Oct 17, 2025 CPSC 536F (1) Show that ReLU(x) = Heaviside (x) in the weak sense. 2) What about rechnique Heaviside (x) = S(x) ?? Call centred at O, i.e. $S(x) = S_0(x)$ Heariside(X)= Hearisideo(X) ReLU(x) = RelUo(x)

and we will write yER $\delta_{\gamma}(x) \stackrel{\text{def}}{=} \delta_{0}(x-\gamma)$ Heaviside, (X) Jef Heaviside (X) Relu (x-y) Relly(x) = [Arrayle Herriside (0)=1/2] t=Hewiside(x) = Heaveside (x) Heaviside (0) = ??? centred 210

2) What is $S(x) = S_0(x)$ anyway?

Answer: It is a generalized

function meaning, a linear

map Je "test Evertier"

V° C° (IR) -> IR

(Sometimes subject to certain conditions, e.g.

 $f \in C' \iff etc.$

Relvo(x) = fo(x)

(w') (x) = h could even be

Folx)

 $C_0(\mathbb{R}) \to \mathbb{R}$

Tr.

function

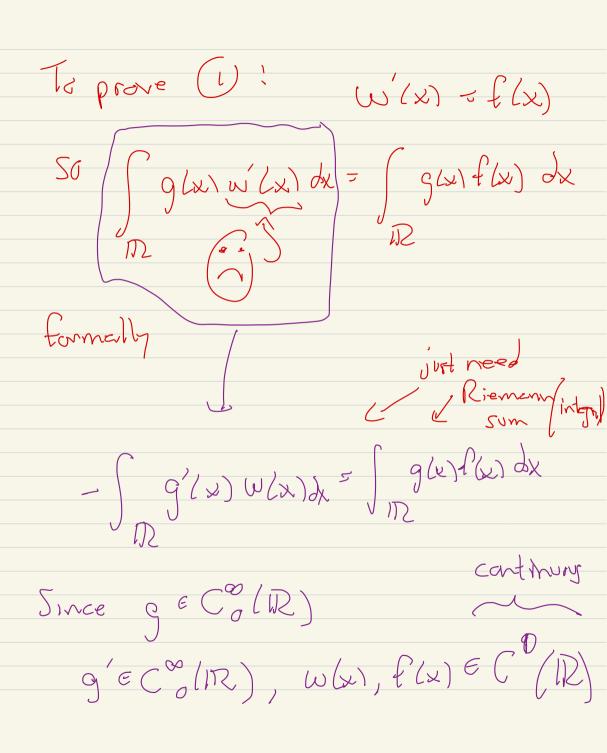
3, Is

 $C_0^{\infty}(\mathbb{R}) \longrightarrow \mathbb{R}$

Think of;

g 1 -) f(x) dx

-5-


add (M.Hirsch) Trick / Method me Calu) $\int w'(x) w(x) dx$ $= \int (\omega'(x))^2 dx$ Jodes like it

has to be

pos (semi) definite

is negative semidefinite

Exercises, we'll prove some of to be these ideas (2.5) If Y test functions are taken F-{0} the function gwifteld Theula be 8 then any function sit. blah blahshould equal any other function. So if IF & Co(R) need to show there are "enough functions

ReLU'(x) = Heaviside (x)

in weak sense ??

Is Y g E C o (IR):

- (g'(x) ReLU(x) dx

= jglx) Hewiside (x) dx

$$= \int g'(x) \operatorname{RelU}(x) dx$$

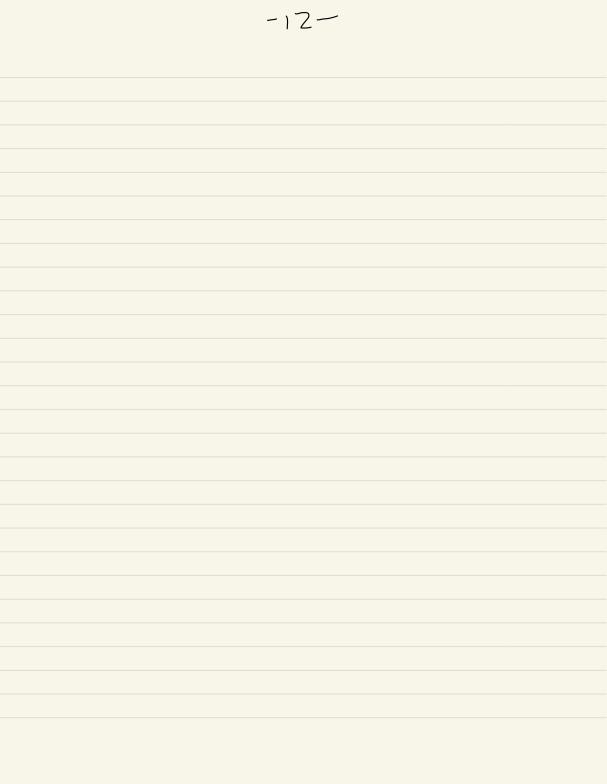
$$= \int g'(x) \operatorname{RelU}(x) dx$$

$$= \int g(x) \times dx$$

$$= \int g(x) \times dx$$

$$= \int g(x) \times dx$$

$$= \int g(x) \left(\frac{dx}{dx}\right) dx$$


$$= \int g(x) \times dx$$

$$= \int g(x) \times dx$$

$$= \int g(x) \left(\frac{dx}{dx}\right) dx$$

XJX = (g(x) dx = wherever I glas Herviside (x) dx X= 60 XT-W = (x) dx

