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2 JOEL FRIEDMAN

Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 563F: use this material
at your own risk. . .
This version is A WORK IN PROGRESS: I’ll post to the course website
when I revise this article.

1. The Main Goals of 536F

CPSC 536F is a new course, focusing on positive (semi)definite matrices and ker-
nels, and some 8-12 applications that arise in computer science, especially machine
learning.

The main goal is to build up some intuition about these matrices and kernels,
their eigenvectors and eigenfuctions, and how they are used.

A secondary goal is to explain the origin and theory of kernels, to make them
easier to design (and seem less "mysterious").

Along the way we may also describe some theoretical aspects of neural networks.
This course is theoretical, meant to compliment more applied courses.

2. Basic Notation

Let us fix some basic terminology and notation that we use throughout this
article.

2.1. Sets. We use R,C,Z to denote, respectively, the real numbers, the complex
numbers, and the integers. We use N = {1, 2, . . .} to denote the positive integers,
and Z≥0 = {0, 1, . . .} to denote the set of non-negative integers. For n ∈ Z≥0 we
use [n] to denote {1, 2, . . . , n}, with [0] = ∅, the empty set.

If A,B are sets, then |A| denotes the cardinality (size) of A, and we define the
set difference “A minus B” as

A \B = {a ∈ A | a /∈ B}.

2.2. Vectors and Matrices. If A is a set, we use RA to denote the set of maps
A → R, and Rn to denote R[n] = R{1,...,n} (which is therefore the set of maps
[n] → R). We use the notation u = (u1, . . . , un) ∈ Rn, where bold letters (e.g.,
u) reserved for vectors, i.e., elements of Rn, and non-bold letters (e.g., u1, . . . , un)
reserved for the components of u. Similarly, 1 ∈ Rn to refers to (1, . . . , 1) ∈ Rn,
and similarly for 0; similarly for 1,0 ∈ RA for a set, A. Similarly for R replaced
with N,Z,C or any set.

We will often be interested in maps A→ N, i.e., elements of NA, where A has no
implied order; we still use a bold letter for the vector, e.g., m ∈ NA or m : A→ N,
and use non-bold letters for the components of m, e.g., writing m = {m(a)}a∈A.
Similarly for N replaced with R,Z,C

We will make use of the inner product or “dot product” of u,w ∈ Rn,

u ·w = u1w1 + · · ·+ unwn,

and similarly for u,w ∈ Cn,

(1) u ·w = u1w1 + · · ·+ unwn,

where ui denotes the complex conjugate of ui. [Elsewhere in the literature one uses
the complex conjugate, i.e., the sum of uiwi, and one could equally well use this
version of the complex dot product throughout this article.]
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We use Cm×n to denote the set of m×n matrices, M , with entries in C (similarly
for N, R, etc.); for i ∈ [n] and j ∈ [m], we use Mi,j or Mij or M(i, j) to denote the
(i, j)-th entry of M (i.e., the entry in the i-th row and j-th column). Similarly, for
CA×B when A,B are sets, which do not necessarily come with an implied order.

We use MT to denote the transpose of M . If u ∈ Rn, we view u as an n × 1
matrix; hence it makes sense to write Mu for an m × n matrix M , and similarly
for wTM when w ∈ Rm. We use In to denote the n× n identity matrix, or simply
I if n is clear in context.

In this article most of the linear algebra uses R as its field of scalars, rather than
C. When working over C, we can’t use i to both denote

√
−1 and an integer.

It follows that for u,v ∈ Rn one can equally well write

u · v =

n∑
j=1

ujvj = uTv,

although technically uTv is a 1× 1 matrix. Similarly, if u,v ∈ RA for a set, A, we
will write

u · v =

n∑
a∈A

uava = uTv,

although even if A is finite, i.e., |A| = n for some n ∈ N, then u is not really an
element of Rn unless we fix an identification (bijection) of A with [n] = {1, . . . , n}.

Remark 2.1. If A is infinte, then sums over A, e.g.,
n∑

a∈A

uava

do not necessarily make sense.

For more details on linear algebra, including all the theorems we need, see Ap-
pendix ??.

3. Introduction to the “Kernel Trick”

In this section we introduce the “kernel trick” for a toy model of clustering.
We will spend a fair amount of time discussing “kernel functions” in this course.

3.1. A Toy Example. Consider the following setup:
(1) We have a small, finite set, S, such as

S = {cow, goldfish, rabbit}.
(2) For each s ∈ S, we have a circle, Cs, in R2. So for each s ∈ S, if (xs, ys) is

the centre of Cs, and rs ≥ 0 is its radius, then

Cs =
{
(x, y)

∣∣ x = rs cos θ + xs, y = rs sin θ + ys, for some θ ∈ R
}

These circles are arbitrary: for example, Ccow can intersect Cgoldfish, one
can lie inside another, or two circles may even be the same circle.

(3) For each s ∈ S we have a large set of “training data for s,” which we view as
a subset Ts ⊂ R2.1 We assume that for each s, Ts looks roughly like a set

1If you know what is meant by a multi-set, then Ts can be a multi-set, i.e., some points of Ts

can “occur multiple times.” Multi-sets are very convenient here, but all the ideas can be illustrated
using sets.
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of random points sampled from Cs (they can have some “noise,” meaning
that don’t have to lie exactly on Cs).

Remark 3.1. You could imagine that the training data Ts ⊂ R2 really comes
from a bunch of “pictures” of animal s. The pictures themselves may be elements
of RN for some fixed, large N , but you have designed an algorithm computing a
function f : RN → R2 that attempts to “cluster” the pictures of each animal into
its own cluster. Maybe you’ve already built an ANN — artificial neural network —
that does an excellent clustering some animals, or the MNIST dataset (or another
standard dataset), and now you are hoping it will work well for the animals in S.
Of course, we are working with a “toy example:” there is no reason to think f might
not cluster well for elements in S, but give clusters that are near perfect circles...

Remark 3.2. We can replace R2 above with Rn for some n ≥ 3; likely n is much
smaller than N . One can then map Rn to a vector that represents all monomials
of degree at most 2. More generally, one could map Rn to all monomials of degree
at most d.

Now consider the map Φ: R2 → R6 given by2

(2) Φ(x, y) = (1,
√
2x,

√
2y, x2,

√
2xy, y2).

It’s not hard to see that the average value (or centre of mass) of the set Φ(Ts)
should be different for each circle. For example, say that for some s ∈ S, Cs is the
circle of radius r about the origin, (0, 0), i.e., the set

Cs = {(x, y) | x2 + y2 = r2}.
Over Cs (with its usual arc length), the average value of Φ(Cs) is:

(3) Averagex∈Cs

(
Φ(x)

)
=

(
1, 0, 0, r2/2, 0, r2/2

)
;

in class we explained roughly why this is true. So one might expect that the average
value of Ts would be roughly this.

Exercise 3.1. The general equation of a circle of radius r centred at (x0, y0) in
the plane is:

x(θ) = x0 + r cos θ, y(θ) = y0 + r sin θ.

Evaluate:
1

2π

∫ (
1,
√
2x,

√
2y, x2,

√
2xy, y2

)
dθ.

Are these averages different for different values of θ? What about for an ellipse
with axes parallel to the x- and y-axes? What about for general conic sections (i.e.,
ellipses, parabolas, or hyperbolas)?

Now let’s say that someone give you a “test point” (xtest, ytest) ∈ R2; you want
to decide if this is a cow or a goldfish.

Exercise 3.2. (This exercise was done in class in the 2025 version of this course;
it was inspired by remarks of YJ.) Fix an (xtest, ytest) ∈ R2; say that (xtest, ytest)
lies on the circle of radius ρ about (0, 0), i.e.,

ρ2 =
(
xtest

)2
+
(
ytest

)2
.

Show that:

2We are grateful to ML who corrected our original omission of the
√
2 factors.
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(1)∥∥∥Φ(xtest, ytest)− (1, 0, 0, r2/2, 0, r2/2)
∥∥∥2 = f

(
xtest, ytest

)
+ r2

(
r2

2
− ρ2

)
,

where f is a function independent of ρ (and show your work, don’t simply
cut and paste from your favourite “AI”).

(2) Show that for fixed ρ, the function g : R → R

g(r) = r2
(
r2

2
− ρ2

)
is minimized at r = ±ρ. [Remark: it may be simpler to work with h(x) =
x(x/2− a) for fixed a ∈ R.]

One problem with Φ: R2 → R6 is that it increases the dimension, which is not
good news. (The calculation in the Exercise 3.2 should convince you of this.) So
we use the “kernel trick,” which we now describe.

3.2. New Notation, and the Fundamental Lemma of the Kernel Trick.

WARNING 3.3. At this point we are switching notation: we use xtest ∈ R2.
Hence xtest = (xtest1 , xtest2 ) rather than the notation in the previous subsection,
namely (xtest, ytest).

We now point out that although Φ: R2 → R6 in (2) is a (non-linear) map, give
a sample of cows and goldfish plus a “test” element xtest ∈ R2, we never really need
to work in R6.

The idea is as follows:
(1) for any x,x′ ∈ R2, we have

(4) Φ(x) · Φ(x′) = (1 + x · x′)2 = (1 + x1x
′
1 + x2x

′
2)

2;

and
(2) to see whether or not Φ(xtest) is closer to the average value of Φ applied

to a subset, C ⊂ R2 (of “cows”) or of G ⊂ R2 (representing “goldfish”), it
suffices to consider

Φ(x) · Φ(x′)

where x,x′ vary over all values of C, G, and xtest.

Remark 3.4. Notice3 that algorithmically it is not particularly difficult to compute
the quantity in (4) as

1 + 2x1x
′
1 + 2x2x

′
2 + x21(x

′
1)

2 + 2x1x2x
′
1x

′
2 + x22(x

′
2)

2.

Hence this doesn’t seem like a big savings to write this as

= (1 + x1x
′
1 + x2x

′
2)

2,

perhaps a factor of three or four, and even less if you are working with software
that computes dot products quickly. However, there are two ways that this part of
the kernel trick could ultimately be useful:

3We thank TL for this remark.
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(1) for analogous kernels, such as

(1 + x · x′)d

where d is larger and/or x,x′ ∈ Rn with n large, this could represent a
bigger savings; and

(2) the study of such kernels may help to explain why certain algorithms aren’t
working well.

Lemma 3.5. Let n ∈ N, ϕtest ∈ R, and C,G ⊂ Rn be two subsets4. Let

Cavg =
1

|C|
∑
c∈C

c, Gavg =
1

|G|
∑
g∈G

g,

where are therefore elements of Rn. Then ϕtest is closer to Cavg than to Gavg iff

∥ϕtest − Cavg∥2 < ∥ϕtest −Gavg∥2,

and hence iff
1

|C|
∑
c∈C

(
ϕtest − c

)2
>

1

|G|
∑
g∈G

(
ϕtest − g

)2
,

hence iff

(5)
1

|C|
∑
c∈C

(
ϕtest ·ϕtest−2ϕtest ·c+c ·c

)
>

1

|G|
∑
g∈G

(
ϕtest ·xtest−2ϕtest ·g+g ·g

)
Hence this condition can be expressed completely in terms of the sizes of C,G, and
the dot products between elements of C and G and ϕtest.

The proof of this lemma should be straightfoward (perhaps assign as an EXER-
CISE).

3.3. Symmetric and Positive (Semi)Definite Matrices: Basic Examples.
Before discussing kernel functions abstractly, it may be better to give some examples
of positive semidefinite and definite matrices. Most of these examples we will cover
in class. In the next section we will prove that if K ∈ Rn×n (an n× n matrix with
real entries), then the following are equivalent:

(1) KT = K (i.e., K is symmetric);
(2) KU = UΛ where U is an (n × n real) orthogonal matrix5 (i.e., UUT = I,

or equivalently U ’s columns form an orthonormal basis of Rn, i.e., equiv-
avlently U ’s rows), and Λ is the diagonal matrix

diag(λ1, . . . , λn) =

λ1 . . .
λn


with λj ∈ R for all j;

(3) K has an orthonormal eigenbasis, with all eigenpairs (eigenvectors and
eigenvalues) purely real;

(4) etc.

4More generally, C,G can be multi-sets, if you know what this means.
5Historically an orthogonal matrix is one whose columns (or whose rows) forn an orthonor-

mal basis. Yuck...
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If v1, . . . ,vn ∈ Rn is any orthonormal eigenbasis of K, with corresonding eigenval-
ues λ1, . . . , λn (i.e. Kvj = λjvj), then

(6) K =

n∑
j=1

λjvjv
T
j .

This formula can be viewed as a “baby version”6 of the usual spectral theorem for
bounded, self-adjoint operators (on a Hilbert space).

Example 3.6. The matrix

K =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 = 11
T, where 1 =


1
1
...
1


is a rank one matrix. It has one eigenvalue, λ1 = n, and the rest, λj for 2 ≤ j ≤ n
are equal to 0. One normalized eigenvector v1 corresponding to the eigenvalue λ1
is the vector 1/

√
n. This illustrates (6)

K =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 = v1v
T
1 λ1 =

(
1
/ √

n
)(
1
/ √

n
)T
n

In case we may remark that if v1 = 1/
√
n, and |λ2|, . . . , |λn| are all “much smaller”

than λ1, then K is “close” to the matrix 11
T(λ1/n); this is very important in

the theory of expanding graphs; we will return to this later in course, in order to
compare regular graphs that “expand well” versus those that don’t.

Example 3.7. A lot of situations can be intuitively understood by the 2 × 2
symmetric matrix: [

a b
b a

]
Whose eigenpairs are evident from[

a b
b a

] [
1
1

]
= (a+ b)

[
1
1

]
,

[
a b
b a

] [
1
−1

]
= (a− b)

[
1
−1

]
.

For example, if we have a Markov chain consisting of two groups, say Democrats
and Republicans, where communication per year from one group to another is rare,
but where communication per year within each group is common, then one can
model an associate Markov chain (visiting friends, webpages that point to other
pages for a PageRank computation, etc.) as a Markov chain[

0.999999 0.000001
0.000001 0.999999

]
,

which has eigenvalues 1 and 0.999998. For this reason, the mixing time of this
Markov chain is on the order of 106 (years). By contrast, the Markov chain[

1/2 1/2
1/2 1/2

]
6The term “baby version” is not necessarily pejorative; it is often a very simple class of examples

of a more general theorem, but one giving essential insight into the theorem.
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completely mixes after a single iteration, and has λ1 = 1, λ2 = 0; hence this is
a special case of Example 3.6 multiplied by 1/2. By contrast, the (irreducible)
Markov chain [

0 1
1 0

]
modelled by various phenomena7 has λ1 = 1 and λ2 = −1, so |λ2| = λ1 and the
mixing time of this Markov chain is infinite.

Remark: it is easy to see that ifK is a symmetric matrix and v,u are eigenvectors
of K with distinct eigenvalues, then v,u are necessarily orthogonal.

Example 3.8. Circulant matrices generalize both Examples 3.6 and 3.7: most
generally these are matrices of the form:

K =



a1 a2 a3 a4 · · · an
an a1 a2 a3 · · · an−1

an−1 an a1 a2 · · · an−2

an−2 an−1 an a1 · · · an−3

...
...

...
...

. . .
...

a2 a3 a4 · · · a1


,

i.e., these are n× n matrices K whose (i, j)-th entry, Kij is just a function of i− j
modulo n. Hence, for n ≥ 3, these matrices are not necessarily symmetric; these
matrices are symmetric iff a2 = an, a3 = an−1, etc. If ζ is any n-th root of unity
(i.e., ζ ∈ C satisfies ζn = 1), we easily check that (whether or not K is symmetric)

K


1
ζ
ζ2

...
ζn−1

 =
(
a1 + ζa2 + · · ·+ ζn−1an

)


1
ζ
ζ2

...
ζn−1

 .
This gives an orthogonal set of eigenvectors — provided that we work with “the
standard inner product”8 on Cn. These become an orthonormal set upon dividing
each by

√
n.

Example 3.9. The standard 2× 2 Hadamard matrix

H2 =

[
1 1
1 −1

]
.

Then H2 is a symmetric matrix, and we easily check that H2H2 = 2I, and hence

U2 =
1√
2
H2

is a unitary matrix, and we easily check that its eigenvalues are ±1; similarly the
eigenvalues of H2 are ±

√
2. (exercise). We easily see that a set of corresponding

7Perhaps sneetches?
8As mentioned earlier, this is not entirely standard, and you have to specify whether the inner

product will be linear on the first or second vector.
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eigenvectors are given by (1,±
√
2− 1) ∈ R2. Let

H4 = H2 ⊗H2 =

[
H2 H2

H2 −H2

]
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


where we have used block matrix form and the tensor product of matrices; more
generally if A ∈ Rm1×n1 and B ∈ Rm2×n2 are matrices of any dimensions, we
define A⊗B as the Rm1m2×n1n2 to be the matrix given by

(A⊗B)(u⊗ v) = (Au)⊗ (Bv),

where u ⊗ v is defined as the vector whose components are uivj ranging over all
the entries ui of u and vj of v: there is some freedom in how we arrange the entries
uivj , although it is convenient to choose one of the two standard ways of doing this;
so if u ∈ Rn1 and v ∈ Rn2 , then we can set

(7) u⊗ v =
(
u1v1, u1v2, . . . , u1vn2 , u2v1, . . . , un1vn2

)
,

which corresponds to listing the elements of uvT row by row (starting with the first
column); the other way is to list these elements column by column, or, equivalently,
those of uuT row by row. More generally, we define the standard 2m×2m Hadamard
matrix to be the matrix

H2m = H2 ⊗H2m−1 = H2 ⊗H2 ⊗ · · · ⊗H2 (m times).

(we easily see that the resulting 2m × 2m doesn’t depend on which of the standard
orderings of components we use to define u⊗v). More generally, an n×n Hadamard
matrix is an element H ∈ Rn×n whose entries are ±1 and such that H2 = I; it is
a currently (2025) open question to know for which values of n ∈ N there exists
an n × n Hadamard matrix. The exercises below show that if A is an arbitrary
square matrix with (algebraic) eigenvalues λ1, . . . , λn, and B one with eigenvalues
µ1, . . . , µm, then the eigenvalues of A ⊗ B are λiµj ranging over all i ∈ [n] and
j ∈ [m]. It easily follows that H2m has half of its eigenvalues equal to 2m/2, the
other half −2m/2.

3.4. Examples from Graph Theory. Graph theory gives a set of examples of
symmetric and positive semidefinite matrices that go a long way to develop intuition
regarding eigenvectors and eigenvalues.

3.4.1. Simple Graphs.

Definition 3.10. If A is a set, then
(
A
2

)
refers to the set of subsets of A of size

2. A simple graph refers to pair G = (V,E) where V,E are both countable (i.e.,
finite or countably infinite) such that E ⊂

(
V
2

)
. We also write G = (VG, EG) to

emphasize G or in discussions more than one graph.

Remark 3.11. For some applications of graph theory, it is enough to work with
simple graphs. For many applications of graph theory, many important ideas and
methods become needlessly awkward or impossible unless one works with a more
general notion of graph (examples of these are ideas are covering maps and regular
graphs, especially relative expanders).
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There are five important matrices we associate with any simple graph, G: AG

— its adjacency matrix, DG — its degree matrix, ΛG — its Laplacian, and ∂G —
its incidence matrix, BG — its non-backtracking matrix, most of which we will soon
define. So the symbol AG, AG′ , AG̃, AH etc. usually refers to the adjacency matrix
of a graph (not necessarily a simple graph); similarly for VG, EG, DG,ΛG, ∂G, etc.

Definition 3.12. Let G = (VG, EG) be a simple graph. Then AG refers to the VG×
VG matrix whose entries are 0’s and 1’s according to the following rule: AG(v, v

′) =
1 if {v, v′} ∈ EG (i.e., if v, v′ are adjacent, i.e., v, v′ are joined by an edge); if not,
then AG(v, v

′) = 0. Hence AG can be viewed as an element of RVG×VG . If VG is
finite, and |VG| = n, then we can order the vertices of G as VG = {v1, . . . , vn},
whereby AG is an n× n matrix.

Therefore AG is a symmetric matrix, and its eigenvalues are real and can be
ordered:

(8) λn(AG) ≤ · · · ≤ λ2(AG) ≤ λ1(AG).

Remark 3.13. Let be V a set, and A ∈ RV×V be symmetric (i.e., AT = A), and
whose entries are 0’s and 1’s, such that all the diagonal entries of A vanish (i.e.,
equal 0). Then there is a unique simple graph G = (VG, EG) such that VG = V
and AG = A.

Definition 3.14. Let G be a simple graph, and v, v′ ∈ VG. Then a walk in G (of
length k) (beginning at v and ending at v′) refers to a sequence of vertices of G,
i.e., of elements of VG,

w = (v0, v1, . . . , vk)

such that v0 = v and vk = v′.

If G is a simple graph, then it is not hard to see that for each k ∈ N = {1, 2, . . . , },
the VG × VG matrix Ak

G (meaning (AG)
k) has an important meaning, namely that

∀v, v′ ∈ VG (Ak
G)(v, v

′) =
∣∣{ walks in G of length k beginning at v and ending at v′ }

∣∣.
Example 3.15. If Bn is the n-dimension Boolean hypercube, which is a simple
graph with vertex set {0, 1}n (also commonly {1,−1}n or {F, T}n), and has edges
joining two vertices of Hamming distance 1, then Bn satisfies

Bn = B1 × Bn−1,

where × is the usual Cartesian product of graphs. One way of definiting Cartesian
product (we will draw pictures in class when we cover it) is that if AG denotes the
adjacency matrix of a graph, G = (VG, EG), then

AG×H = AG ⊗ IVH
+ IVG

⊗AH .

Exercises will include computing the adjacency matrix eigenvalues of a cycle of
length n and its products.

3.5. Spectral Gaps in Regular Graphs. In 2025 we discussed some basic as-
pects of spectral theory (the eigenvalues and eigenvectors) of d-regular matrices.
The point is that adjacency matrix eigenvalues give intuition regarding the “ex-
panding” properties of graphs. Here are some main points.

In 2025, we computed the eigenvalues of grid graphs, G, (which we took to mean
the product of two cycle graphs, which is therefore a 4-regular graphs, looking like
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a grid but with “wrap around” edges). We showed that such a graph, G, being the
product of two cycles, say of lengths N1 and N2, has adjacency eigenvalues

λj1,j2 = 4− 2 cos(2πj1/N1)− 2 cos(2πj2/N2)

for j1 ∈ Z/N1Z and j2 ∈ Z/N2Z. Hence the largest AG eigenvalue is 4, the next
largest is

4− 2 cos
(
2π/max(N1, N2)

)
,

which for n = N1N2 (the number of vertices of this graph) is roughly

4− C1

(max(N1, N2))2

for a constant C1, and max(N1, N2) is anywhere between
√
n ≤ max(N1, N2) ≤ n/3

(since simple graphs don’t have cycles of length 1 or 2). Also the smallest of this
graph is −4 iff N1, N2 are both even.

We also made the following definitions and claims.

Definition 3.16. Let G = (VG, EG) be a simple graph. For each v ∈ VG, we define
the degree of v (in G), denoted degG(v), to be the number of edges upon which v
is incident, i.e., the number of vertices adjacent to v, i.e., AG1v, where 1v is the
vector that is 1 in its v-component, and 0 elsewhere. We say that G is d-regular if
V ̸= ∅, and for all v ∈ V , degG(v) = d; equivalently AG1 = d1.

Recall from (8), we typically order the eigenvalues of AG (for any graph, G) from
largest to smallest, i.e.,

(9) λn(AG) ≤ · · · ≤ λ2(AG) ≤ λ1(AG).

The following facts are not difficult to prove (perhaps after a few pointers).

Proposition 3.17. Let G be a d-regular graph, and order its adjacency eigenvalues
as usual, i.e., Then the following hold:

(1) λ1(AG) = d;
(2) the multiplicity of d as an eigenvalue of AG is the number of connected

components of the graph G;
(3) λn(AG) ≥ −d;
(4) the multiplicity of −d as an eigenvalue of AG is the number of connected

components of the graph G that are bipartite graphs.

For definitions and a proof, see Exercise C.1.

Definition 3.18. For any graph, we define its adjacency spectral gap to be λ1(G)−
λ2(G), and its subdominant adjacency spectral radius to be

(10) λ(G) = max
2≤i≤n

|λi(G)|.

Hence a graph has 0 spectral gap iff it is disconnected (not connected). The
definition of λ(G) is standard in the literature on expanders. To understand the
interest in λ(G), we remark that the spectral decomposition

AG =

n∑
i=1

λi(AG)v
T
i vi
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for an orthonormal eigenbasis v1, . . . ,vn (Avi = λivi) implies that

AG =
d

n


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

+ EG,

therefore EG is symmetric, with eigenvalues 0 and λ2(G), . . . , λn(G). The spectral
theorem implies that

∥EG∥L2(VG) = λ(G)

From this observation, we easily get the following remarkably useful result in ap-
plications.

[In early October, 2025, we didn’t yet cover the stuff below.]

Proposition 3.19. Let G be a d-regular graph. Then for any U,W ⊂ VG, and any
k ∈ N, we have∣∣∣1T

UA
k
G1W−(dk/n)|U | |W |

∣∣∣ ≤ (
λ(G)

)k√ |U | (n− |U |)
n

√
|W | (n− |W |)

n
≤

(
λ(G)

)k√|U | |W |.

(Here 1U denotes the indicator function of U , i.e.,
∑

u∈U eu, where eu is the stan-
dard basis vector, i.e., the function that is 1 on U and 0 elsewhere, i.e., on VG \U .)

The special case k = 1 of the above immediately implies the weaker (but simpler)
estimate ∣∣∣e(U,W )− (d/n)|U | |W |

∣∣∣ ≤ λ(G)
√
|U | |W |

which is often called the expander mixing lemma.
———————————————————–
ADD MORE STUFF HERE OR IN THE EXERCISES?
———————————————————–

3.6. Laplacians in Graph Theory. If G = (V,E) is a simple graph, let ∂ ∈
RE×V be any matrix such that ϕ(e, v) = 0 if e is not incident upon v, and if
e = {v1, v2} then one of ϕ(v1), ϕ(v2) equals 1, the other −1.9 Then we define the
graph Laplacian of G, denoted ∆G, to be the matrix

∆G = ∂∂T,

which doesn’t depend on the ±1 choice above, and is easily seen to equal

∆G = ∂∂T = DG −AG,

where AG is the adjacency matrix of G, and DG is the degree counting matrix of
G, namely a diagonal matrix whose (v, v)-entry equals degG(v) (i.e., the number of
edges incident upon v, i.e., the number of vertices adjacent to v).

9The choice may seem “ad hoc,” but this is really a way of simplifying the fact that ∂ is
canonically defined, but the choice of ±1 above is really a choice of a basis for R2/diag, where
diag is the diagonal subspace of R2. This is explained in [Fri15].
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3.7. Kernels: The Low Road. One way to describe kernel functions is by first
describing what is meant by a positive (semi)definite n × n matrix, and then use
this to define kernel functions. In the 2025 version of this course, we took this
route.

Definition 3.20. Let K ∈ Rn×n be a real, n× n matrix. We say that K is:

(1) symmetric if KT = K, i.e., Kij = Kji for all i, j ∈ [n];
(2) positive semidefinite if

(11) ∀v ∈ Rn,vTKv ≥ 0;

and
(3) (11) holds with equality iff v = 0.

Definition 3.21. Let X be a set. A kernel (function) on X is a function k : X ×
X → R. For each finite subset X ′ ⊂ X of size m ∈ N, writing X ′ as {x1, . . . , xm},
we identify the restriction, k|X ′×X ′ , of k to X ′ ×X ′, with the m×m real matrix

k|(x1,...,xm)
def
=


k(x1, x1) k(x1, x2) · · · k(x1, xm)
k(x2, x1) k(x2, x2) · · · k(x2, xm)

...
...

. . .
...

k(xm, x1) k(xm, x2) · · · k(xm, xm)

 .
[We use the notation k|(x1,...,xm) to stress that the resulting matrix depends on the
order of x1, . . . , xm.] Sometimes, when the order of the elements of X ′ is understood
(or unimportant), we simply write k|X ′×X ′ or just k|X ′ ; alternatively, we also call X ′

a finite ordered set if X ′ is finite, and if it comes with an ordering x1, . . . , xm of its
elements. We say that: k is symmetric (respectively, positive semidefinite, positive
definite, etc.) if for all finite ordered sets, X ′, k|X ′ is symmetric (respectively,
positive semidefinite, etc.).

Remark 3.22. Some authors will use the term kernel (function) to mean a kernel
(function) that is necessarily symmetric and positive semidefinite. These occur
commonly in what people in AI/ML/etc. call kernel methods.

Example 3.23. Let X = [n] = {1, . . . , n}, and let [n] be given its usual ordering.
Hence X is a set with an implied order, so a kernel function k : X ×X → R can be
identified with an n× n matrix.

Example 3.24. Let X = [3] = {1, 2, 3}, and let k be the kernel function identified
with the element K ∈ R3×3 given as follows:

(1) Let Φ: [3] → R2 be the function

Φ(1) =

[
5
1

]
, Φ(2) =

[
−17
5

]
, Φ(3) =

[
π
e

]
(making Φ(3) both irrational and transcendental).

(2) Define k(x, x′) = Φ(x) · Φ(x′).
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K is therefore the 3× 3 real matrix:

K =



[
5
1

]
·
[
5
1

] [
5
1

]
·
[
−17
5

] [
5
1

]
·
[
π
e

]
[
−17
5

]
·
[
5
1

] [
−17
5

]
·
[
−17
5

] [
−17
5

]
·
[
π
e

]
[
π
e

]
·
[
5
1

] [
π
e

]
·
[
−17
5

] [
π
e

]
·
[
π
e

]

 =

 26 −80 5π + e
−80 314 −17π + 5e

5π + e −17π + 5e π2 + e2



Note that if α = (α1, α2, α3) ∈ R3, then

(12) αTKα =

3∑
i,j=1

αiαjk(i, j) =

∥∥∥∥α1

[
5
1

]
+ α2

[
−17
5

]
+ α3

[
π
e

]∥∥∥∥2

(13) =
∥∥∥α1Φ(1) + α2Φ(2) + α3Φ(3)

∥∥∥2.
Since no two of Φ(1),Φ(2),Φ(3) are colinear, we have that each 2 × 2 principal
minor of K is positive definite. However, for any solution of

α1Φ(1) + α2Φ(2) + α3Φ(3) =

[
0
0

]
we have that

αTKα =
∑
i,j

αiαjk(i, j) = 0.

One can, of course, see that K is of rank at most 2 by writing K more simply as:

K =

 5
−17
π

 [
5 −17 π

]
+

15
e

 [
1 5 e

]
=

 5 1
−17 5
π e

[
5 −17 π
1 5 e

]
Hence

(14) K =MTM where M =

[
5 −17 π
1 5 e

]
.

The above example generalizes in an evident fashion. Here is the ML/AI termi-
nology.

Definition 3.25. Let X be a set. If Φ: X → Rf for some f ∈ N, we define the
resulting (bilinear) kernel associated to Φ to be the kernel function k : X × X → R
given by

k(x, x′) = Φ(x) · Φ(x′).
Φ is often called the feature map, and f the number of features. k might be called
a finite dimensional kernel.

The following theorem is more or less evident from (12) and (13) in Example 3.24.

Theorem 3.26. Let Φ: X → Rf be a set theoretic map, and k the associated
kernel function. Then k is positive semidefinite (we understand this to mean that
k is also symmetric). Moreover, k is positive definite iff for all n ∈ N and distinct
x1, . . . , xn ∈ X , we have that that the only solution in α ∈ Rn to

α1Φ(x1) + · · ·+ αnΦ(xn) = 0

is the trivial solution α = 0; equivalently, Φ is injective, and Φ(X ) is a set of
linearly independent vectors in Rf .
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Corollary 3.27. Let k be the kernel function associated to a “feature map” Φ: X →
Rf . If f < |X |, then k is not positive definite.

Remark 3.28. The “kernel trick” in Subsections 3.1 and 3.2 used the fact that for
the kernel function there, namely k associated to

Φ(x) =
(
1,
√
2x1,

√
2x2, x

2
1,
√
2x1x2, x

2
2

)
,

can be done by a computation in R2, namely

k(x,x′) = Φ(x) · Φ(x′) =
(
1 + x · x′)2.

Hence, if we don’t mind making computations in Rf for a function Φ: X → Rf ,
then you can still speak of a “feature map,” number of features, etc., without having
a “kernel trick” at hand.

3.8. Kernels: The High Road. One can define kernel functions in general, and
then to discuss the special case of kernel functions on a finite set, which are n× n
matrices. This was not done in the 2025 version of this course.

Definition 3.29. Let X be a set. A kernel on X is a function k : X ×X → R. We
say that:

(1) k is symmetric if for all x, x′ ∈ X , k(x, x′) = k(x′, x);
(2) k is positive semidefinite if k is symmetric for any n ∈ N = {1, 2, . . .}, any

x1, . . . , xn ∈ X , and all α1, . . . , αn ∈ R, we have

(15)
n∑

i,j=1

αiαjk(xi, xj) ≥ 0,

(3) k is positive definite if it is positive semidefinite, and if equality in (15) (i.e.,
the left-hand-side equals 0) iff all the α1, . . . , αn are zero.

WARNING 3.30. In the definition below we will eventually see that for X = R2,
the function X × X → R given by

(16) k(x, x′) = Φ(x) · Φ(x′)
with Φ as in (2) is a positive definite kernel. This is not trivial to prove. It can
also be a serious misconception to regard X as a vector space in this context, for
the following reason: Φ: R2 → R6 is not a linear function. This makes it non-
trivial (but still quite easy, once you see the trick) to prove that k above
is a positive semidefinite kernel function. Proving that a kernel is positive
definite can be a much more subtle matter (although not hard, once you see
a few tricks).

WARNING 3.31. If U, V are finite dimensional real vector spaces of positive
dimension, and Φ: U → V a linear10 map, then k : U × U → R given by (16) will
never be positive definite. Indeed, for any u ∈ U we have

k(u, u) + k(u,−u) + k(−u, u) + k(−u,−u) = k(u, u)(1− 1− 1 + 1) = 0.

Hence for x1 = u and x2 = −u and α1 = α2 = 1 we have
2∑

i,j=1

αiαjk(xi, xj) = 0.

10Added “linear” thanks to ML.
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* * *

You likely have seen such “kernels” when X is finite, as the following example
shows.

Example 3.32. Let n ∈ N and X = [n] = {1, . . . , n}. To any kernel k : X×X → R,
or equivalently k : [n]× [n] → R, we associate the n× n matrix K given by

K =


k(1, 1) k(1, 2) · · · k(1, n)
k(2, 1) k(2, 2) · · · k(2, n)

...
...

. . .
...

k(n, 1) k(n, 2) · · · k(n, n)


Then k is symmetric, positive semidefinite, and positive definite, respectively, iff K,
as a matrix, is, respectively, symmetric, positive semidefinite, and positive definite
in the usual sense of linear algebra. So k is symmetric iff KT = K, where KT is the
transpose of K. In the next section we will review the notion of positive semidefinite
and definite matrices, and discuss their spectral properties (i.e., eigenvalues and
eigenvectors).

WARNING 3.33. We now see that an n × n matrix is the same thing as a
kernel X × X → R where X is the finite set X = [n] = {1, . . . , n}. So if X
is an infinite set, morally a kernel k : X × X → R is a “square matrix of
infinite dimension.” If X is a real vector space (of positive dimension), then X is
uncountably infinite; ideally this should seem rather weird at first; of course, as we
get used to kernels on X = Rn, we will see that kernels naturally arise when, for
example, we solve linear ODEs (ordinary differential equations) or linear PDEs
(partial differential equation); however, these kernel functions use the linear
structure of functions X → R where X = Rn. Ultimately these functions often
satisfy k(x, x′) = f(x− x′), which reflects the group theoretic structure of Rn,
not its linear structure.

In applications we will sometime want kernels to be positive definite,
not merely positive semidefinite.

Remark 3.34. If k : X×X → R is positive definite, then we must have k(x,x) > 0;
if k is positive semidefinite, then we must have k(x,x) ≥ 0, but equality can occur.
(For example if k is identically 0, then k is positive semidefinite.)

Example 3.35. Let X = R2, and let Φ: R2 → R6 be given as in (2). For x, x′ ∈ R2,
let

k(x, x′) = Φ(x) · Φ(x′).
For any x ∈ X = R2 we have

k(x, x) =
(
x · x+ 1

)2
> 0.

However, we will soon prove that k is not positive definite.

WARNING 3.36. In the next subsection we will prove that if X is any set, and
Φ: X → Rn is any (set theoretic) map, then

k(x, x′) = Φ(x) · Φ(x′)
is positive semidefinite, but cannot be positive definite unless |X | ≤ n, where |X | is
the cardinality of X (i.e., we aren’t using anything about the linear structure of X ,
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even if X is a vector space). Hence this is never the case if X is an infinite set; for
this reason we will want to work in infinite dimensional inner product spaces; it is
most convenient to work in the special case where the space is closed, i.e., a Hilbert
space, although this is not strictly necessary, depending on what assumptions you
want to make on the kernel function, k.

WARNING 3.37. In mathematics, one usually writes k : X×X → R and k(x, y),
instead of k : X × X → R and k(x, x′) that is more common in ML (machine
learning).

3.9. Kernels on Finite Sets. There is a standard theorem in linear algebra that
if K is an n× n matrix, then:

(1) K is positive semidefinite matrix iff it can be written as K = MTM for
some matrix M ; and

(2) K is positive definite matrix iff it can be written as K = MTM for some
matrix M whose kernel is trivial, i.e.,

ker(M)
def
= {v | Mv = 0}

equals {0} (it follows that M must be m × n where m ≥ n, but one can,
moreover, find an M with K =MTM that is n× n).

The “if” part is easy to prove; the “only if” will be proven later on in these notes.
This therefore is a theorem about kernel functions X × X → R where X = [n] (or
any finite set).

Proposition 3.38. Let X = [n] be a finite set, and let k : X × X → R be a kernel
function that is positive semidefinite (respectively, definite). The there is a function
Φ: X → Rf such that k is the kernel function associated to Φ. More precisely, if
K ∈ Rn×n is the matrix associated to k, and if K = MTM for some M with
rank(K) = rank(M) = r, then we may take f = r.

Proof. We have K =MTM with rank(M) = r = rank(K). Then it suffices to take
Φ(j) be the j-th column of M (see (14) for an example that illustrates the idea).
The details are an exercise left to the reader, namely Exercise B.5. □

3.10. More Examples of Kernel Functions. If X is a finite set of size n, then
kernel functions X × X → R are essentially the same as n× n matrices. Hence we
have the following simple observation.

Proposition 3.39. Let p(x) be a polynomial or a convergent power series that
takes [0,∞) to itself (respectively, to (0,∞)). Then if K is a positive semidefinite
matrix, then is p(K) positive semidefinite (respectively, positive definite).

Proof. By the spectral theorem (which we prove in the next subsection), K has an
orthonormal basis, and hence KU = UΛ where U is an orthogonal matrix, and Λ
a diagonal matrix. Hence K = UΛU−1, and therefore p(K) = Up(Λ)U−1. □

Example 3.40. Consider p(x) = ext for some t ∈ R. Then if K is postive semi-
definite, then p(K) = eKt is positive definite.

Theorem 3.41. Let k, k̃ be two positive semidefinite (respectively definite) kernel
function X × X → R. Then so is their pointwise product, kk̃, i.e.,

(kk̃)(x, x′) = k(x, x′)k̃(x, x′).
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Proof. It suffices to check this in the case where X is finite, and then to use Defi-
nition 3.21.

If X = [n], then we know that k, k̃ are the kernels associated to, respectively,
Φ: X → Rf and Φ̃ : X → Rf̃ (by Proposition 3.38).

[A subtlety in this proof is that f, f̃ above can be as large as |X | = n, so f, f̃
depend on the size of the finite set X ; hence for an infinite X , there is no one value
of f, f̃ that works on all finite subsets of X . We will return to this subtlety later.]

Set Φ⊗ Φ̃ : X → Rf ⊗ Rf ′ ≃ Rff̃ to be the map given by

(Φ⊗ Φ̃)(x) = Φ(x)⊗ Φ̃(x).

Using Exercise B.6, part (a), we see that

k(x, x′)k̃(x, x′) =
(
Φ(x) · Φ(x′)

)(
Φ̃(x) · Φ̃(x′)

)
= (Φ⊗ Φ̃)(x) · (Φ⊗ Φ̃)(x′),

and so kk′ is the kernel function associated to Φ⊗ Φ̃. □

More information on kernels can be found in the Exercises sections (WHICH
SPECIFICALLY?).

3.11. A Positive Definite Kernel Function on R: PDE’s in Rn for n = 1,
i.e., ODE’s, for the Reluctant Reader. In this subsection we give a kernel
function on R that is positive definite. This comes from the Laplacian there, i.e.,
the map w(x) 7→ w′′(x).

3.11.1. Ancient Aspects. Many aspects of the spectral decomposition of the one-
dimensional Laplacian were well known to the ancient Greeks, and are easy to
demonstrate on any string instrument, such a guitar, violin, or a lyre (if you happen
to have one lying around). For example, if you pluck a guitar string near its bridge,
you will hear a “twangy” sound that represents hearing the higher harmonics of the
Laplacian: this means that you are modeling the guitar string by the real interval
[0, L] ⊂ R for some L > 0, and you are interested in the ODE (with various physical
constants suppressed, unimportant for mathematical intuition):

w′′(x) + λw(x) = 0 ∀x ∈ (0, L)

subject to the boundary condition

w(0) = w(L) = 0

which is called the Dirichlet boundary conditions. Of course, the solution to this
ODE gives the sine wave eigenfunctions:

wm(x) = sin(2πmx), λm = (2πm)2, m ∈ N,
where the wm are the “harmonics” and

√
λm represents the “frequencies” when

solving the wave equation uxx = utt.

3.11.2. The Poisson Equation in Rn, n = 1. Our positive definite kernel function
X × X → R that we will construct will be an example of a Green’s function in the
(very simple case) of solving the Poisson equation on the interval [0, L] subject to
Dirichlet conditions. In other words, we are given a function f : [0, L] → R, and we
want to solve the equation

∀x ∈ (0, L), w′′(x) = f(x), s.t. w(0) = w(L) = 0.

We claim that it suffices to solve this in the case where f(x) = δy(x), where δy(x)
is the Dirac delta function at x = y.



POSITIVE DEFINITE MATRICES AND KERNELS 19

The only problem is that the Dirac delta function is not a function in the classi-
cal sense, but is a generalized function; however, the Dirac delta function provides
crucial information to mathematicians since — according to ChatGPT and Google
Gemini (although they slightly differ on precise dates, at least in 2025), the 1820’s
(e.g., Fourier, Poisson, Cauchy, and Gauss), some 100 years before Dirac’s influen-
tial work. The notion of a generalized function is foundational to many parts of
analysis, and goes back to ...

———————————————————–
TO BE CONTINUED

3.11.3. Some Examples. Let f(x) = 6x. Then integrating twice we get

w′′(x) = x3 + C0 + C1x.

Hence the solution to the Dirichlet
———————————————————–
TO BE CONTINUED

3.11.4. What is the Dirac delta function? In class we gave the usual intuitive de-
scription of the Dirac delta function: it is not a function in the classical sense, but
a “generalized function” such that for any function f(x) we have∫

f(t)δy(t) dt = f(y).

So δy(x) is a function that is zero “away from x = y,” but has∫
δy(t) dt = 1.

This notion of a “generalized function” can be made rigorous, and then δy(x) is a
very important function: any other real valued function f can be written as the
integral

3.11.5. The ReLU, Heaviside, and Dirac Delta Functions. Consider the function:

ReLU(x)
def
=

{
0 if x ≤ 0, and
x if x ≥ 0.

This is called the ReLU function (rectified linear unit) in ML (machine learning);
it is also encounted in options trading. This function is the heart of solution of
the Poisson equation for the following reason: one can say that the derivative of
ReLU(x) is the classical Heaviside function:

Heaviside(x)
def
=

{
0 if x ≤ 0, and
1 if x ≥ 0.

The derivative of the Heaviside function does not exist in the usual sense, but we
are going to see that one can work with generalized functions, and in this setting
the derivative of the Heaviside function does exist and is just δ0(x), called a Dirac
delta function.

———————————————————–
TO BE CONTINUED
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3.11.6. The Differential Equations w′ = f(x) and w′′ = f(x). The usual ordinary
differential equation w′ = f(x,w), where w′ means dw/dx, has received tons of
attention, for many reasons. However, the differential equation

w′ =
dw

dx
= f(x)

does not recieve much attention: the reasons is that it has a simple solution, namely
this means that w is the integral of f(x), typically written as

w(x) =

∫
f(x) dx+ C

understanding the integral here is indefinite. Similarly the equation

w′′ = f(x)

has a general solution

w(x) =

∫ (∫
f(x) dx

)
+ C1x+ C0,

i.e., w is f(x) integrated twice, and the solution is only ambiguous up to a linear
term C1x+ C0; in other words, if

w′′ = f(x) and w̃′′ = f(x),

then (w − w̃)′′ = 0, and therefore w − w̃ = C1x+ C0.

3.11.7. Abstractions Aside... Ultimately, we want to convince you that the solution
to

∀x ∈ (0, L), w′′(x) = f(x), s.t. w(0) = w(L) = 0,

is given by the unique function

w(x) =

∫
f(y)G(x, y) dy,

and that for each fixed y,

G(x, y) = ReLU(x− y) + C1(y)x+ C0(y),

where C1(y), C0(y) are the unique constants (with y fixed) making G(x, y) satisfy

G(0, y) = G(L, y) = 0.

———————————————————–
TO BE CONTINUED

3.12. History of Kernels. Toward the end of this course we will explore the
version for an infinite set, X ; when Aronsjan organized the study of kernel functions
[?, ?], he pointed out that the abstract theorem was proven by Moore [?] and named
a reproducing kernel in Hilbert space (RKHS these days), although is tied to (and
perhaps implicit in) Mercer’s work [?].

[To be fair, there was a flurry of work on kernel functions around 1900 and
into the early-mid 1900’s; and some of this work had never been widely known
— or perhaps mostly forgotten — by the time of Aronszajn’s work [?], likely due
to the importance of Hilbert-Schmidt kernels, Bergman kernels, etc., that likely
eclipsed other work. Aronszajn [?] organized many aspects of work on kernels, and
popularized many aspects of their study (including giving a historical account of a
lot of work to date at the time).]
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To be continued.

4. Symmetric Matrices and Rayleigh Quotients

In this section we give the basic theory of symmetric matrices.

4.1. Symmetric Matrices and Rayleigh Quotients: Basic Theorems. Let
A ∈ Rn, i.e., A is an n× n matrix with real entries. We say that A is symmetric if
A = AT, where AT is the transpose of A. We use the notation

RA(v) =
(Av) · v
v · v

=
vTAv

vTv
which we call the Raleigh quotient of A, which we view as a real-valued function on
Rn \ {0}; clearly RA is invariant under scaling.

Theorem 4.1. Let A ∈ Rn×n be symmetric. Then A has real eigenvalues

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A),

with a real, orthonormal eigenbasis, i.e., Avj = λjvj for j ∈ [n], such that
v1, . . . ,vn are orthonormal (i.e., vi · vj = 0 if i ̸= j, and vi · vi = 1.

Proof. Let Sn−1 be the set of unit vectors in Rn. We easily see that ∥Av∥ is
bounded over all v ∈ Sn−1, and hence RA is bounded on Sn−1 (and therefore over
all of Rn \ {0}). Let v ∈ Sn−1 be a vector at which RA attains its maximum.

Let us prove that Av = λv for some λ ∈ R. Let u be any vector orthogonal to
v; then we easily see that for small ϵ,(

A(v + ϵu)
)
· (v + ϵu) = (Av) · (v) + 2ϵAv · u+O(ϵ2)

(using AT = A) and

(v + ϵu) · (v + ϵu) = v · v +O(ϵ2) = 1 +O(ϵ2)

(using v · v = 1 and v · u = 0). It follows that

RA(v + ϵu) = RA(v) + 2ϵ(Av) · u+O(ϵ2).

Since RA is maximized at v, it follows that

(Av) · u = 0.

Since u was an arbitrary vector orthogonal to v, it follows that Av is orthogonal
to each vector orthogonal to v, and hence Av = λv for some λ ∈ R.

Let λ1 = λ and v1 = v.
Next consider RA restricted to vertors orthogonal to v1, and say that this max-

imum, restricted to Sn−1, is attained at v2. By considering

RA(v2 + ϵu)

over all u that are orthogonal to both v2,v1 we similarly show that (Av2)u = 0.
Hence Av2 is a multiple of v1 and v2; since

(Av2) · v1 = v2 · (Av1) = λv2 · v1 = 0,

we have that Av2 is orthogonal to v1; since v1,v2 are orthogonal, we have Av2 =
λ2v2 for some λ2.

Next note that for j = 1, 2 we have

RA(vi) =
(Avi) · vi

vi · vi
=
λivi · vi

vi · vi
= λi.
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It follows that λ1 ≥ λ2, since λ1 is the maximum of RA over all Rn \ {0}.
Similarly, for any j = 3, 4, . . . , n, we inductively find vj as the maximum of RA

restricted to vectors orthogonal to v1, . . . ,vj−1, and show that Avj = λjvj for
some λj ∈ R, and that λj ≤ λj−1. □

Note that the last paragraph of this proof can be used to prove the following
more general (and sometimes useful) fact.

Lemma 4.2. Let A be a symmetric n×n matrix, and v1, . . . ,vj−1 ∈ Rn be mutually
orthogonal vectors with Avi = λivi for i ∈ [j − 1]. Then if vj is a vector on which
RA takes its maximum over all vectors orthogonal to v1, . . . ,vj−1, then Avj = λjvj

for some λj ∈ R (and RA(vj) = λj).

Appendix A. Exercises on Kernel Methods

A.1. Cows and Goldfish/Ghosts/etc.

Exercise A.1. Let Φ: R2 → R6 be given by (2), i.e.,

(17) Φ(x, y) = (1,
√
2x,

√
2y, x2,

√
2xy, y2).

Recall that we have argued by symmetry that

(18)
∫ θ=2π

θ=0

Φ(r cos θ, r sin θ)
dθ

2π
= (0, 0, 0, r2/2, 0, r2/2).

Finish the calculation in class that shows that for any x, y, ρ ∈ R with ρ ≥ 0 such
that x2 + y2 = ρ2, we have

f(r) = ∥(0, 0, 0, r2/2, 0, r2/2)− Φ(x, y)∥2

attains its minimum value at r2 = ρ2.

Exercise A.2. By a PDF (probability density function) on [0, 2π] we mean any
function p : [0, 2π] → R≥0 such that p is piecewise continuous (this condition can
be weakened) and ∫ θ=2π

θ=0

p(θ) dθ = 1.

Let Ψ: [0, 2π] → Rm be any continuous map for some m, i.e.,

Ψ(θ) =
(
ψ1(θ), . . . , ψm(θ)

)
where each ψi is a continuous map [0, 2π] → R. For any such Ψ, and any PDF, p,
the p-expected value of Ψ refers to

Ep[Ψ]
def
=

∫ 2π

0

Ψ(θ) p(θ)dθ,

i.e., the vector

(α1, . . . , αn) ∈ Rm, where αi =

∫ 2π

0

ψi(θ)p(θ) dθ.

A.2(a) The uniform density function is the PDF on [0, 2π] given by punif(θ) =
1/(2π). By a direct integration of trigonometric functions, show that for Φ
as in (17) we have

Epunif

[
Φ(r cos θ, r sin θ)

]
= (1, 0, 0, r2/2, 0, r2/2)

(we proved this in class using various symmetry arguments).
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A.2(b) Let

p(θ) =

{
1/(3π) if 0 ≤ θ ≤ π, and
2/(3π) if π ≤ θ ≤ 2π,

which we easily see is a PDF. Compute

Ep

[
Φ(r cos θ, r sin θ)

]
.

[Hence Ep of anything generally depends on p.]
A.2(c) Say that p is a PDF where p(π − θ) = p(θ) for all θ ∈ R. 11 12 Which

components of
Ep

[
Φ(r cos θ, r sin θ)

]
necessarily vanish? Explain. [Hint: you can reduce this expected value to
an integral from −π/2 ≤ θ ≤ π/2 (or [0, π/2] ∪ [3π/2, 2π] or something
similar), or you can think of the symmetry argument we used in class to
establish (18).]

A.2(d) Say that p is a PDF where for all θ,

p(π − θ) = p(θ) = p(−θ) = p(π + θ).

Show that

Ep

[
Φ(r cos θ, r sin θ)

]
= (1, 0, 0, r21, 0, r

2
2),

where r1, r2 are reals satisfying r21 + r22 = r2. [Hint: you can reduce this
expected value to an integral from 0 ≤ θ ≤ π/2, or you can think of the
symmetry argument we used in class to establish (18).]

A.2(e) Show that in (d), if we additionally assume that p(θ) = p(π/2 − θ) for
all θ ∈ R, then r21 = r22 = r2. [Hint: this symmetry means that for all
(x, y) on the unit circle we have p̃(x, y) = p̃(y, x), where p̃ is given by
p̃(r cos θ, r sin θ) = p(θ). Even if you don’t use this hint, it should provide
some intuition.] 13

Exercise A.3. Let D ⊂ R2 be an open subset of finite area. If ϕ : R2 → R is a
function, we define the D-average of ϕ to be

AvgD(ϕ) =

∫
D ϕ(x, y) dx dy

Area(D)
,

assuming the above integral makes sense. Similarly, if Φ: R2 → Rm for some m,
where Φ = (ϕ1, . . . , ϕm) and we define

AvgD(Φ) =
(
AvgD(ϕ1), . . . ,AvgD(ϕm)

)
.

For any ϵ > 0, let14

Dϵ =
{
(x, y)

∣∣ 1 ≤ x2 + y2 ≤ (1 + ϵ)2
}
.

11Here we are viewing θ as making sense for all θ ∈ R via the usual convention θ and θ + 2π

refer to the same angle. Hence θ means the same thing as θ + 2πk for any k ∈ Z. Hence θ can
viewed as specifying an element R/(2π)Z.

12If the reader wishes to stick to θ between 0 and 2π, then we have p(π−θ) = p(θ) for θ ∈ [0, π]
and then we have p(3π − θ) = p(θ) for θ ∈ [π, 2π].

13Corrected in 2025 by Z.J. and (later... again) by T.L.
14Two corrections here made in 2025 by T.L.
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A.3(a) Show that
1/2 ≤ AvgDϵ

(x2) ≤ (1 + ϵ)2/2

using (18) and the fact that dx dy = r dr dθ.
A.3(b) Fix an r ∈ R>0, and let

Dϵ =
{
(x, y)

∣∣ r2 ≤ x2 + y2 ≤ r2 + ϵ
}
.

Reasoning similarly, show that

lim
ϵ→0

AvgDϵ
(x2) = r2/2,

and similarly compute all of

lim
ϵ→0

AvgDϵ

(
Φ(x, y)

)
,

with Φ given by (17), i.e.,

Φ(x, y) = (1,
√
2x,

√
2y, x2,

√
2xy, y2).

Exercise A.4. Let F (x, y) = (x/a)2 + (y/b)2 for some fixed a, b ∈ R>0. Hence
F (x, y) = 1 describes the ellipse{

(x, y) ∈ R2
∣∣ x = a cos θ, y = b sin θ, for some θ ∈ [0, 2π]

}
.

For real ϵ > 0, let

(19) Dϵ =
{
(x, y)

∣∣ 1 ≤ F (x, y) ≤ 1 + ϵ
}
.

With Φ as in (17), show that

(20) lim
ϵ→0

AvgDϵ

(
Φ(x, y)

)
=

(
1, 0, 0, a2/2, 0, b2/2

)
.

[Hint: consider the transformation x̃ = ax and ỹ = by, and use the fact that dx̃ dỹ
is a fixed constant times dx dy (namely dx̃ dỹ = ab dx dy).]

Exercise A.5. Consider Exercise A.5, but say that we chose a different function
F (x, y) such that F (x, y) = 1 iff (x, y) lies on the ellipse (x/a)2 + (y/b)2 = 1. Say
that we define Dϵ as in (19). Does

lim
ϵ→0

AvgDϵ

(
Φ(x, y)

)
always equal

(
1, 0, 0, a2/2, 0, b2/2

)
, or does this limit depend on the choice of F?

[Hint: If it helps, you could first consider the special case where a = b = ρ;
ultimately, however, you want an argument that works for any positive a, b.] [Hint:15

you may use the co-area formula if you know what this means (however you can do
this computation by hand without this formula).]

Exercise A.6. Let (xtest, ytest) ∈ R2 be fixed. Consider the function

(21) g(a, b)
def
= ∥

(
1, 0, 0, a2/2, 0, b2/2

)
− Φ(xtest, ytest)∥2

with Φ (as usual) as in (17). (To understand why we are interested in g, consider
(20).)
A.6(a) For which values of a, b ∈ R does g(a, b) attain its minimum value? Show

that these are when a2 = 2(xtest)2 and b2 = 2(ytest)2. [Note that it follows
that (xtest, ytest) lies on the ellipse x2/a2+y2/b2 = 1; of course, (xtest, ytest)
lies on many ellipses centred at the origin.]

15We thank ?? in the 2025 version of this course for making this remark.
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A.6(b) Say that we insist that a = b. So for which value of a does g(a, a) attain
its minimum? [Hint: We’ve already solved this in Exercise A.1.]

A.6(c) Say that in part (a), ytest = 0. Give a very short argument – directly from
(21) (and without using the result in part (a)), that for any a, b ∈ R with
b > 0, g(a, 0) < g(a, b).

Appendix B. Exercises in Linear Algebra

Exercise B.1. B.1(a) Show that the following vectors in Rn, for n ≥ 5, are mu-
tually orthogonal:

(1, 1, . . . , 1), (−1, 1, 0, . . . , 0), (−1,−1, 2, 0, . . . , 0), (−1,−1,−1, 3, 0, . . . , 0),

(−1,−1,−1,−1, 4, 0, . . . , 0).

B.1(b) Say that you assign a linear algebra class to find an orthonormal eigenbasis
for the matrix:

K =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


with the instruction that when K has a multiple eigenvalue, λ, then vectors
are to be found using the standard method of solving the linear system
(K − λI)v = 0 (with “fixed” and “free” variables, or however you call
them), and then using Gram-Schmidt to turn your eigenvectors into an
orthonormal system. What are the first 4 orthonormal eigenvectors for K
with eigenvalue λ = 0 that your students will produce?

[Rhetorical question: will you then teach them about complex numbers and
circulant matrices?]

Exercise B.2. Show that if ζ1ζ2 are two distinct n-th roots of unity (i.e., ζn1 =
ζn2 = 1 and ζ1 ̸= ζ2), then the vectors:

(1, ζ1, ζ
2
1 , . . . , ζ

n−1
1 ), (1, ζ2, ζ

2
2 , . . . , ζ

n−1
2 )

are orthogonal in (either of the two) usual complex dot products. [Hint: ζ = ζ−1

for any complex number, ζ, such that |ζ| = 1.]

Exercise B.3. ∗ In class we briefly mentioned that the tensor product of two
R-vector spaces is an initial object in a certain “category” of biliear forms. This is
important to understand conceptually: in particular, if U,W are R-linear vector
spaces, then it makes no sense to write U ⊗ V ; you have to understand that this
is an initial object in a category, and there are many possible conventions to write
this as an R-linear vector space.16 (In class we gave the usual convention, which
has many good properties.)
B.3(a) Recall that if U,W are R-linear vector spaces, then a map

ϕ : U ×W → Z

is bilinear if for all u1, u2 ∈ U , w1, w2 ∈W , and reals α1, α2, β1, β2 we have

ϕ(α1u1 + α2u2, β1w1 + β2w2)

= α1β1ϕ(u1, w1) + α1β2ϕ(u1, w2) + α2β1ϕ(u2, w1) + α2β2ϕ(u2, w2).

16This question inspired by office hours with anonymousA.
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Show that any such ϕ, and any w ∈W , the map u 7→ ϕ(u,w) is linear map.
B.3(b) Let {u1, . . . , um} be a basis for U (hence U is finite dimensional) and sim-

ilarly {w1, w2, . . . , wn} be a basis for W . Let Z be any vector space. Show
that if {zij}i∈[m],j∈[n] is any set of vectors in Z, then there is a unique
bilinear map ϕ : U ×W → Z such that

ϕ(ui, wj) = zij .

B.3(c) Let ϕ1 : U × W → Z1 and ϕ2 : U × W → Z2 be two bilinear forms. A
morphism from ϕ1 to ϕ2 is a linear map

f : Z1 → Z2

such that ϕ2 = f ◦ ϕ1.
(i) Show that if {

ϕ1(ui, wj)
}
i∈[m],j∈[n]

is any set mn linearly indepedent vectors in Z (hence dim(Z) ≥ mn),
then for any ϕ2 there is at least one morphism from ϕ1 → ϕ2.

(ii) Show that if, in addition, dim(Z) = mn, then there is a unique mor-
phism from ϕ1 to ϕ2. In this case we say that ϕ1 is an initial object
(in the category of bilinear forms).

B.3(d) Show that if ϕ1, ϕ2 are any initial objects as above, then there is a unique
morphism from ϕ1 to ϕ2. Hence the initial objects are “unique up to unique
isomorphism.”

B.3(e) Find a “terminal object” in this category, meaning a bilinear map ϕ such
for each other bilinear form ϕ1, there is a unique morphism ϕ1 → ϕ. Is the
terminal object unique?

Exercise B.4. Exercise 3.7 in Supplemental Notes and Homework, https://www.
cs.ubc.ca/~jf/courses/531F.S2021/homework.pdf from CPSC 531F (2021)
https://www.cs.ubc.ca/~jf/courses/531F.S2021/index.html . [This exercise
is about the Fibonacci graph and its adjacency matrix (and its powers).]

Exercise B.5. In this exercise we are proving what is in fancy schmancy language
can be called the representability theorem for kernels over a finite set. This is just
Proposition 3.38.

B.5(a) Say thatK ∈ Rn×n andM ∈ Rf×n satisfyK =MTM . Let k : [n]×[n] → R
be the associated kernel function (i.e., k(i, j) is the (i, j)-th entry of K),
and let

Φ: [n] → Rf

by the function where Φ(i) is the i-th column of K. Then show that

k(i, j) = Φ(i) · Φ(j).

B.5(b) Assume the following result: if K ∈ Rn×n is any symmetric, positve semi-
definite matrix of rank r = rank(K), then there is an M ∈ Rr×n such that
K =MTM . Given this, prove Proposition 3.38.

B.5(c) In part (b), is it possible for there to exist an N ∈ Rf ′×n where f ′ < r but
M = NTN? Explain briefly.

https://www.cs.ubc.ca/~jf/courses/531F.S2021/homework.pdf
https://www.cs.ubc.ca/~jf/courses/531F.S2021/homework.pdf
https://www.cs.ubc.ca/~jf/courses/531F.S2021/index.html
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Exercise B.6. Recall that if S, T are finite sets, then the tensor product of two
vectors u ∈ RS and v ∈ RT is the vector in RS ⊗RT , which, identifying17 RS ⊗RT

with RS×T , is the vector u ⊗ v ∈ RS ⊗ RT , whose (s, t) component is u(s)v(t).
[This is essentially the tensor product of (7), but here we work more canonically,
i.e., not needlessly ordering the elements of S and T .]
B.6(a) Show that if u,u′ ∈ RS , v,v′ ∈ RT , then

(u · u′)(v · v′) = (u⊗ v)(u′ ⊗ v′).

B.6(b) If S : RS1 → RS2 and T : RT1 → RT2 are linear maps, then there is a unique
linear map W : RS1×T1 → RS2×T2 that satisfies

∀u ∈ RS1 , v ∈ RT1 , W(u⊗ v) = (Su)⊗ (T v),

and this linear map W, and that A ∈ RS1×S2 is the matrix representing
S (in the standard way, using the standard bases for RS1 and RS2), and
similarly for B ∈ RT1×T2 , then W coincides with A ⊗ B as described in
class (in 2025) and touched upon briefly in Subsection 3.3. [One writes
W = S ⊗ T , and W is called the tensor product or Kronecker product of
S and T .] [Hint: look at the class 2025 notes, and show that the tensor
product of matrices, as we defined it there (and visualized it in terms of
block matrices) is an example of such a map W. Now you have to prove
the uniqueness of W.]

Appendix C. Exercises in Spectral Graph Theory

Exercise C.1. The point of this exercise is to prove Proposition 3.19. So let
G = (V,E) be a simple graph that is d-regular.
C.1(a) Show that λ1(AG) ≤ d. We suggest the following approach: assume that

AGu = λu with u ∈ Rn \ {0} and λ > d. By possibly replacing u with −u,
we may assume u has at least one positive component; let the maximum
component of u be u(v) for some v ∈ VG (v is not necessarily unique).
Argue that it is impossible to have

λu(v) =
∑
v′∼v

u(v′).

[Hint: if you like, you can assume after scaling that u(v) = 1 and hence
u(v′) ≤ 1 for all v′ ∈ VG.]

C.1(b) Using the same approach, show that if AGu = du and u has a positive
component, and if the maximum component of u is attained at v ∈ VG,
then for all v′ ∼ v we have u(v′) = u(v).

C.1(c) Deduce from (c) that if G is connected, then the only eigenvectors with
eigenvalue d are a multiple of 1 (the all 1’s vector).

C.1(d) Deduce that the multiplicity of d as an eigenvalue is the number of con-
nected components of G.

C.1(e) Similarly deduce that if λn ≥ −d.

17If {es}s∈S and {et}t∈T are the standard bases of RS and RT respectively, then we may
identify es ⊗ et with e(s,t) ∈ RS×T , which sets up the bijectiion. One can do similarly with any
finite dimensional vector spaces, U, V , and any chosen bases for U and V , and the identification
is easily seen to be independent of the choses bases for U and V ; see Exercise ?? (perhaps this
will be added in 2025, perhaps later).
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C.1(f) Similarly deduce that if AGu = −du and u has a positive component, and
if the maximum component of u is attained at v ∈ VG, then for all v′ ∼ v
we have u(v′) = −u(v).

C.1(g) Similarly deduce that if G is connected and −d is an eigenvalue, then G is
bipartite.

C.1(h) Similarly deduce that the multiplicity of −d as an eigenvalue is the number
of connected components of G that are bipartite.

[Note: this type of approach is essentially called a “maximum principle” in ODE’s
and PDE’s: you consider the maximum value of a function, and use it to deduce
interesting conclusions and/or contradictions.]

Appendix K. Possible Exercises

These exercises MAY BE assigned in 2025.

Exercise K.1. The point of this exercise is to the many ways one can learn from
ChatGPT or a similar generative AI tool. This is more my personal experiment
with ChatGPT and ..., but you can probably generate something pretty similar. I’m
using the $20.00(USD)/month verion. Type the following questions into ChatGPT
or a similar LLM (large language model) AI (artifical intelligence algorithm). Type
the following or some reasonable versions thereof:

(1)

Appendix L. Exercises That Will Not Be Assigned in 2025

Exercise L.1. Add something here.

Appendix Z. Glossary of Some ML (Machine Learning) Terminology

This is a glossary of some machine learning terminology, translated into mathe-
matics and, at times, into English. [I am making this glossary as much for me as
for the reader.]

activation function: The function of the inputs that a particular node in an
ANN (artificial neural network) outputs to the nodes in the next layer; e.g.,
a function f : Rn → R given by f(x1, . . . , xn) = g(w1x1 + · · ·+ wnxn + b),
where g is a fixed function (e.g., ReLu, “sigmoid” (e.g., logistic, tanh)) for
each node (often the same for each layer or for the entire network), and
where w1, . . . , wn ∈ R — the weights — and b ∈ R — the bias — are
parameters that vary from node to node. The particular function g is often
chosen to make it feasible to compute a good set of parameters for each
node (so that the network computes the desired output over various inputs).

AI: artificial intelligence; not a precise term. This is an umbrella term for a set
of computer algorithms that supposedly has a sort of “artificial intelligence”
that tries to mimic human intelligence.

ANN: artificial neural network; a fairly precise term. A network meant to
simulate a real life brain. Usually the network is a set of nodes (or vertices),
typically arranged in layers, where the first layer consists of “input” to the
ANN, and the last layer is the “output” of the ANN. The nodes of the
network are meant to model real life neurons in a brain which, roughly
speaking, have many inputs (dendrites) and a single output (axon) that
“fires” an electrical impulse (action potential) when its inputs reach a certain
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“electrical threshold.” In ANNs, the activation function is rarely a threshold
function, since these functions would be too hard to tune (i.e., determine
good parameter settings for the threshold functions).

AS: artificial stupidity. A ridiculing and/or cynical term for an AI and/or
ML algorithm that performs poorly.

binary classifier: The output is {0, 1}.
linear separator: A hyperplane (codim 1 affine subspace) in Rn separating

two datasets, e.g., one representing cows, the other goldfish.
kernel functions: Particular kernel functions (in the mathematical sense) —

most often positive (semi)definite kernels — of interest to ML; i.e., maps
X × X → R (or C) whose restriction to each finite subset of X yields a
symmetric, positive (semi)definite matrix. This includes:

Exponential kernal: k(x,y) = eβx·y or a truncation of the power se-
ries.

Gaussian kernel: the function k(x,y) = e|x−y|/σ2

, based on the clas-
sical fundamental solution of the heat equation in Rn, k(x, t) =

(4πt)−n/2e|x|
2/(4t).

Polynomial Kernel: the (degree d polynomial kernel) function k(x,y) =
(x · y + c)d for c ∈ R>0 and d ∈ N.

logistic function (or ODE): (sometimes called the sigmoid function). So-
lutions to y′ = y(1 − y) (restricted to 0 < y = y(x) < 1); aside from
y′ = y, this is one of the simplest ODE’s in modeling: for y > 0 small,
this behaves like y′ = y; and y′ approaches 0 as y approaches 1. Explicitly:
y(x) = 1/(1+Ce−x), although one often translates and scales this function
and/or the ODE (this ODE is not linear).

ML: machine learning; not a precise term. One typically thinks of ANNs
(artificial neural networks), which are built as general purpose algorithms
with nodes arranged in layers, each node having a number of parameters
that are “learned” or “optimized” through “training data.” Then point is the
ANN used should be “general purpose,” rather than an algorithm specific
to the task at hand. Hence a computer chess playing program that is
designed by consulting experts in chess and using their knowledge would
not be considered an ML algorithm, but rather a broader class of algorithms
known as AI (artificial intelligence).

MNIST dataset: an early and influential dataset used to design and test
ML algorithms, specifically ANNs. This consists of a some 70,000 number
of handwritten images of the digits 0-9; 60,000 of the images are designated
as “training images,” used to set the parameters of the ANN (or other
algorithm) — also described as the learning phase of the ANN or algorithm
— and 10,000 designated as “testing images” to see if the algorithm with
the parameters found do a good job correctly identifying a handwritten
digit correctly. These days there are a large number of similarly well-known
“benchmark” datasets used by ANN designers to compete with one another.

one-hot: a standard basis vector. Say that S = {cat, dog, frog}, which we
identify with [3] = {1, 2, 3}, and say that we want to identify each picture as
an element of S. Then the one-hot values are (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ R3,
identified with RS .
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ReLU: ReLU(x) = x+
def
= max(0, x), the positive part of x, i.e., the Rectified

Linear Unit, used also in describing (financial) option payouts. Its deriva-
tive is the Heaviside function, and its second derivative is the Dirac delta
function.

separator: see “linear separator.” Could also refer to separators in graph
theory. A “quadratic separator” may refer to a “linear separator” for the
kernel map X × X → R where X = Rn given by k(x, y) = (x · y + c)2.

sigmoid: this is both an umbrella term and a specific term: the specific
term is the “logistic” function, i.e., solution to y′ = y(1 − y), often scaled
(this ODE is non-linear) and translated; more generally, it refers to any
“S-shaped” curve like the “logistic” function (e.g., tanh).

softmax: softmax(x1, . . . , xn)
def
= (ex1 , . . . , exn)/

∑n
i=1 e

xi . This is a smoothed
version of the max function; of course, this can be adjusted by scaling the
vector (x1, . . . , xn); similar to the stochastic vector (e−βE1 , . . . , e−βEn)/

∑n
i=1 e

−βEi

in statistical mechanics (β = −1 is the softmax).
TensorFlow (Keras): one of a number of popular ways to play around with

NN’s. tensorflow.keras is a Python library.
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