Feb 26, 2024 CPSC SZIF Algebraic topology! () Clam: Betti; Macpendent of the cycle length Principle ! Any Z simplizial complexes that are hearnearphic have the same homology groups & Betti numbers,

Bettin (Any) - Bettin (0)

5 2 1 il it i=0 O Alherwise

Definition X C IRh

We say that

contract, ble

if there's a continuous map? X $X \times (c, i) \rightarrow X$ real intervel X x { C} identiting X sit. $X \times \{1\} \longrightarrow op$

More formethy, there is pEX

and a map (continuous)

 $f: X \times (C, \tilde{I}) \longrightarrow$ \times

214, f(x,0) = X

flx, 1) = p

Excripte 1' Ball of radius 1 about (C, 0) in \mathbb{R}^2 $\left\{ \left(X_{1}, X_{2} \right) \left| X_{1}^{2} + Y_{2}^{2} \leq 1 \right\} = X \right\}$ p 5 (C,d) X (1-+) $f(\vec{x}, t)$ Ĺ Example 2 ; $\mathbb{S}^{n} \in \left\{ \begin{array}{c} \xrightarrow{} \\ \times \\ \end{array} \in \mathbb{R}^{n+1} \\ X_{1}^{2} + \underbrace{ \\ \times \\ \end{array} \times \\ \begin{array}{c} \\ \\ \end{array} \right\}^{n+1} \right\}$

Example 2 \mathbb{R}^{2} \mathcal{T}' \bigcirc without interio $(\beta_{,\tau})$ not Q peX 5 5 P R^3 \mathcal{S}^{\perp} ۱ ۱ \subset 3 Excorp $\left(\begin{array}{c} \beta_z \overline{} l,\\ net \end{array}\right)$

Example 4! A A X = Cone : Clami Any "cane" is contractible... Back to "thinking geometrically"

For XEIR, a neighbourhad of X is a set NCRⁿ 5,1. Ballp(x) CN for some poo,

 $B_{z}(x) = \left\{ x' \in \mathbb{R}^{2} \mid x - x' \notin \mathbb{R}^{2} \right\}$

 $B = l_{p} = \left\{ x \in \mathbb{R}^{2} \mid x - x' \mid$

A subsed U < Rh is expen ;£ () for every x EU, U is a neighbourhood of X $B_{3}^{op}(\vec{o}) = I_{0}^{op}(\vec{o})$ is open, (tr, b) CIR open inderval, ach Р Q

Gre adout Bolaier Bolaier Bolaier MIL Car [a,b] closed inter

Theorem: If $f: \mathbb{R}^n \to \mathbb{R}^m$, then -f is continuous iff - for every open salad UCRM, f'(U) < R is open Thmi f! X -> Y n n Rn Rn, we say wax is relatively dre in X (as X CIRn)

Means can be uniter XnU CT is op-Nh \bigcirc when 26 $C R^{2}$ Х $\chi \land ()$

f is continued iff

for any relatively open set

 $W_{r}, f'(W_{\gamma})$ is

ih X. C/Pe~

Det! A repologized space is a pow (X, O) where -X is a set - O' is a collection of subsets of X (we can "open sets") such that ! $(I) \phi, \chi \in \mathcal{O}$ ϕ , X are open (z) if $U_{1}, U_{2} \in \mathcal{O}, U_{1}, \Lambda U_{2} \in \mathcal{O}$

(3) If 20;) ie I and each Vied, then $() \cup; \in \mathcal{C}$ Clanni - Open subsets of IR" have proportives (1) - (3)

Yz. (×) Exercise ! X C Rh, then 1 relativity open subset of X f clsc(v)-(2)