CPSC 536

GA 22, 2025

- Next week:

Section H:

- Variational proof of the

Spectral theorem for finite matrices

- Variational analysis of

regression and ridge

regression

- Connection to kernels

- SVD, PCA

- This week! say as much as possible about? - Generalized Functions - Solving w"= Sylo) on (c,L) with Dirichlet conditions - Why Green's function on (C,L) is - Used to solve Poisson Equation + Dw=f - Is positive definite (kernel function)
- Heat equation and Gaussians - Some material that we don't get to will appear as exercises

- I may add some questions to ask ChatGPI / Gemini / etc.

When you are ready to learn

more... (not homework to

be submitted...)

CharGPT/Generi do a great job if you want to know! the connor notation in Avner Friedman. -3a-

Joel's notes (for Joel...) $\begin{array}{c}
\mathcal{D}(\mathbb{R}) \\
\mathcal{D}(\mathcal{D})
\end{array}$ implies $C_c^{\infty}(\mathbb{R})$ Ω apen, eg. (G,L) < IR Unit in D(IL) means? (1) supp (4n) < K for some compact K < I (2) Y KEIN, Max (Ph) - C D'(D) = continuous linear functionals on D(D); i.e. {T | Ven→e, <T, en> → ⟨T, e⟩ where \langle , \rangle is the duclity pairing $D'(\Omega) \times D(\Omega) \to \mathbb{R}$

Most intuitive properties of GDEs hold for distributions: e.g.

solving

 $\omega' = f$ on (0,L) or \mathbb{R} ?

two solutions

$$\omega_1' = f, \quad \omega_2' = f$$

Lave

wi-wz = C constant

The Most intuitive properties of GDEs hold for distributions: e.g. solving $\omega' = f$ on (0,L) or \mathbb{R} ? two solutions $\psi_1' = f, \quad \psi_2' = f$ have $w_i - w_z' = C$ constant

functions: solve w' = f, IR, 291 ; $W(x) = \int f(x) dx + C$

This should double who knowing

Generalized functions

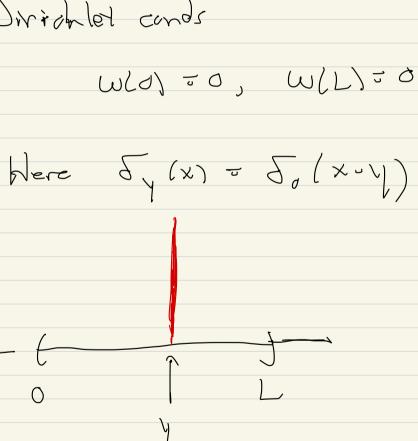
[continuous] linear maps

(Colin)= D(IR) -> IR

w/o knowing--

Bade to naive calculations:

Relu(x) = Relu(x)


Rell(X) = Jo(X)

derw

Meanignat (X)

John

-7-

here CotxCit ReLUy(x)

Call this

$$(\omega, -\omega_2)^2 = 0$$

modulo boundary terms of twice integrating by parts, (Exercise) (because of Dinishel condition) i.e. wis self-adjoint by centrast $\int (w') v = \int -(wv')$ is G(x,y) - - Gly,x) Clam 2! Glary) is positive definite, XI,--,Xm E (O,L) or [O,L] 91, --, 4me 112 crony

then

 $\leq \gamma_i \propto_j G(\chi_i,\chi_j) > 0$ = 02 - 2 - 3 - 8

Z 9; V; Rell (x) t

Mesoy Inex

term

Make it smpler: OEX, CXZZ - ZXmZL

Rell simplies

Fridey! Gaussians 2-1 Head Eq Finish Generalized Enctions Stort or variational proof of spec theorem Clark ends bul - 2 A.Z.(e) Jiang 12-12- 12/Z