ∨ xm−1 ∨ xm).

Hence one concludes that not only can we reduce the question of whether or not
w ∈ L to the question of determining whether or not a formula of size polynomial
in |w| is satisfiable, but we may also write this formula in 3CNF form.

5. UNDER CONSTRUCTION: Continuations of CPSC 421/501 At UBC

In the early- and mid-1990’s, CPSC 501 was a type of sequel to CPSC 421. What
has survived as a true second course in complexity theory is CPSC 536, usually
offered once every two years. It covers what is a standard next course in modern
complexity theory, a true continuation of the study of P versus NP and related
(likely far easier questions). This includes the alternative problem of determining
whether or not SAT (or any other NP-complete problem) can be computed by
uniform circuits, and the more difficult but simpler problem of determining which
Boolean functions Bn → B can be computed by circuits (not necessarily uniform)
of a given size.

INSERT PLUG FOR MY CPSC 531F and CPSC 536F TOPICS COURSES
HERE, BASED ON THE LAST SECTION.

6. UNDER CONSTRUCTION: History: A Few Recent Approaches to
P Versus NP as of 2021

The material here will not be covered per se in CPSC 421/501, but will indicate
what a second course in theoretical computer science maight cover (e.g., CPSC 536,
other topics courses in CS theory).

Many people in computer science are familiar with the statement of the problem
P versus NP and have given the matter some consideration. This question has
given rise to a number of very important developments in algorithms and complexity
theory, i.e., the study of algorithms with restricted resources (e.g., Turing mathcines
with time and space restrictions, the simplified model of DFA’s and NFA’s, etc.).

There are few attitudes I have heard to the problem of P versus NP:

(1) one can study problems cannot be solved in polynomial time; this seems
intrinsically interesting, since a lot of algorithms take polynomial time (e.g.,
many algorithms encountered in CPSC 340, algorithms based on dynamic

P VERSUS NP 7

programming6). Of course, the idea of polynomial time is to avoid algo-
rithms that become impractical with large input size; one can similarly
study algorithms with related limitations, giving rise to what one calls
complexity theory. One can, of course, explore algorithms that—while not
provably in polynomial time—seem to work well in practice.

(2) One can seek to develop better algorithms that may solve problems like
SAT well in practice and/or possibly provably in polynomial. I don’t know
if people actually believe that P=NP, or if stating this view is a sort of
“contrarian” point of view, and/or a cry to develop more sophisticated
algorithms in general, etc.

(3) P versus NP might be unresolvable in our current commonly used systems
of set theory; I heard this possibility from the computer science theoretician
William Gasarch in the early-mid 1980’s, and I don’t know how common a
belief this is, or if this just a “contrarian” point of view.

However, simply because a problem has received intense study from the theoretical
computer science and community and algorithms community (narrowly or broadly
interpreted) for some 50+ years, doesn’t really mean that one can say very much.

Here we will discuss some problems related to P versus NP that—albeit likely
much easier—are still wide open as of 2021, and concern finding “lower bounds” in
complexity theory, attempts to show that certain problems cannot be solved with
certain constrained resources.

6.1. The Mulmuley-Sohoni Approach. In [MS01], Ketan Mulmuli and Milind
Sohoni proposed an approach to P versus NP called Geometric Complexity Theory.
Their approach gives an intruiging approach to study the well-known open problem
of Permanent Versus Determinant. There is a lot of further speculation in this
article; let us content ourselves with remarks on Permanent versus Determinant,
which is an “algebraic analog of NC Versus NP,” or, due to a collapse in algebraic
complexity theory, an analog of “poly-log time versus NP.”

Permanent Versus Determinant can be be understood as follows: let R = Z/2Z,
or, more generally, let R be any fixed ring. For any n ∈ N, let p = p(n) be the
smallest integer such that one may express the n × n permanent Perm(aij) as a
p(n)× p(n) determinant whose entries are, say, linear functions of the aij ,

Perm(aij) = Det
(
`IJ(aij)

)
The motivation of this problem is ETC.
Their approach uses the fact that the determinant function Det(aij) has a lot

of symmetries. It follows that if Perm(aij) can be expressed as a p(n) × p(n)
determinant, and if we enlarge the matrix aij to be a p(n) × p(n) set of variables
(using I, J to denote indices in [p(n)] = {1, . . . , p(n)}, then

g(ε; aij)
def
= Det

(
`IJ(aij) + εaIJ

)
satisfies:

6 This approach is based on work at the RAND Corporation in the late 1940’s and early 1950’s
of the founder of the modern theory of differential games, Rufus Isaacs, and of a pioneer in the
theory of optimal control, Richard Bellman. Given the lack of transparency of their collaboration,

it is difficult to assign any more precise attribution here. In the context of algorithms, this often
leads to a cubic time algorithm, i.e., in the natural measure of the problem’s parameter, n (which
is smaller than the length of the input), this algorithm takes time O(n3) on a RAM, or any related
classical machine model with random-access memory.

8 JOEL FRIEDMAN

(1) as ε→ 0, g(ε; aIJ)→ Det(`ij(aIJ)) = Perm(aij).
(2) after some algebra one can show that for all but finitely many ε (e.g., if

R is an algebraically closed field, then for a non-empty Zariski subset of
A1(R)) there is a transformation from g(ε; aij to a p(n) × p(n) determi-
nant (where the entries of the transformation matrix and its inverse are—
unfortunately—uncontrolled rational functions in ε), and hence for such ε,
g(ε; aIJ) exhibits the same symmetries as the p(n)× p(n) determinant.

The Mulmuley-Sohoni approach to Permanent Versus Determinant can be stated
as a two-step approach:

(1) forming g above, it follows that there is an infinitesimal neighbourhood of
g(0; aIJ) that exhibits the symmetrices of the n× n determinant, and

(2) study the Zariski closure of all elements of p(n) × p(n) affine space that
exhibit the full (or a large) set of symmetrices of the n×n determinant, in
an attempt to show that the (image of) Perm(aij) is not there.

We are very enthusiastic regarding the first step of the approach. We believe the
second step is possible, although it may be better to consider a much smaller
symmetry group for the second step. This is suggested to us by an alternate view
of this approach; let us explain.

It seems pedagogically simpler to imagine a similar idea on an alternating tree of
+, · of depth d(n) (the algebraic analog of an alternating AND,OR tree with literals
and their negations at the bottom). In this way you have analogous continuous
deformations: for example, if a balanced binary tree with alternating layers of +, ·
has a · at the bottom, and depth d = d(n), then with 2d variables y1, . . . , y2d ,
for every integer k one has y2k−1y2k = (y2k−1sk)(y2k/sk), giving 2d−1 parameters
s1, . . . , sk inducing a continuous action on the leaves of the tree leaving the result
unchanged. However, one also has the discrete group of symmetries of the full
binary tree of depth d = d(n). Hence one might consider this finite group action in
conjunction with (or not) the continuous action (the two actions commute). The
fact that the determinant size is polynomially equivalent to the size of such a tree
will be proven in CPCS 536F, Spring 2022, and is a standard fact in a second course
in complexity theory.

Of course, it is not clear that studying a finite group action is any better (or
different than) the full group of symmetries of the alternating +, · balanced binary
tree or (what is likely equivalent) the full group of symmetries of the determinant.

We believe all directions that involve the Mulmuley-Sohoni idea of exploiting
symmetries of the determinant or of a balanced tree are worth pursuing.

It also seems that it would be useful to develop more aspects of singularity theory,
with a specific eye to the Mulmuley-Sohoni approach.

At present, the best lower bound on p(n) of which we are aware is quadratic in
n.

6.2. Cohomology Theories for Boolean Functions. In the late 1970’s and
early 1980’s Michael Ben-Or remarked that the same bounds one uses to lower
bound the algebraic complexity of functions by counting connected components of
level surfaces could be improved by counting the sum of the Betti numbers of these
surfaces (in view of the Milnor-Thom bound). Hence there was some enthusiasm
for looking for ETC.

P VERSUS NP 9

6.3. Both Roads May Lead to SGA4.1. The main point in the first subsection
above is that you may want to learn something about perturbation theory, algebraic
groups, etc. The main point in the second subsection is that you may want to study
what are called “Grothendieck topologies,” or what Grothendieck et al. refer to as
a cite [sga72]. Hence it seems worth consider some of the remarkable generality
developed there, and a concrete example such as Section 5 of Exposé I, which
proves the existence of adjoint functors which explain how extension by zero works
in topological sheaf theory, how induced representations work7, etc.

The other point is that the set theory described there—Grothendieck et al.’s the-
ory of universes—is especially satisfying. It points out that although humans may
perceive things like the real numbers, continua, etc., the only universe one “con-
cretely sees” (this is a human expression, not a precise remark) is the denumerable
universe of certain finite sets. Hence it seems likely that anything one says about
P Versus NP, Determinant Versus Permanent, etc., can presumably be ultimately
translated to a proof in terms of finite sets (even if a field is infinite, say the reals
or the complex numbers, it seems likely that one can prove the same theorem in a
sufficiently large extension of the rationals).

6.4. Approaches for the Near Future. It seems that in the near future one
would want to further investigate the above approaches further, not only to solve
well-studied problems like P Versus NP or Permanent Versus Determinant, but to
develop “lower bounds” (e.g., on the size and depth of circuits and formulas) for
the complexity of any algebraic or Boolean function.

There is every reason to be optimistic about such investigations, which are com-
pelling regardless of what results they ultimately yield.

It seems like the next steps would be to develop more facts about sheaf and
cohomology theory on finite graphs and related structure, and to further develop
perturbation and/or singularity theory in a way that we could study the limits of
families with a large number of symmetries.

7. Majority Functions

In this section we introduce various of majority functions and their iterates,
which are intriguing to consider and serve as toy examples for how decisions can
be made for various applications.

We will also use them on some of the exercises.

8. Basic Results on Formula/Circuit Size/Depth

The point of this section is to describe some basic facts about formula/circuit
size/depth in the Boolean and algebraic settings, some of which are almost com-
pletely analogous, and some of which differ between these settings.

9. Tree Symmetries

In this section we study the symmetries of a complete binary tree of a fixed depth
d, which is viewed as computing a function of its 2d leaves, where the operations
on the tree are alternating additions and multiplications.

7 We thank Lior Silberman for this observation.

10 JOEL FRIEDMAN

10. UNDER CONSTRUCTION: EXERCISES

References

[MS01] Ketan Dattatraya Mulmuley and Milind Sohoni, Geometric complexity theory I: An ap-

proach to the P vs. NP and related problems, SIAM J. Computing 31 (2001), no. 2,

496–526, Subsequent papers available at http://www.cs.uchicago.edu/people/mulmuley

.

[sga72] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Springer-

Verlag, Berlin, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA
4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N.

Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269. MR 50

#7130

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf

	1. Overview
	2. The Setup of the Cook-Levin Theorem as a Theorem on Local Behaviour
	3. Verifiers, NP, and Statement of the Cook-Levin Theorem
	4. The Proof of the Cook-Levin Theorem
	5. UNDER CONSTRUCTION: Continuations of CPSC 421/501 At UBC
	6. UNDER CONSTRUCTION: History: A Few Recent Approaches to P Versus NP as of 2021
	6.1. The Mulmuley-Sohoni Approach
	6.2. Cohomology Theories for Boolean Functions
	6.3. Both Roads May Lead to SGA4.1
	6.4. Approaches for the Near Future

	7. Majority Functions
	8. Basic Results on Formula/Circuit Size/Depth
	9. Tree Symmetries
	10. UNDER CONSTRUCTION: EXERCISES
	References

