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Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 531F: use this material
at your own risk. . .

Notes: In class I will often give (extra) examples and draw pictures to clarify
and provide intuition for the ideas in this article.

We often use italics for precise mathematical terms that we have not (yet) de-
fined; we use “quotation marks” to delimit terms that are vague or whose precise
definitions depends on the context and/or author(s). [A sentence or phrase in
square brackets is not essential to the rest of the article.]

0. Preface

The first time I gave this course was Spring Term 2025. The purpose of CPSC
531F was to introduce students to the necessary tools of algebraic topology, enough
so that they could understand so called “TDA (Topological Data Analysis).”

Of course, there is little sense in rattling off definitions and drawing diagrams if
you don’t give enough examples so that the audience has a good intuitive sense of
what is going on.

ETC.

Part 1. Simplicial Complexes and Abstract Simplicial Complexes

1. Introduction

A lot of TDA (topological data analysis) is based on simplicial homology. Some
textbooks, notably Munkres’ classic Elements of Algebraic Topology [Mun84], begin
by discussing simplicial complexes and simplicial homology. This is a source of a
lot of great examples and intuition. There are, however, numerous potential pitfalls
to this approach. Since Munkres’ textbook is quite expensive at present, I will also
refer to Matoušek’s textbook [Ms03] and Armstrong’s [Arm83], currently free to
download for UBC students.

UBC’s very own Prof. Klaus Hoechsmann [well-known for his contribution to
helping to hammer out the foundations of the modern (co)homological approach
to class field theory [CF67, CF10]], used to teach intro linear algebra courses by
teaching the entire course restricted to 2× 2 matrices and systems in the first two
weeks, and then going back over the entire course, again, this time in the general
case. Inspired by Klaus, we will likely do the analog for simplicial complexes, first
covering case of (1) 1-dimensional complexes in RN , and (2) complexes that we can
draw in R2 (hence of dimension at most 2).

2. The Crafty Definition of Simplicial Complexes

In this section we give the standard definition of a simplicial complex. It is
“crafty,” in the sense that if we change the definition slightly, things tend to go
badly, even though this is not obvious at first.

2.1. Simplicies in RN .

Definition 2.1. A finite sequence of real numbers (α0, . . . , αd) is stochastic if αi ≥ 0
for all i, and α0+· · ·+αd = 1. LetN ∈ Z≥0 = {0, 1, 2, . . .}, and let A = {a0, . . . ,ad}
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be a finite subset of RN . We say that a vector b ∈ RN is a convex combination of
a0, . . . ,ad (or of A) if we can write

(1) b = α0a0 + · · ·+ αdad, where (α0, . . . , αd) is stochastic

The convex hull of A is, denoted conv(A) or conv(α0, . . . , αd) is the set of all convex
combinations in A.

[More generally, the convex hull of an arbitrary set A ⊂ RN is defined as the
intersection of all convex sets in RN containing A.]

Definition 2.2. Let N ∈ Z≥0 = {0, 1, 2, . . .}, and let A = {a0, . . . ,ad} be a
finite subset of RN . We say that A is in general position (Munkres [Mun84] uses
geometrically independent, Matoušek [Ms03] uses affinely independent) if any of the
following equivalent conditions hold:

(1) the vectors ai − a0 with i ranging over [d] = {1, 2, . . . , d} are linearly inde-
pendent;

(2) the vectors ai − a0 span a d-dimensional subspace of RN ;
(3) the vectors ai − aj (with i, j ∈ [d] ranging over {0, 1, . . . , d}) span a d-

dimensional subspace of RN ;
(4) if M is the d×N matrix whose i-th row is ai − a0, then M is of rank d;
(5) the vectors a0, . . . ,ad aren’t contained in some (d − 1)-dimensional affine

linear subspace of RN (i.e., there is no subspace W ⊂ RN of dimension d−1
and vector t ∈ RN such that each ai can be written as t + wi for some
wi ∈W ).

EXERCISE: Any vector b in the convex hull of a set A = {a0, . . . ,ad} in RN

can be written as

(2) b = α0a0 + · · ·+ αdad for some stochastic vector (α0, . . . , αd).

Prove that if {a0, . . . ,ad} are in general position, then for any b satisfying (2),
the vector (α0, . . . , αd) is unique. If so the vector (α0, . . . , αd) is known as the
barycentric coordinates of b with respect to (a0, . . . ,ad) (we write the ai in a tuple
because their order matters when giving barycentric coordinates.

EXERCISE: Prove that if a0,a1,a2 ∈ RN are any three vectors in generalized
position, and if

Conv(a0,a1,a2) = Conv(b0,b1,b2),

then

{a0,a1,a2} = {b0,b1,b2}.

Do this by proving that none of b0,b1,b2 equals a0, then a0 cannot lie in
Conv(b0,b1,b2). [Hint: It may help to express b0,b1,b2 in barycentric coordi-
nates.] Then prove the analogous result where a0,a1,a2 is replaced by any arbitrary
set a0, . . . ,adRN in general position.

DRAW PICTURE HERE. Could be a triangle, and its medians, which all meet
at the centre of mass of all three vertices.

EXERCISE: This will be needed a bit later: for i ∈ N = {1, 2, . . .}, let xi =
(i, i2, i3) ∈ R3. Show that for any distinct i, j, k, ℓ ∈ N we have that xi,xj ,xk,xℓ

are in general position. You may use the fact that any Vandermonde matrix, such
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as a 4× 4 matrix of the form 
1 a1 a21 a31
1 a2 a22 a32
1 a3 a23 a33
1 a4 a24 a34


with a1, . . . , a4 distinct is invertible, i.e., has nonzero determinant.

EXERICSE: Consider the unit circle in R2, i.e.,

S1 = {(x1, x2) ∈ R2 | x21 + x22 = 1}.

Show that any line, ax1 + bx2 = c, in R2 intersects S1 in at most two points. Then
show that any three points on S1 are in general position.

Definition 2.3. Let d ≥ −1 and N ≥ 0 be integers. A d-dimensional simplex in
RN (or simply a d-simplex) refers to any set, S, that is the convex hull of a subset
A = {a0, . . . ,ad} ⊂ RN in general position. If so, then S uniquely determines the
set A = {a0, . . . ,ad} (see Exercise ??), and A is called the set of vertices of S. A
face of S is the convex hull of any subset of A; specifically, a d′-face of S is the
convex hull of a subset of A of size d′ + 1.

Note that a 0-simplex consists of a single point in RN , and there is only one
(−1)-simplex, namely the empty set ∅. [At times we will ignore ∅; some authors
prefer not to include ∅ as part of a simplicial complex, allowing only for d-simplicies
with d ≥ 0.]

Remark 2.4. Some authors use the term face of a d-dimensional simplex to mean
only a face of dimension d− 1. Also, when we deal with simplicial complexes later,
at times some authors use the term face to mean a 2-simplex, and tetrahedron to
mean a 3-simplex.

2.2. Simiplicial Complexes. Now we get to the following “crafty” definition.

Definition 2.5. A simplicial complex in RN is a finite set K whose elements are
simplicies in RN such that if S, S′ ∈ K, then (1) any face of S lies in K, and (2)
S ∩ S′ is a face both of S and of S′. If so, then we use |K| = |K|geom to denote
the union of the elements of K; hence |K| ⊂ RN . The vertex set of K, denoted
V = V (K), refers to the set of all vertices of simplies in K (or, equivalently, all
0-simplicies {v} contained in K.

Authors who don’t consider ∅ to be a simplex would write: either S∩S′ is empty,
or S ∩ S′ is both a face of S and of S′.

[DRAW SOME STANDARD PICTURES HERE. OR SEE Figure 2.1 of [Mun84]
or page 9 of [Ms03] or Figure 6.3 of [Arm83]]

The reason this definition is “crafty” is that:

(1) if you change this definition slightly, things go badly, or, at least, some
subtleties arise;

(2) (at this point) we have no idea why this definition (and not some variant
of it) is useful.

Let us elaborate on these two points.
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2.3. Abstract Simplicial Complexes. A simplicial complex, K, is a collection of
simplicies in RN . It is simpler to keep track of K by knowing: (1) its set of vertices
V = V (K) in RN , and (2) which subsets of V are the vertices of the simplicies in
K.

Definition 2.6. Let V be a set (not necessarily a subset of RN ). An abstract
simplicial complex with vertex set V refers to any set, Kabs, of subsets of V such
that (1) {v} ∈ Kabs for all v ∈ V , and (2) if A ⊂ Kabs, then Kabs contains all subsets
of A. We define the dimension of an element, A ∈ Kabs as |A|−1, and the dimension
of Kabs the largest dimension of an element of Kabs. Unless indicated otherwise, we
assume V (and therefore Kabs) is finite.

Example 2.7. Let G = (V,E) be a simple graph; this means that V is a set (finite
unless otherwise specified), and E is a collection of subsets of V of size 2 (hence
|E| ≤

(|V |
2

)
. Then Kabs = {∅}∪V ∪E (where we understand that V really refers to

the sets {v} with v ∈ V ) is an abstract simplicial complex.

Example 2.8. Let K ⊂ RN be a simplicial complex. Then each S ∈ K is a simplex
of dimension d, which is uniquely determined as the convex hull of a set of vectors
{a0, . . . ,ad} in general position. The abstract simplicial complex associated to K is
the simplicial complex whose vertex set consists of the 0-simplices ofK (i.e., the one-
element sets in K) and all subsets {a0, . . . ,ad} of V such that S = conv(a0, . . . ,ad)
is an element of K.

Remark 2.9. We warn the reader to remember that a simplicial complex, K, is a
set whose elements are simplicies, S, in RN for some N . Their union |K| = |K|geom
is a subset of RN . To K we associate its vertex set, V ⊂ RN , and an abstract
simplicial complex, Kabs, whose elements are subsets of V . Note that knowing K is
equivalent to knowning |K|, and this is equivalent to knowing Kabs.

2.4. Craftiness 1: Why Do Topologists Care About Simplicial Com-
plexes? Algebraic topology concerns itself with topological spaces. For any topo-
logical space, X, one can define its homology groups H0(X), H1(X), . . ., as well as
its homotopy groups (which we will not focus on). If Kabs is any abstract simplicial
complex, one can define its simplicial homology groups, Hsimp

i (Kabs), that can be
computed with finite dimensional linear algebra arising from the combinatorics of
Kabs. If K is a simplicial complex and Kabs its associated simplicial complex, then
|K| = |K|geom ⊂ RN , which therefore becomes a topological space, and it turns out
(after a fairly long proof...) that Hsimp

i (Kabs) = Hi(|K|). Hence, to a topologist, if
one has a topological space, X, that is isomorphic (or even merely homotopic) to
|K| for some simplicial complex, K, then we get a tool for computing Hi(X).

Working with topological spaces is in many ways much simpler than working with
simplicial complexes; we’ll see this when defining the product of two topological
spaces as opposed to the product of two simplicial complexes, and when proving
that two homotopic spaces have isomorphic homology groups. Hence we often want
to think in terms of topological spaces and the singular homology groups Hi(X),
even if our primary interest is simplicial complexes.

2.5. Craftiness 2: Can We Require Only that S ∩S′ ∈ K? It may seem that
one gets a reasonable notion of simplicial complex if one weakens the condition
that S ∩ S′ is a face of both S and S′ to the condition that S ∩ S′ ∈ K. Here is a
problem.



8 JOEL FRIEDMAN

Say that we define a “pseudo simplicial complex” (or whatever term you like...)
to be a set, K, of simplicies in RN such that (1) any face of an S ∈ K is again in
K, and (2) for any S, S′ ∈ K, we have S ∩ S′ ∈ K. If so, we can still associate to
K its union of elements |K|, and an abstract simplicial complex, Kabs, of subsets of
the vertices whose convex hull is an element of K. In this case, it turns out that
H1(|K|) and Hsimp

1 (Kabs) are no longer equal. Let’s give an example.
For real a, b with a ≤ b, let [a, b] ⊂ R denote (as usual) the closed interval

{x | a ≤ x ≤ b}.

Kbad =
{
∅, {0}, {1}, {2}, [0, 2], [0, 1], [1, 2]

}
,

which is not a simplicial complex, since [0, 2] ∩ [1, 2] = [1, 2] which is not a face
of [0, 2]. However, it does satisfy the condition that S ∩ S′ ∈ Kbad whenever
S, S′ ∈ Kbad. If we look at the sets of vertices of the elements in Kbad, we get an
abstract simplicial complex:

Kbad
abs =

{
∅, {0}, {1}, {2}, {0, 2}, {0, 1}, {1, 2}

}
.

However, s0, s1, s2 ∈ R2 are any three vectors in general position, then the abstract
simplicial complex

Kabs =
{
∅, {s0}, {s1}, {s2}, {s0, s2}, {s0, s1}, {s1, s2}

}
is combinatorially the same abstract simplicial complex, after renaming the vertex
i of Kbad

abs to si in Kabs. However, Kabs has its vertices in R2, and the associated
simplicial complex is

K =
{
∅, {s0}, {s1}, {s2}, conv(s0, s2), conv(s0, s1), conv(s1, s2)

}
,

so |K|geom is a triangle (without the interior) in R2. Kabs is also a graph, and
as a graph it has exactly one cycle. We will see that if an abstract complex is a
graph with a single cycle, then its Hsimp

1 is one-dimensional, and similarly for one-
dimensional topological spaces in RN andH1 (under mild restictions, understanding
“cycle” to be its intuitive meaning). Hence we will have

Hsimp
1 (Kbad

abs ) ≃ Hsimp
1 (Kabs) ≃ H1(|K|) ≃ R;

and by contrast, since |Kbad| is the interval [0, 2], which has no “cycles,” it will turn
out that

H1(|Kbad|) ≃ R0 = {0}.
So when defining simplicial complexes, replacing the condition that “S ∩ S′ is a

face of both S, S′” with “S ∩ S′ ∈ K” allows for degenerate situations where the
value of H1 is the “wrong” value, i.e., does not agree with simplicial homology.

2.6. Craftiness 3: Why Insist that K be Finite? Say that in Definition 2.1
we allow K to be infinite. Then the following sets

A =
{
{P}

∣∣ P ∈ {0, 1, 1/2, 1/3, 1/4, . . .}
}
, B =

{
{Q}

∣∣ Q ∈ {0, 1, 2, 3, 4, . . .}
}

are simplicial complexes, each consisting of a countably infinite set of vertices in R,
with no 1-simplicies joining the vertices. Hence it seems like A and B should be
the “same complex,” and this intuition is correct.

However, if X,Y ⊂ R, we usually define a function f : X → Y to be continuous
iff

(3) ∀x0 ∈ X, lim
x→x0

f(x) = f(x0)
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(of course, have to make this precise...). [You have probably seen this definition if
X = Y = R, i.e., a function f : R → R, but this turns out to be the “correct” defi-
nition when X,Y ⊂ R where X and Y are understood as “embedded (topological)
spaces” R.]

But the function f : |A| → |B| given by f(0) = 0 and f(1/n) = n for n ∈ N fails
to satisfy (3), since as n → ∞, 1/n → 0, but f(1/n) = n does not tend to 0 as
n→ ∞.

Hence the topologies (or metrics) we put on |A| and |B|, i.e., the sense in which
(3) is interpreted, will not be the sense as if we view both |A|, |B| as subsets of R.

By contrast, ifK,L are finite simplicial complexes, with |K| ⊂ RN and |L| ⊂ RM ,
then (3) is the “correct” condition to say that a function f : |K| → |L| is continuous.
We’ll return to this when we review some point-set topology a bit later.

Remark 2.10. Although in TDA we may always work with simplicial complexes
K that are finite, we don’t have that luxury in topology. Indeed, R and the open
interval (0, 1), can never be isomorphic as topological spaces (or homeomorphic) to
|K| for a finite simplicial complex, K, since in this case |K| (with its “reasonable”
topology) will be compact, and R and (0, 1) are (isomorphic as topological spaces
and) both non-compact.

3. Graphs and Simplicial Complexes

Definition 3.1. Let K ⊂ RN be a simplicial complex. For each n ∈ Z≥0, we define

Kn
def
= {S ∈ K | dim(S) ≤ n},

where dim(S) denotes the dimension of S. We say that K is of dimension n if n is
the smallest integer such that Kn = K. Recall that V = V (K) ⊂ RN is the vertex
set of K. Each simplex of dimension 1 in K is a simplex on two points {v, v′}, with
v, v′ ∈ V ; we refer to the set of all such pairs {v, v′} as the edge set of K, denoting
it by E = E(K). We call G = (V,E) the graph associated to K.

It follows that G above is equal to the abstract simplicial complex associated to
K1, i.e., the simplicial complex we get by discarding all simplices of dimension 2 or
more.

[DRAW SOME EXAMPLES. For example, the complete graph on 4 vertices can
be drawn in the plane, with three vertices in general position and a fourth in the
interior of the convex hull of the three vertices.]

A complete graph on 5 vertices refers to any graph G = (V,E) where |V | = 5 and
E consists of all pairs of distinct vertices (hence |E| =

(
5
2

)
). [We similarly define

the complete graph on any number of vertices.] It is well-known that the complete
graph on 5 vertices is not planar (in class we will explain what this means; we won’t
prove this theorem). Let us state a corollary.

Theorem 3.2. Let K be a simplicial complex in R2. Then the graph associated to
K cannot be a complete graph on 5 vertices.

However, we do have the following theorem. Recall that two simple graphs,
G = (V,E) and G′ = (V ′, E′) are isomorphic if there is a bijection ϕ : V → V ′

that induces an isomorphism from E to E′ in the sense that for all v1, v2 ∈ V ,
{v1, v2} ∈ E iff {ϕ(v1), ϕ(v2)} ∈ E′.
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Theorem 3.3. Let G = (V,E) be any graph. Then there is a simplicial complex,
K, in R3, whose associated abstract simplicial complex is isomorphic to G.

Proof. Let V = {v1, . . . , vn}, and let x1, . . . ,xn ∈ R3. Let K be the set of simplicies
consisting of (1) ∅, (2) {xi} for each i, and (3) the 1-simplicies with vertices xi,xj

for all those i, j such that {vi, vj} ∈ E.
We claim that we can find x1, . . . ,xn ∈ R3 so that K is a simplicial complex: we

need to check that for all S, S′ ∈ K we that that (1) all faces of S lie in K, and (2)
if S ∩ S′ is non-empty, then S ∩ S′ is a face of both S and S′. Condition (1) holds
automatically; condition (2) holds easily unless both S, S′ are 1-simplexes. So let
S be the 1-simplex with vertices xi,xj , and let S′ that with xk,xℓ; note that i ̸= j
and k ̸= ℓ. We claim that It suffices to check the following two claims:

(1) if i, j, k, ℓ are all distinct, then S ∩ S′ = ∅; and
(2) if j = k, then S ∩ S′ = xj = xk.

(all other cases reduce to one of these two, or the case where {i, j} = {k, ℓ}, in
which case S = S′ and there is nothing to check).

If i, j, k, ℓ are all distinct, we need to make sure that the equation

(4) αxi + (1− α)xj = βxk + (1− β)xℓ

has no solutions with α, β ≥ 0; so consider any solution to the above equation.
EXERCISE: Show that this implies that the vectors xj−xi, xk−xi, and xℓ−xi

are linearly dependent, i.e., the span a subspace of dimension two or less.
Hence this case cannot occur if:

(5) ∀i, j, k, ℓ distinct, xj − xi, xk − xi, xℓ − xi are independent.

Next, if i, j = k, ℓ are otherwise distinct, we want to make sure that (4) has a
unique solution for α = 1 and β = 0, because if so then both sides of this equation
equal xj = xk. EXERCISE: show that if (4) has a solution other than α = 1 and
β = 0, then xj − xi and xℓ − xi are linearly dependent (i.e., are colinear). Hence
this cannot hold if

(6) ∀i, k, ℓ distinct, xk − xi, xℓ − xi are independent.

Of course, if n = |V | ≥ 4, (6) is implied by (5) since if xk − xi, xℓ − xi are already
linearly dependent for some i, k, ℓ distinct, then taking any j distinct from i, k, ℓ we
have that (5) does not hold.

For each i let xi = (i, i2, i3) ∈ R3. It is well known that any Vandermonde
matrix, such as a 4× 4 matrix of the form

1 a1 a21 a31
1 a2 a22 a32
1 a3 a23 a33
1 a4 a24 a34


with a1, . . . , a4 distinct is invertible, i.e., has nonzero determinant. EXERCISE:
Use this fact about Vandermonde matrices to show that the choice of xi as given
satisfies (5) and (6). □

EXERCISE: Let Kabs be an abstract simplicial complex of dimension at most 2,
i.e., each set in Kabs has at most 3 elements. Show that there is a simplicial complex
S ⊂ R5 whose associated abstract simplicial complex is Kabs.



INTRODUCTION TO SIMPLICIAL HOMOLOGY 11

EXERCISE: Let Kabs be an abstract simplicial complex of dimension at most d,
i.e., each set in Kabs has at most d + 1 elements. Show that there is a simplicial
complex S ⊂ R2d+1 whose associated abstract simplicial complex is Kabs.

Part 2. Simplicial Homology of Abstract Simplicial Complexes

4. Simplicial Homology Groups

In this section we introduce the simplicial homlogy groups of abstract simplicial
complexes. We will focus on simplicial complexes of graphs and of complexes that
we can “draw” in R2.

4.1. Simplicial Homology Groups of Graphs. Let G = (V,E) be a simple
graph. We will define the homology groups, H0(G) and H1(G) as R-vector spaces.

4.1.1. 0-forms and formal linear combinations. First, by a 0-form or a 0-
dimensional chain on a G = (V,E) we mean the set C0(G) consisting of “R-linear
formal sums”

(7)
r∑

i=1

αivi,

where αi ∈ R and vi ∈ V .
For the reader new to this idea, let us explain the idea. First let us give the

usual definition, although it is a bit imprecise; you can find a precise (and tedious)
definition in Definition D.1 in Appendix D.

Definition 4.1. Let S be any set. A formal R-linear sum in S refers to a formal
sum

(8) α1s1 + · · ·+ αrsr,

where we identity two formal sums, writing

(9) α1s1 + · · ·+ αrsr = α′
1s

′
1+ · · ·+α′

r′s
′
r′ ,

if for each s ∈ S, the sum of the αi over those i with si = v equals the sum of the
α′
i′ over those i′ with s′i′ = s (clearly = in (9) is an equivalence relation). We use

R[S] to denote the set of all such formal sums; R[S] becomes a vector space under
the evident operations of + and scalar multiplication.

Hence the elements of S are a basis for R[S].
Hence C0(G) of a graph G = (V,E) is, by definition, R[V ]
For example, if V = {P,Q,R}, then R[V ] includes

2P, 3P + (1.7)R 2P + 3P − 8P +
√
7R

and if an element of v ∈ V does not appear in a formal sum, then this is the same
as (0)v appearing in the sum; hence

(−2)P + (3.2)Q, −2P + (3.2)Q+ 3R+ (−3)R, (16Q− 10P )/5

are formal sums that are equal.
One can also view a 0-form as a function V → R, namely for any f : V → R, one

associates the formal sum
∑

v∈V f(v)v.
1 [If V is infinite, one also has to insist that

1However, it is better to consider R[V ] and functions V → R as dual vector spaces, not the
same vector space.
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this function is zero at all but finitely many values of V .] However, it is usually
more convenient to work with formal sums R[V ], since often our formal sums only
involve a small number of vertices. Later we will see another advantage, namely if
S ⊂ T are sets, then one can naturally view R[S] ⊂ R[T ].

4.2. 1-forms. Next, by a 1-form on G we mean a formal sum
r∑

i=1

αi[v, v
′]

of ordered pairs [v, v′] such that (1) {v, v′} ∈ E, and (2) we understand that [v, v′] =
−[v′, v]. Equivalently, for each edge e = {v, v′} ∈ E we choose an orientation of
e = {v, v′}, meaning one ordered pair (v, v′); then we consider formal sums of
oriented edges [v, v′], but we understand that [v′, v] is a synonmym (or shorthand)
for −[v, v′].

Remark 4.2. Some authors use (v, v′) instead of [v, v′]. More on this below.

4.3. The boundary map ∂1 and homology groups. We use C0 = C0(G) to
denote the set of 0-forms of G, C1 = C(G to denote the set of 1-forms on G, and we
define a linear transformation

∂1 : C1 → C0
to be the unique linear map taking [v, v′] to v′ − v. We then define:

Hsimp
1 (G)

def
= ker(∂1) = {µ ∈ C1 |∂1(µ) = 0}, Hsimp

0 (G)
def
= coker(∂1) = C0/Image(∂1) = C0/∂1(C1).

We also define the Betti numbers of G to be

βi(G)
def
= dim

(
Hsimp

i (G)
)
.

Remark 4.3. If V = {v1, . . . , vn} are the vertices of G, then we can always orient
the edge in “increasing order,” i.e., if i < j, we orient {vi, vj} as (vi, vj). However,
it is important to see that any closed walk in the graph gives you an element in the
kernel of ∂1, but this is only true if you understand that (vj , vi) refers to −(vi, vj).
Here we use brackets, i.e., [vi, vj ] and [vj , vi] = −[vi, vj ] to remind us of this.

4.3.1. An example (which should explain why we want some theorems to compute
homology groups and Betti numbers).

Example 4.4. Let G = (V,E), where V = {A,B,C,D} and E consists of all two
element subsets of V ; in graph theory we say that G is a complete graph on four
vertices. One typically denotes this by K4, although one has to understand that
this is not a single graph, but an isomorphism class of graphs (e.g., there is also a
complete graph on vertex set V = {1, 2, 3, 4} or V = {α, β, γ, δ}). Hence a basis
for C0(G) is given by

(10) [A], [B], [C], [D],

and a basis for C1(G) is given by

(11) [A,B], [A,C], [A,D], [B,C], [B,D], [C,D].
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Since ∂1([A,B]) = [B]− [A], the table of this vector’s coefficients

[A,B]
[A] −1
[B] 1
[C] 0
[D] 0

shows that with respect to the basis (10)

∂1([A,B]) = [B]− [A] =


−1
1
0
0


{[A],[B],[C],[D]}

,

where the subscript on the vector indicates the basis elements in (10) and their
order. Similarly the full table

[A,B] [A,C] [A,D] [B,C] [B,D] [C,D]
[A] −1 −1 −1 0 0 0
[B] 1 0 0 −1 −1 0
[C] 0 1 0 1 0 −1
[D] 0 0 1 0 1 1

shows us that with respect to the bases (11) and (10), ∂1 is represented by the
matrix

(12) M =


−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1


By definition, H1(G) = ker(∂1) we solve the equations


−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1



α1

α2

α3

α4

α5

α6

 =


0
0
0
0


whose solutions α = (α1, . . . , α6) are precisely those α such that

α1[A,B] + α2[A,C] + α3[A,D] + α4[B,C] + α5[B,D] + α6[C,D] ∈ ker(∂1)

After a tedious Gaussian elimination2 we see that M in (12) has the reduced row
echelon form 

1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1
0 0 0 0 0 0


2Alternatively, in class we’ll avoid Gaussian elimination and just use some ad hoc row opera-

tions — can you see which ones?
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and it follows that dim(ker(M)) = 3 and rank(M) = 6 − dim(ker(M)) = 3; more-
over, ker(M) contains those α of the whose general form is given by

α =


α4 + α5

−α4 + α6

−α5 − α6

α4

α5

α6

 ,
and therefore

Hsimp
1 (G)

def
= ker(∂1)

=
{
(α4+α5)[A,B]+(−α4+α6)[A,C]+(−α5−α6)[A,D]+α4[B,C]+α5[B,D]+α6[C,D]

∣∣∣ α4, α5, α6 ∈ R
}
.

Since rank(M) = 3, we have dim(Image(M)) = 3 and dim(coker(M)) = 4 −
dim(Image(M)) = 1. It follows that

Hsimp
0 (G) ≃ R.

It is important to remember that

Hsimp
0 (G)

def
= coker(∂1)

def
= C0/Image(∂1)

is the quotient space C0/Image(∂1). Since the column reduced form of M in (12)
are linearly independent is 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1 −1 −1 0 0 0


one can describe the image of ∂1 as

Image(∂1) =
{
β1[A] + β2[B] + β3[C] + (−β1 − β2 − β3)[D]

∣∣∣ β1, β2, β3 ∈ R
}
,

and
coker(∂1) =

(
R[A] + R[B] + R[C] + R[D]

)
/Image(∂1).

We will elaborate on this in Subsection 4.7, and review the notion of quotient spaces
in Subsubsection 4.7.3. Note in the above that the Betti numbers of G,

βi(G)
def
= dim

(
Hsimp

i (G)
)
,

are given β1 = 3 and

β0 = dim
(
C0/Image(∂1)

)
= dim(C0)− dim

(
Image(∂1)

)
= 4− rank(M) = 4− 3 = 1.

Note also that the classical Euler characteristic of G, defined as χ(G) = |V | − |E|
satisfies

χ(G) = |V | − |E| = 4− 6 = −2, and β0 − β1 = −2.

This is not a coincidence, since ∂1 : C1(G) → C0(G) is a map from a |E|-dimensional
space to a |V |-dimensional space, and hence, from general facts in linear algebra,

β0−β1 = dim(coker(∂1))−dim(ker(∂1)) =
(
|V |−rank(∂1)

)
−
(
|E|−rank(∂1)

)
= |V |−|E| = χ(G).

Hence, if we know that β0 = 1, then we can determine β1, which determines the
groups Hsimp

i (G) up to isomorphism (as R-vector spaces).
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4.3.2. Main result on β0(G). In Subsection 4.7 we will prove the following theorem.

Theorem 4.5. Let G be a graph. Then:
(1) β0(G) is the number of connected components of G.
(2) If χ(G) = |V | − |E| is the usual Euler characteristic of G, then β0(G) −

β1(G) = χ(G).
(3) β1(G) is the minimum number of edges that we need to remove from G to

get a forest.

If you draw G in a plane (if you can, i.e., if G is a planar graph), then β1(G)
should look like the “number of independent cycles” or “number of holes” or “number
of polygons” in the graph.

[DRAW SOME EXAMPLES]
Any oriented, closed walk in the graph gives you an element of the kernel of ∂1.

4.4. Simplicial Homology for 2-Dimension Complexes. The problem with
looking just at the graph case is that it is unclear what to expect for higher-
dimensional simplicial complexes. This becomes clearer if we look at 2-dimensional
complexes.

Let Kabs be an abstract simplicial complex of dimension two. In this case, we
have

Kabs = {∅} ∪ V ∪ E ∪ F
(where we understand that V really refers to the sets {v} with v ∈ V and) where
F is the set of 2-faces, i.e., of size 3. We then define a 2-form of Kabs to be a formal
sum

r∑
i=1

αi[v0, v1, v2]

where {v0, v1, v2} ∈ F , and we refer to [v0, v1, v2] as an orientaiton of {v0, v1, v2},
and we understand that

[v0, v1, v2] = [v1, v2, v0] = [v2, v0, v1],

and that their “reverse orientations” are all equal

[v1, v0, v2] = [v0, v2, v1] = [v2, v1, v0]

and equal −1 times [v0, v1, v2]. DRAW PICTURE.
We then set C2 to be the vector space of 2-forms, and we define ∂2 : C2 → C1 to

be the uniquel linear map with

∂2[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1],

which we also write as:

[v̂0, v1, v2]− [v0, v̂1, v2] + [v0, v1, v̂0]

where the notation v̂i means “omit vi.” We easily check that ∂2 is well-defined over
2-forms, i.e., that

∂2[v0, v1, v2] = ∂2[v1, v2, v0] = ∂2[v2, v0, v1] = [v1, v2]− [v0, v2] + [v0, v1]

= −∂2[v1, v0, v2] = −∂2[v0, v2, v1] = −∂2[v2, v1, v0]
DRAW PICTURE.



16 JOEL FRIEDMAN

Now we get to the dramatic calculation that gives rise to homology groups:
∂1 ◦ ∂2 : C2 → C0 = 0 (!). This gives us a sequence of vector spaces with connecting
maps:

0 → C2
∂2−→ C1

∂1−→ C0 → 0

such that the composition of any two maps is zero.

Definition 4.6. By a chain complex

(13) · · · ∂3−→ C2
∂2−→ C1

∂1−→ C0
∂0−→ C−1

∂−1−−→ · · ·

we mean a sequence of R-vector spaces, . . . , C−1, C0, C1, C2, . . . plus maps ∂i : Ci →
Ci−1 for all i such that for all i, ∂i∂i+1 = 0. We often use (C•,∂•) or just (C,∂) to
denote this chain, or even C (with ∂ understood). The i-th homology group of this
chain complex is the R-vector space

Hsimp
i = Hsimp

i (C) = ker(∂i)/Image(∂i+1).

The point is that because ∂i∂i+1 = 0, it follows that the image of ∂i+1 is a
subspace ker(∂i). It is common to define the i-cycles of this chain to be the kernel
of ∂i, and to denote them by Zi (Zyklus in German), and the i-boundaries of this
chain to be the image of ∂i+1, denoted Bi. Then Bi ⊂ Zi and the homology groups
become:

Hsimp
i (C) = Zi(C)/Bi(C).

Drawing some pictures with graphs and 2-dimensional simplicial complexes explains
this terminology, and provides the intuition.

In practice, for simplicial homology of an abstract simplicial complex, Kabs, we
typically have Ci = 0 for i ≤ −1 (or i ≤ −2 when we define reduced homology), and
Ci = 0 for i > dim(Kabs). Hence the (conceivably “doubly-infinite”) chain complex
(13) is really a finite chain complex with a 0 vector space at either end.

In particular, for a graph G = (V,E) we have at most a single non-trivial map
C0, and the homology groups of

0 → C1
∂1−→ C0 → 0

are a somewhat “degenerate” case where:

Hsimp
1 = Z1/B1 = Z1 = ker(∂1), Hsimp

0 = Z0/B0 = C0/B0 = coker(∂1).

Whereas, for a 2-dimensional abstract simplicial complex, Kabs, we get a chain
complex

0 → C2
∂2−→ C1

∂1−→ C0 → 0

whereupon

Hsimp
2 = Z2 = ker(∂2), Hsimp

1 = Z1/B1 = ker(∂1)/Image(∂2), Hsimp
0 = C0/B0 = coker(∂0).

Let us give some examples. To simplify notation, we introduce the following
definition.

Definition 4.7. For a set V and subsets S1, . . . , Sr ⊂ V , the abstract simplicial
complex on vertex set V generated by S1, . . . , Sr is the smallest abstract simplicial
complex complex on vertex set V containing S1, . . . , Sr, i.e.,

⟨S1, . . . , Sr⟩V = Vsingle ∪ Power(S1) ∪ . . . ∪ Power(Sr),
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where Power(S) denotes the power set of S (i.e., the set of all subsets of S), and
Vsingle denotes the set consisting of ∅ and singletons (i.e., 1-element subsets) of V .
Similarly, the abstract simplicial complex generated by S1, . . . , Sr is

⟨S1, . . . , Sr⟩ = Power(S1) ∪ . . . ∪ Power(Sr)

(whose vertex set is therefore S1 ∪ . . . ∪ Sr).

Example 4.8. Let Kabs = ⟨{A,B,C}⟩ = Power({A,B,C}). (In 2025, we did this
example on Jan 22.) For the Ci(Kabs) we introduce the following bases, Bi:

(1) for C2: B2 = {[A,B,C]} (so dim(C2) = 1);
(2) for C1: B1 = {[A,B], [A,C], [B,C]} (so dim(C1) = 3); and
(3) for C0: B0 = {[A], [B], [C]} (so dim(C0) = 3).

With respect to these bases we have

∂2 =

 1
−1
1


B2,B1

since ∂2[A,B,C] = [B,C]− [A,C] + [A,B],

∂1 =

−1 −1 0
1 0 −1
0 1 1


B1,B0

, (compare with Example 4.4).

A tedious (but short) computation shows that Z1
def
= ker(∂1) equalsB1

def
= Image(∂2)

(indeed, both are one-dimensional); we easily see that Z2 = ker ∂2 = 0 (and, by
definition B2 = 0); and, similar to in Example 4.4, Z0 = C0(Kabs) and [equation
below corrected March 17, 2025 by a student]

B0
def
= Image(∂1) = {β1[A,B] + β2[A,C] + β3[B,C] | β1 + β2 + β3 = 0}

(which is two-dimensional). Hence

Hsimp
2 (Kabs) = 0, Hsimp

1 (Kabs) = 0, Hsimp
0 (Kabs) ≃ R.

Example 4.9. Let S1 = {A,B,C} and S2 = {A,C,D}, and

K2
abs = ⟨S1, S2⟩, K1

abs = K2
abs \ {S2}, K0

abs = K1
abs \ {S1}.

In other words, K0
abs is a graph, namely the complete graph on vertex set A,B,C,D

with the edge {B,D} omitted; K1
abs has the 2-face S1 added, and K2

abs has S1 and
S2 added.

A C

B

D

K0
abs

A C

B

D

K1
abs

A C

B

D

K2
abs

In Exercise A.6 we compute the Betti numbers of K0
abs,K

1
abs,K

2
abs. This exercise

shows that for i = 1, 2, 3 we have H0(Ki
abs) ≃ R and H1(Ki

abs) ≃ R3−i, where one
possible basis for H1(K0

abs) is τ1 = [A,B]+ [B,C]+ [C,A] and τ2 = [A,C]+ [C,D]+
[D,A]. In K2

abs, we have ∂2[A,B,C] = τ1 and ∂2[A,C,D] = τ2.
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Remark 4.10. Once we know the homology groups for a cone (see below), and
we realize that K2

abs is an example of a cone, then we will know that β0(K2
abs) = 1

and β1(K2
abs) = β2(K2

abs) = 0. This easily allows to compute βj(Ki
abs) for all j and

for i = 0, 1 as well.

4.5. General Simplicial Homology and Cones. For an arbitrary abstract
simplicial, Kabs, we similarly define the simplicial homology groups Hsimp

i (Kabs).
Namely, for any k-face {u0, . . . , uk} in Kabs we introduce the symbol [u0, . . . , uk],
with the understanding that the same symbol with u0, . . . , uk permuted represents
the same thing times ±1, depending on the sign of the permutation; i.e., for any
permutation σ of {0, 1, . . . , k},

[uσ(0), . . . , uσ(k)] = sign(σ)[u0, . . . , uk].

We use Ck = Ck(Kabs) to denote the set of k-form of Kabs, which are any formal
linear combination of above symbols. We define ∂k : Ck → Ck−1 as the unique linear
transformation with

∂k[u0, . . . , uk] =

k∑
i=0

[u0, . . . , ûi, . . . , uk](−1)i.

We easily verify that ∂k−1∂k = 0 for all k, and we define the k-th homology group
of Kabs to be

Hsimp
k (Kabs) = ker(∂k)/Image(∂k+1).

We will spend a lot of time studying Hsimp
k (Kabs) and the analogous homology

groups of topological spaces. We will also provide many tools to compute theses
groups. Here is a example of an abstract simplicial complex where the simplicial
homology groups are well-known.

Definition 4.11. If Kabs is a simplicial complex, P is not a vertex of Kabs, then
ConeP (Kabs) is the simplicial complex

ConeP (Kabs) =
⋃

A∈Kabs

{A,A ∪ P}.

Conversely, if Labs is a simplicial complex, and P is a vertex of Labs then we say
that Labs simplicially contracts at P if for all A ∈ Labs we have A ∪ {P} ∈ Labs.

Then we easily see that Labs simiplicially contracts at P iff Labs can be written
as ConeP (Kabs) for some Kabs.

Example 4.12. For any distinct u0, . . . , ui, let U = {u0, . . . , ui} and U ′ =
{u0, . . . , ui−1}. Then

⟨U⟩ = Coneui⟨U ′⟩.

We will soon show that for any Labs = ConeP (Kabs) we have H0(Labs) ≃ R (since
Labs is connected) and Hi(Labs) = 0 for i ≥ 1.

Remark 4.13. In class on Jan 22 and Jan 24, 2025, we decided to prove the above
result, which is essentially the first proof of Theorem 6.1. Let us review the way
we stated the proof in class:

(1) Let Pi ∈ Ci(Labs) be those linear combinations of the form [u0, . . . , ui] where
u0 = P . If τ ∈ Zi(Labs) ker(∂i), then we claim we can find a τ ′ such that



INTRODUCTION TO SIMPLICIAL HOMOLOGY 19

τ ′ ≡ τ (mod Bi+1) and τ ′ ∈ Pi. To do so, notice that if u0, . . . , ui are
distinct vertices of Labs, and P is distinct from u0, . . . , ui, then

∂i+1[P, u0, . . . , ui] = [u0, . . . , ui]− [P, u1, . . . , ui] + [P, u0, u2, . . . , ui]− · · · ,
= [u0, . . . , ui] + ρ

where ρ ∈ Pi. Hence

[u0, . . . , ui] ≡ [P, u1, . . . , ui]− [P, u0, u2, . . . , ui] + · · · (mod Bi+1).

Doing this to each such term [u0, . . . , ui] gives us a τ ′ ∈ Pi with τ ′ ≡ τ
(mod Bi+1).

(2) Since τ ′ and τ differ from an element in the image of ∂i+1, and since
∂i∂i+1 = 0, we have ∂iτ ′ = ∂iτ ; since ∂iτ = 0, we have ∂iτ ′ = 0.

(3) We claim that if τ ′ ∈ Pi and ∂iτ
′ = 0, then τ ′ = 0. This is because τ ′ is

a linear combination of terms of the form [P, u1, . . . , ui] in Ci, i.e., where
[u1, . . . , ui] ∈ Ci−1(Kabs). So we may write

τ ′ =
∑

[ui,...,ui]

αu1,...,ui [P, u1, . . . , ui]

where each set of size i−1, {u1, . . . , ui} ∈ Kabs appears once above (in some
“orietnation” [u1, . . . , ui]); since

∂i[P, u1, . . . , ui] ≡ [u1, . . . , ui] (mod Pi−1),

(i.e., [u1, . . . , ui] is the only term where a “P ” does not occur), we have

0 = ∂iτ
′ ≡

∑
[ui,...,ui]

αu1,...,ui
[u1, . . . , ui] (mod Pi−1),

and hence αu1,...,ui
= 0 for all terms in this sum.

(4) Since τ ′ = 0, and τ ′ ≡ τ (mod )Bi, we have τ ∈ Bi and therefore τ is 0 in
Hi(Labs) = Zi(Labs)/Bi(Labs).

However, we will likely save the second proof for a bit later, when we are more
comfortable with chains.

Example 4.14. In class in 2025, we gave the following example: say that Kabs =
⟨{A}, {B,C}, {D}⟩, and Labs = ConeP (Kabs). Then τ = [B,P ] + [P,C] + [C,B] is a
cycle. So we “clear out” the [C,B] term: since

∂2([P,C,B]) = [C,B]− [P,B] + [P,C],

we have
[C,B] ≡ [P,B]− [P,C] (mod B1(Labs)).

Hence we have τ ′ ≡ τ (mod B1(Labs)), where

τ = [B,P ] + [P,C] + [C,B], τ ′ = [B,P ] + [P,C] +
(
[P,B]− [P,C]

)
so τ ′ is already = 0 (!). Hence τ ≡ 0 (mod B1(Labs)), so τ is in B1(Labs) and so τ
is 0 in the quotient H1(Labs) = Z1(Labs)/B1(Labs)

Remark 4.15. We will be interested in cones for two reasons: First, the suspension
is an important construction built out of two cones. Second, if Kabs is a simplicial
complex and P a vertex, the set

(14) LargestContractibleP (Kabs) = {A ∈ Kabs | A ∪ P ∈ Kabs}
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is the largest subcomplex of Kabs that simplicially contracts at P ; it is of importance
for many reasons, including: (1) a way to simplify Kabs; (2) a way to find a good cover
of A; (3) a way to show the equality of two triangulations of the same topological
space, (4) etc. The subcomplex (14) is sometimes called the star of Kabs at P ,
although more often the star refers to only those sets in (14) that do not contain
P .

4.6. Some More Examples. It is not a bad idea to compute the groups
Hsimp

i (Kabs) for some examples beyond graphs, although this can wait. Munkres
textbook [Mun84] has a bunch of examples, including some 2-dimensional examples,
based on surfaces, Sections 1.5 and 1.6 (and beyond).

4.7. The Zero-th Homology Group and Betti Number.

4.7.1. Connected Components of Graphs.

Definition 4.16. Let G = (V,E) be a simple graph. A walk in G refers to a
sequence

(v0, . . . , vk) such that {vi, vi+1} ∈ E for 0 ≤ i ≤ k − 1;

we call this a walk of length k, from v0 (or beginning in v0), to vk (or ending in vk).
We say that v, v′ ∈ V are connected (in G), writing v ∼ v′, if there is a walk from
v to v′.

We easily see that V is partitioned into subsets V1, . . . , Vr where each Vi is
a maximal subset of vertices that are connected to one another; said otherwise,
v ∼ v′ is an equivalence relation, and hence its equivalence classes partitions V into
subsets V1, . . . , Vr of equivalent vertices.

Definition 4.17. Let G = (V,E) be a simple graph. A connected component
of vertices of G refers to a maximal subset V ′ ⊂ V of connected vertices of G.
If E′ ⊂ E is the (possibly empty) subset of edges between elements of V ′, we
refer to G′ = (V ′, E′) as a connected component subgraph of G. We often simply
write connected component the distinction is understood (or unimportant, i.e., when
speaking only of vertices). We say that G is connected if it nonempty and has a
single connected component.3

It follows that G = (V,E) is the “disjoint union” of its connected components
Gi = (Vi, Ei).

4.7.2. Walks and B0 = Image(∂1). If (v0, . . . , vk) is any walk in a graph, G = (V,E),
then

τ = [v0, v1] + [v1, v2] + · · ·+ [vk−1, vk] ∈ C1(G),
and

(15) ∂1(τ) =
(
[v1]− [v0]

)
+ · · ·+

(
[vk]− [vk−1]

)
= [vk]− [v0].

Notice that ∂1 has its image spanned by elements of C0(G) of the form [v′] − [v],
and these are of the form∑

v∈V

αvv such that
∑

v αv = 0.

3Here we don’t care if we “connected components” refers to a subset of vertices or the subgraphs.
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It follows that if
∑

v αvv ∈ C0(G) and is in the image of ∂1, then
∑

v αv = 0. It
follows that [v] ∈ C0(G) is not in the image of ∂1. It will easily follow that Hsimp

0 (G)
is one-dimensional if G is connected; however, it will be convenient introduce some
standard notation and terminology regarding quotient spaces.

4.7.3. Quotient Spaces. Here we review some essentially standard notation for quo-
tients of vector spaces. For more review, we refer to the reader to a sequence of
exercises beginning with Exercise C.2.

Notation 4.18 (Quotient of two vector spaces). Let U ⊂W be two vector spaces
over a field, F. For w ∈W , we use the notation w + U to refer to

w + U = {w + u |u ∈ U}.

We refer to any set w + U as a U -coset of W . [The sets of the form w + U form a
vector space in an evident fashion, denoted W/U , and called the quotient of W by
U or W modulo U .] We will also use w in W/U to refer to w + U when confusion
is unlikely. We also write w1 ≡U w2 when w1, w2 ∈ W are in the same element of
W/U . For w ∈ W , we will often say the image of w in W/U or simply w in W/U
to refer to w + U . The map w 7→ w + U is called the natural map W →W/U .

A standard argument shows that dim(W/U) = dim(W )− dim(U).

Example 4.19. Let W = R3, and U ⊂W be given by

U = {u = (u1, u2, u3) | u1 + u2 + u3 = 0}.

Then dim(U) = 2, andW/U refers to the cosets w+U with w ∈ R3; dim(W/U) = 1.
Notice that U⊥ ⊂ W is generated by (1, 1, 1), but one should be careful not to
identify U⊥ with W/U ; W/U is a space of U -cosets, and there is no “canonical”
basis vector for the 1-dimensional space W/U . Notice also that

(1, 0, 0)+W = (0, 1, 0)+W = (0, 0, 1)+W = −
(
(−1, 0, 0)+W

)
= 2
(
(1/4, 1/4, 0)+W

)
We refer the reader to Exercises C.2 for more examples.
Notice than in defining

Hi(C) = Zi(C)/Bi(C) = ker(∂i)/Image(∂i+1),

we have already implicitly used quotient spaces.
Hence if v, v′ are connected vertices in a graph G = (V,E), one can rewrite (15)

in any of the equivalent ways: (1) v ≡Image(∂1)
v′, (2) v ≡B0

v′, (3) v ∈ v′ + B0,
(4) v +B0 = v′ +B0, (5) etc.

Notice that the quotient is also defined for any two groups4 U ⊂W . For example,
when we write Z/3Z, we take U = 3Z = {. . . ,−3, 0, 3, . . .} and W = Z, and so Z/3Z
has three elements:

(1) 0 + U = U = 3Z,
(2) 1 + U = 1 + 3Z = {. . . ,−5,−2, 1, 4, 7, . . .}, and
(3) 2 + U = 2 + 3Z = {. . . ,−4,−1, 2, 5, 8, . . .}.

4A group is a set with a + operation that is associative, and has a 0 and inverses. However,
most authors use + to imply that the group is commutative, and would otherwise write g1 · g2 or
g1g2 to denote the group operation applied to g1, g2 in the group.
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This is equivalent to speaking of “the integers modulo 3,” which in computer science
we understand to mean the set {0, 1, 2} and addition is a+ b

def
= a+ b mod 3.

In particular, if U ⊂ W are vector spaces (over any field), then the are both
(commutative) groups under the + operation, and W/U becomes a vector space
(over the same field).

4.7.4. H0(G) if G is connected.

Proposition 4.20. Let G = (V,E) be a connected, nonempty graph, and v1 ∈
V . Then Hsimp

0 (G) is isomorphic to R and is spanned by the image of [v1] in
Hsimp

0 (G) = C0(G)/B0.

Proof. If
∑

v αvv is in the image of ∂1, then
∑

v αv = 0. Hence [v1] ∈ C0(G) is not
in B0 = Image(∂1), and so [v1] +B0 = [v1] + Image(∂1) is nonzero in Hsimp

0 (G). If∑
v αv ∈ C0(G) is an arbitrary element, then there is a walk from v to v1 in G, and

hence ∑
v

αv([v]− [v1]) ∈ B0 = Image(∂1),

and it follows that ∑
v

αv[v] ≡B0

(∑
v

αv

)
[v1].

Hence any element of Hsimp
0 (G) = C0(G)/B0 can be written as a scalar multiple of

[v1] in Hsimp
0 (G). □

At this point we will often write B0 instead of Image(∂1).
Another way to describe Proposition 4.20 is that using RV to denote the functions

V → R, and 1 = (1, 1, . . . , 1) ∈ RV , the above proof shows that

B0 = Image(∂1) = 1perp = {α ∈ RV | α · 1 = 0},

where · denotes the dot product, i.e.,

α · 1 =

n∑
i=1

αi = α1 + · · ·+ αn,

where |V | = n and we identify RV with Rn. Since

H0(C)
def
= C0/B0 = RV /1perp,

it follows that H0(C).

Remark 4.21. For any subspace U ⊂ Rn we have that each vector in Rn can be
written uniquely as a vector in U plus one in U⊥, where

U⊥ def
= {w ∈ Rn | ∀u ∈ U, w · u = 0}.

From this it follows that Rn/U is isomorphic to U⊥. However, Rn/U and U⊥

are not the same space. When we replace homology over R with homology over a
general field or ring, we will no longer have that Rn/U is isomorphic to what one
should call U⊥; indeed, U and U⊥ can intersect.

Example 4.22. Do the example of Kabs = Power({A,B,C}) \ {A,B,C}, the com-
plete graph on 3 vertices. Do another example: a complete graph, a tree, etc.
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4.7.5. H0(Kabs) for connected abstract simplicial complexes. Note that if Kabs is an
arbitrary abstract simplicial complex, since

(16) H0(Kabs)
def
= Z0/B0 = ker(∂0)/Image(∂1),

it follows that H0(Kabs) = H0(G) (not just isomorphic to, but actual equality!)
when G = (V,E) is the graph associated to Kabs (based on the 0- and 1-simplexes
of Kabs).

For this reason, we make the following definitions.

Definition 4.23. If Kabs is a general simplicial complex with vertex and edge
sets V,E, we define a connected component of vertices of Kabs to be that of the
graph G = (V,E); for any such connected component V ′ ⊂ V , we similarly define
the connected component subcomplex Kabs with vertex set V ′ to be the subcomplex
Power(V ′) ∩ Kabs.

The following proposition is implied by (16).

Proposition 4.24. Let Kabs be an abstract simplicial complex whose underlying
graph is G = (V,E) (i.e., V,E are the vertex set and edge set, respectively, of Kabs).
Then H0(Kabs) = H0(G), and β0(Kabs) is the number of connected components of
G.

4.7.6. Graphs that are not connected: first proof.

Proposition 4.25. Let G be a connected, nonempty graph. Let V1, . . . , Vr be the
vertices of the connected components of G. For i ∈ [r], let vi ∈ Vi. Then Hsimp

0 (G)
is isomorphic to R and is spanned by the images of [v1], . . . , [vr] in the quotient
space Hsimp

0 (G) = C0(G)/Image(∂1)[v0].

Proof. The proof of the case when G is connected shows that for any i, τ =∑
v∈Vi

αv[v] is equal to (
∑

v αv)[vi] modulo B0 = Image(∂1). Hence Hsimp
0 (G) =

C0(G)/B0 is generated by the vectors [v1], . . . , [vr] in Hsimp
0 (G). Now we claim that

[v1], . . . , [vr] are linearly independent in Hsimp
0 (G) = C0(G)/B0: if not, then for

some [vi] can be written as a linear combination of the other [v1], . . . , [vr]; we may
assume i = 1, and hence

[v1] =

k∑
i=2

βi[vi] (in their image in C0(G)/B0(G),

i.e., in C0(G) we have

[v1] =

k∑
i=2

βi[vi] + ∂1τ,

where τ ∈ C1(G), and hence

τ =
∑

{v,v′}∈E

αv,v′ [v, v′].

Let Ei ⊂ E be the set of edges between elements of Vi. Since each v, v′ with
{v, v′} ∈ E lies in exactly one of Ei, we can write

τ = τ1 + · · ·+ τr,

where τi contains only those 1-forms that are linear combinations of [v, v′] with
{v, v′} ∈ Ei. For V ′ ⊂ V , let 1V ′ ∈ RV be the vector whose V ′ components are 1,
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and whose other components are 0. Viewing [vi] as a function in RV (which is the
same thing as a function V → R), taking the dot product of 1V1 with the equation

[v1] =

r∑
i=2

βi[vi] +

r∑
i=1

∂1(τi)

(which is the same thing as viewing both sides as functions V → R and summing
over all the values of this function on v ∈ V1) we have all the dot products (or sums
over V ′) of the RHS are 0, and the dot product on the LHS is 1. □

Notice that this proof really works because G is a disjoint union of Gi = (Vi, Ei).
A better conceptual way to understand what’s going on is that there is a “direct
sum decomposition”

C1(G) ≃ C1(G1)⊕ · · · ⊕ C1(Gr),

and similarly for C0, and the map ∂1 “factors through” these two direct sum de-
compositions. Another way to say this is that ∂1 is a “block diagonal matrix” with
respect to bases for C1(G) and C0(G) built from individual bases for C1(Gi) and
C0(Gi) for all i. In this way it turns out that

Hsimp
0 (G) ≃ Hsimp

0 (G1)⊕ · · · ⊕Hsimp
0 (Gr)

(and similarly for all Hsimp
j , and for all simplicial complexes Kabs that are not

connected). Let us formalize this.

4.7.7. Direct sums, for graphs that are not connected. We will need to review block
matrices and direct sums at this point.

If U1, . . . , Ur are R-vector spaces, the direct sum of U1, . . . , Ur, denoted U1 ⊕
· · · ⊕ Ur, is the vector space

U1 ⊕ · · · ⊕ Ur = {(u1, . . . , ur) | ui ∈ Ui},
endowed with its evident structure as a R-vector space (i.e., addition and scalar
multiplication are performed “component-wise”5 ). If U1, . . . , Ur ⊂ U are subspaces,
we say that U decomposes as a direct sum of subspaces U1, . . . , Un or U is an internal
direct sum of U1, . . . , Un if any (all) of the equivalent conditions hold:

(1) each vector in U can be written uniquely as a linear combination of vectors
in the Ui;

(2) the map f : (U1 ⊕ . . .⊕ Un) → U taking (u1, . . . , un) to u1 + · · ·+ un is an
isomorphism;

(3) Span(U1, . . . , Ur) (the span of U1, . . . , Ur, i.e., the smallest subspace con-
taining all these vectors) equals U , and dim(U1)+ . . .+dim(Ur) = dim(U);

(4) the subspaces U1, . . . , Ur are linearly independent (i.e., ui ∈ Ui and u1 +
· · ·+ ur = 0 implies that ui = 0) and dim(U1) + . . .+ dim(Ur) = dim(U);

(5) etc.
If so, and if W decomposes as a direct sum W1, . . . ,Wm, then any linear map
L : U → W decomposes into “blocks” Lij : Uj → Wi, where for uj ∈ Uj , L(uj) =
L1,j(uj) + · · · + Lm,j(ur). By choosing bases for the Uj with j ∈ [r] and Wi with
i ∈ [r′], L becomes a “block matrix” whose “j-th block columns” represent the image
of L restricted to Uj , as it decomposes uniquely as a sum of W1, . . . ,Wm. If, in
addition, r = r′ and L(ui) ∈ Wi for all ui ∈ Ui, or equivalently Lji = 0 for j ̸= i,

5For example, (u1, . . . , ur) + (u′
1, . . . , u

′
r) = (u1 + u′

1, . . . , ur + u′
r).
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we say that L factors through these direct sum decompositions. In this case L is a
“block diagonal matrix.”

We will give some exercises to make these ideas concrete, starting with Exer-
cise C.3.

4.7.8. The Case of General Graphs. Now we address the case where G = (V,E)
is not connected. In this case, if V1, . . . , Vr are the vertex connected components
of G, then G is the disjoint union of (Vi, Ei); note that ∂1 factors through the
decompositions

C1(G) = C1(G1)⊕ · · · ⊕ C1(Gr), C0(G) = C0(G1)⊕ · · · ⊕ C0(Gr),

i.e., ∂1 takes C1(Gi) to C0(Gi), i.e., ∂1 is an r×r diagonal block matrix with respect
to a choice of basis vectors for C1(Gi) and C0(Gi). From this it follows that

Hsimp
0 (C) =

r⊕
i=1

Hsimp
0 (C).

This proves the main result of this subsection.

Proposition 4.26. Let G be a connected, nonempty graph. Let v1, . . . , vr be a
choice of one vertex in each connected component of G. Then Hsimp

0 (G) is iso-
morphic to R and is spanned by the images of [v1], . . . , [vr] in the quotient space
Hsimp

0 (G) = C0(G)/Image(∂1)[v0].

4.8. Z1(G) really represents “cycles”. In Exercise A.7 we show that in a graph
G, an element of Z1(G) = ker(∂1) arises from “cycles” in G. This justifies the
“Z” in Z1, which comes from the German term Zyklus; this idea is helpful when
considering what Zi means for all i ≥ 1.

4.9. Incidence Matrix and Laplacians. [This subsection may be skipped or
covered later.]

If G = (V,E) is a graph, then ∂1 : C1(G) → C0(G) is nothing other than the
classical “incidence matrix:” to build the incidence matrix, we fix an orientation
for each edge, meaning that for each e = {v, v′} ∈ E we pick some order for v, v′
(either (v, v′) or (v′, v)); the order doesn’t matter. Once we’ve done so then we can
identify C1(G) with RE , and ∂1RE → RV is a |V | × |E| matrix where the column
corresponding to an oriented edge (v, v′) has a +1 in the row corresponding to v′,
a −1 in that corresponding to v, and 0’s elsewhere. We then have that

∂1∂
T
1 : RV → RV

is a positive semidefinite matrix which we call the graph Laplacian of G, denoted
∆ = ∆G = ∂1∂

T
1 . For any graph we define:

(1) the adjacency matrix of G, A = AG, to be the |V | × |V |, 0, 1 matrix with a
1 in entry (v, v′) iff {v, v′} ∈ E; and

(2) the degree counting matrix of G, D = DG, is the diagonal |V | × |V | matrix
whose (v, v)-entry is the degree of v in G, i.e., the number of edges that v
is incident upon (this also equals the row sum of A corresponding to v).

We easily see that ∆G = DG −AG.
The matrices, ∆G, AG, ∂1(G), are the foundational matrices in the rich field of

algebraic graph theory.
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There is also an edge Laplacian, ∂T1 ∂1, mapping RE → RE , although it is less
prominent in classical algebraic graph theory. We use ∆edge

G to denote the edge
Laplacian of G, and use ∆vert

G to denote the classical graph Laplacian ∆G = DG −
AG described above.

Definition 4.27. By a harmonic 0-form (respectively, harmonic 1-form) in a
graph, we mean an element of the kernel of ∆vert

G (respectively, ∆edge
G . For i = 0, 1,

we use Hi(G) to denote the space of harmonic i-forms of G.

Theorem 4.28. Let G = (V,E) be a simple graph. Then if τ ∈ Hi(G) we have
∂iτ = 0. Moreover, there is an isomorphism Hi(G) → Hsimp

i (G) taking τ ∈ Hi(G)

to its class in Hsimp
i (G) = ker(∂i)/Image(∂i+1).

We easily see that H0(G) is the vector space of functions V → R that are constant
on each connected component (of vertices) of G.

The above will be generalized to abstract simplicial complexes of arbitrary di-
mension.

We remark that the eigenfunctions of ∆G and AG can give useful information
about the vertices of G. This is a big field; having some intuition about this can
help to understand Laplacians in abstract simplicial complexes of higher dimension.

4.10. Laplacians in Simplicial Homology. For an arbitrary abstract simplicial,
Kabs, we similarly define the simplicial homology groups Hsimp

i (Kabs). Namely,
for any k-face {u0, . . . , uk} in Kabs we introduce the symbol [u0, . . . , uk], with the
understanding that the same symbol with u0, . . . , uk permuted represents the same
thing times ±1, depending on the sign of the permutation; i.e., for any permutation
σ of {0, 1, . . . , k},

[uσ(0), . . . , uσ(k)] = sign(σ)[u0, . . . , uk].

We use Ck = Ck(Kabs) to denote the set of k-form of Kabs, which are any formal
linear combination of above symbols. We define ∂k : Ck → Ck−1 as the unique linear
transformation with

∂k[u0, . . . , uk] =

k∑
i=0

[u0, . . . , ûi, . . . , uk](−1)i.

We easily verify that ∂k−1∂k = 0 for all k, and we define the k-th homology group
of Kabs to be

Hsimp
k (Kabs) = ker(∂k)/Image(∂k+1).

For any k we define the k-th Laplacian of Kabs to be the operator:

∆k
Kabs

= ∂Tk−1∂k + ∂k∂
T
k+1

where we take a basis for Ci(Kabs) by choosing one orientation for each i-dimensional
set {v0, . . . , vi} ∈ Kabs. We define the space of harmonic k-forms, denoted Hk(Kabs),
to be the kernel of ∆k

Kabs
.

The following fact is easy to prove.

Proposition 4.29. With notation as above, any element Hk(Kabs) lies in the ker-
nel of ∂k. The map Hk(Kabs) → Hsimp

k (Kabs) taking τ ∈ Hk(Kabs) to its class in
Hsimp

k (Kabs) = ker(∂k)/Image(∂k+1) is an isomorphism.
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5. The Mayer-Vietoris Sequence for Graphs and Simplicial
Complexes

There are many tools used to compute homology groups (or compare homology
groups, etc.). The most basic one is a sort of “divide-and-conquer” tool, that lets
you compute the homology group of an abstract simplicial complex by subdividing
it into two parts. The case of graphs illustrates the basic principle.

Theorem 5.1 (Mayer-Vietoris). Let G = (V,E) be a graph, and let G1 = (V1, E1)
and G2 = (V2, E2) be subgraphs of G such that G = G1 ∪G2 (i.e., V = V1 ∪ V2 and
E = E1 ∪ E2). Then there is a chain complex

(17)

0 H1(G1 ∩G2) H1(G1)⊕H1(G2) H1(G)

H0(G1 ∩G2) H0(G1)⊕H0(G2) H0(G) 0

“µ1” “ν1”

δ

“µ0” “ν0”

that is exact, meaning that the image of any arrow equals the kernel of the successive
one.

The labels above the arrows in (36) (e.g., “µ1”, δ, etc.) will be useful in our
proof. This type of theorem is true in a number of different contexts, and is usually
called the Mayer-Vietoris theorem.

Example 5.2. Let G1 be the path (graph), whose vertices in order are

A,A′, B,B′, C, C ′, D,D′, E,

and let G2 be the same on A,A′′, B,B′′, C, C ′′, D,D′′, E. Any path graph has
β0 = 1 and β1 = 0. [We will prove a picture in class.] However G1 ∩ G2 is the
graph of isolated vertices A,B,C,D,E, and hence has β0 = 5 and β1 = 0. Similarly
G1∪G2 is connected has 4 independent cycles. In this case the exact sequence (36)
becomes:
(18)

0 H1(G1 ∩G2) = 0 H1(G1)⊕H1(G2) = 0 H1(G) ≃ R4

H0(G1 ∩G2) ≃ R5 H0(G1)⊕H0(G2) ≃ R⊕ R H0(G) ≃ R 0

“µ1” “ν1”

δ

“µ0” “ν0”

and hence, as vector spaces:

0 → 0 → 0 → R4 δ−→ R5 → R2 → R → 0.

Example 5.3. Of course, one could create a similar example where we go all the
way to Z, where β0(G1∩G2) = 26 and β1(G1∪G2) = 25. The fact that β0(G1∩G2)
and β1(G1 ∪G2) are very large and nearly equal is reflected in the exact sequence
in Theorem 5.1

0 → 0 → 0 → R25 δ−→ R26 → R2 → R → 0.
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Remark 5.4. It will take a bit of time to get used to the “exact sequences” that
the Mayer-Vietoris theorem provides. One thing that is easy to see is that if

0
dm+1−−−→ Vd

dm−−→ · · · d1−→ V0
d0−→ 0

is an exact sequence (of finite dimensional vector spaces), then

(19) dim(V0)− dim(V1) + · · ·+ (−1)d dim(Vd) = 0.

Hence, for example, in the above two examples, we know that G1, G2 are paths,
and hence β1(Gi) = 0 and β0(Gi) = 1 for i = 1, 2. Since G = G1 ∪G2 is connected,
we have that β0(G) = 1. If G1, G2 are any graphs satisfying the above, then the
Mayer-Vietoris sequence gives a long exact sequence

0 → 0 → 0 → H1(G)
δ−→ H0(G1 ∩G2) → R2 → R → 0,

and therefore (19) implies that

dim
(
H0(G1 ∩G2)

)
= dim

(
H1(G)

)
,

i.e.,
β0(G1 ∩G2) = β1(G) + 1.

When we prove Theorem 5.1 we will see that all arrows in the above diagram as
easy to construct, except δ; δ has various names, such as the “connecting map;” and
the “snake lemma” is a way of conceptualizing the construction. However, once you
see it here, you will know how to do this procedure (the “snake lemma”) in general.

5.1. Review of “Abstract” Linear Algebra. The more we work with homology
groups and exact sequences, the better it will be to think in terms of “(abstract)
vector spaces.” At UBC you would have seen this in Math 223 (Honours Linear
Algebra), and may have used textbooks like [J9̈4, Axl15]. Let us briefly explain
this.

At UBC, the basic, one-term, linear algebra course, Math 221, focuses on systems
of linear equations; one quickly sees the usefulness of working with

Rn = {(u1, . . . , un) | ui ∈ R}

and its “addition law” and “scalar multiplication law”

(u1, . . . , un)+(w1, . . . , wn)
def
= (u1+w1, . . . , un+wn), α(u1, . . . , un)

def
= (αu1, . . . , αun).

Rn is often (sometimes?) called a “concrete vector space.” A linear transformation
L : Rn → Rm is simply a map u 7→ Lu, where u ∈ Rn is viewed as a column
vector, and L is an m × n matrix with real entries (and Lu is the usual matrix
multiplication, interpreting a 1 × n matrix as a “column vector” lying in Rn) The
kernel of nullspace of L, i.e., ker(L) def

= {u |Lu = 0} is also an important concept,
and this is a subspace of Rn and also (often) called a “concrete vector space.” The
image of L, Image(L) def

= {Lu} is subspace of Rm, again (often) called a “concrete
vector space.”

At this point we know that the coker(L) is the quotient space Rm/Image(L) (see
Subsection 4.7.3, which we needed to define H0(G)

def
= coker(∂1)). Since coker(L)
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isn’t canonically (or naturally6) a subspace of Rm7 (or of Rm′
for any m′), most

authors wouldn’t call such a quotient space in Rn a “concrete vector space.” Instead,
we define a “vector space” (or sometimes “abstract vector space”) any set U with
an “addition law” and “scalar multiplication law” that satisfies a set of axioms that
hold for Rm.

The basic set of tools we need to work with “abstract” vector spaces — such as to
define linear independence, bases, etc. — is really no different than what is needed
for Rn; it just requires a bit of “getting used to.”8

Until now, many vector spaces we have seen are “concrete” vector spaces: for
example, to define the homology groups of a graph G = (V,E), for i = 0, 1, we
defined the i-forms (or i-chains) on G to be a space Ci(G); however, we can identify
C0(G) with R|V | (after ordering V ) and identify C1(G) with R|E| (after orienting
each edge and ordering the oriented edges). Notice that these identifications involve
some ad hoc choices, and are not canonical. We also defined

∂1 : C1(G) → C0(G),

but for calculations we often wrote ∂1 as a matrix. Then H1(G)
def
= ker(∂1) can be

viewed a subspace of R|E|, and H0(G)
def
= coker(∂1) is a quotient (and not really a

“concrete” vector space).
Most CPSC 531F have seen linear algebra (or “abstract linear algebra”) before,

but may not have seen any applications of it.9. In Appendix D we will gather a
summary of what we need in these notes; we also refer to the textbooks [J9̈4, Axl15],
or Chapter 0 of Matrix Analysis by Horn and Johnson ([HJ13], or earlier editions,
[HJ85, HJ90]).

5.2. Chains and Exact Sequences. More generally, a chain of vector spaces is
any sequence (V,d) of vector spaces and maps

(20) · · · d2−→ V1
d1−→ V0

d0−→ V−1
d−1−−→ · · ·

such that didi+1 = 0 for all i; we say that (20) is exact in position i if ker(di) =
Image(di+1), and we say that (20) is exact if it is exact in every position.

More generally, since didi+1 = 0 for all i, we have

Image(di+1) ⊂ ker(di),

6The term “canonical” and “canonically” are extremely important ideas, but are not mathe-
matically precise; in the context of vector spaces, a construction is “canonical” if it can be defined
without making some ad hoc choices of bases for the vector spaces involved; the general meaning
of “canonical” is a construction “without ad hoc choices,” especially when such choices change
the actual structure we construct. By contrast, the term “natural” is a completely precise (and
important) term, and is an adjective for a functor constructed in the context of category theory.
In the context of vector spaces, a “canonical” construction is almost ways “natural.” It is possible
that some authors differ from us on the meaning of “canonical” and “natural”...

7In Subsection 4.7.3 we mentioned that for Rn one can identify Rn/U with U⊥, but this doesn’t
work if R is replaced with an arbitrary field, and it is a conceptual mistake to view Rn/U and U⊥

as the same thing.
8In class I may mention the famous quote of John von Neumann responding to a physicist who

complained of not understanding the method of characteristics.
9Indeed, in a lot of computer science, you don’t really need to know about “abstract” vector

spaces.
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and we define the i-th homology group of (V,d) to be

(21) Hi(V,d)
def
= ker(di)/Image(di+1),

and the i-th Betti number of (V,d) to be

(22) βi(V,d) = dim
(
Hi(V,d)

)
.

To say that (V,d) is exact in position i is just to say that Hi(V,d) = 0, and to
say that it is exact means Hi(V,d) = 0 for all i).

We will often work with finite chains, i.e., chains (20) where Vi = 0 both for i
sufficiently small and i sufficiently large. In this case we write the chain (V,d) as:

0
dm+1−−−→ Vd

dm−−→ · · · d1−→ V0
d0−→ 0,

implying that Vi = 0 for i ≥ m + 1 and i ≤ −1. If each βi = dim(Hi(V,d)) is
finite, then we define the Euler characteristic of (V,d) to be

(23) χ(V,d) = β0 − β1 + · · ·+ (−1)dβd.

In Exercise A.17 we will show that if each Vi is finite dimensional, then

χ(V,d) = dim(V0)− dim(V1) + · · ·+ (−1)d dim(Vd).

5.3. Exact Sequences: Some Simple Examples. It takes a little while to get
used to exact sequences, but they are a sort of “counting” for vector spaces. For
example, if S1, S2 are finite sets, then inclusion-exclusion implies

|S1|+ |S2| = |S1 ∪ S2|+ |S1 ∩ S2|.
This equality can be expressed in terms an exact sequence as follows.

First, for a set, S, we let R[S] be (as usual) the set of R-linear formal combina-
tions of elements of S (Definition 4.1. For example, if S = {A,B,C}, then R[S]
includes:

0, 3A, (−3)A+
√
2C, B − (12)C, 3A+ 4B + 5C.

By convention, a formal sum can omit elements of S. In this way, if S ⊂ T , we can
view R[S] ⊂ R[T ] (or, at least, there is a natural inclusion of R[S] into R[T ]10).

Next, let S1, S2 ⊂ S be sets. We will build an exact sequence:

(24) 0 → R[S1 ∩ S2]
µ−−−−→ R[S1]⊕ R[S2]

ν−−−−→ R[S1 ∪ S2] → 0.

There is some flexibility in building µ and ν, but let us choose a simple way. Since
S1 ∩ S2 is a subset of S1 and of S2, we have

R[S1 ∩ S2] ⊂ R[S1], R[S1 ∩ S2] ⊂ R[S2],

and we will let µ be the map given by µ(τ) = (τ, τ). Similarly, both R[S1],R[S2] lie
in (or are naturally viewed as a subspace of) R[S1∪S2]. So set ν(σ1, σ2) = σ1−σ2.

Example 5.5. Let S1 = {A,B,C,D} and S2 = {D,E}. Then τ = 4D ∈ R[S1∩S2],
and µ(τ) = (4D, 4D) ∈ R[S1]⊕ R[S2]. As examples:

ν(3A+ 2C, 5D − E) = 3A+ 2C − (5D − E) ∈ R[S1 ∪ S2],

and
ν(µ(4D)) = ν(4D, 4D) = 4D − 4D = 0 ∈ R[S1 ∪ S2].

10Technically if t ∈ T \ S, then 0 = 4t − 4t, but 4t − 4t doesn’t lie in R[S]; so 0 ∈ R[T ] is
technically a larger equivalence class of expressions than is 0 ∈ R[S].
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Continuing on with the general situation for (24): for any τ ∈ R[S1 ∩ S2],

νµ(τ) = ν(τ, τ) = τ − τ = 0.

EXERCISE: Check that (24) is exact at each position. Show that exactness in
position R[S1∩S2] holds iff µ is injective; similarly, exactness in position R[S1∪S2]
holds iff ν is surjective.

Definition 5.6. By a short exact sequence we mean a chain of vector spaces:

(25) 0 → V2
d2−→ V1

d1−→ V0 → 0.

EXERCISE: Show that (25) is exact in position 2 (i.e., at V2) iff d2 is injective;
similarly, exactness in position 0 (i.e., at V0) holds iff d1 is surjective.

EXERCISE: Show that if U1, U2 ⊂ U are subspaces of an R-vector space U , and
U1 + U2 is their span, then give a short exact sequence

0 → U1 ∩ U2
µ−−→ U1 ⊕ U2

ν−−→ U1 + U2 → 0,

constructed similarly to (24).

Remark 5.7. If G1 ⨿G2 denotes the disjoint union11 of G1 and G2, then

Hi(G1 ⨿G2) ≃ Hi(G1)⊕Hi(G2).

Hence you could also write the long exact sequence in Theorem 5.1 using Hi(G1 ⨿
G2) instead of Hi(G1)⊕Hi(G2) everywhere.

5.4. Step One of the Proof of Theorem 5.1: The Commutative Diagram.
The vertex set of G1∩G2 is, by definition V1∩V2, and V = V1∪V2. Hence we have
a short exact sequence:

0 → R[V1 ∩ V2]
µ0−→ R[V1]⊕ R[V2]

ν0−→ R[V ] → 0.

where
µ0(τ) = (τ, τ), ν0(σ1, σ2) = σ1.

This is therefore a short exact sequence on 0-forms:

0 → C0(G1 ∩G2)
µ0−→ C0(G1)⊕ C0(G2)

ν0−→ C0(G) → 0.

We similarly get an exact sequence on 1-forms. Combining these maps and the ∂1
maps, we get the diagram

(26)

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0
,

where the ∂1 are all taken in their respective graphs (but all of them are the maps
given by ∂1([v, v

′]) = [v′] − [v], so, in a sense, they are all the same map). We
note that by our choices of µ0, µ1, ν0, ν1, this diagram “commutes” in the sense that
the composition of any horizontal arrow followed by a vertical arrow (starting in

11The disjoint union is a limit and not uniquely defined. You build this from the disjoint union
of sets, S, T , which can be taken to be S×{1}∪T ×{2} (hence this gives the union of two disjoint
sets, one isomorphic to S and the other to T , even if S, T have a non-zero intersection as sets).
Then one defines G1 ⨿G2 as the graph with vertex set V1 ⨿ V2 and edge set E1 ⨿ E2.
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a nonzero vector space on the top row) equals the same where we first take the
vertical arrow followed by the horizontal arrow; for example(

(∂1 ⊕ ∂1)µ1

)
(τ) = (∂1τ, ∂1τ) = (µ0∂1)(τ).

5.5. Step Two of the Proof of Theorem 5.1: The First Two Maps. (given
in class) to prove Theorem 5.1.

For example, to construct the map

H1(G1 ∩G2) → H1(G1)⊕H1(G2),

we take any element τ ∈ H1(G1 ∩ G2), i.e., τ ∈ C1(G1 ∩ G2) with ∂1τ = 0, and
easily see that

(∂1 ⊕ ∂1)µ1τ = (∂1τ, ∂1τ) = (0, 0),

and hence µ1 takes H1(G1 ∩G2) to H1(G1)⊕H1(G2).
We similarly construct the maps:

H1(G1)⊕H1(G2) → H1(G1 ∩G2).

5.6. Step Three of the Proof of Theorem 5.1: The Last Two Maps. Next
we describe how the map

C0(G1 ∩G2)
µ0−→ C0(G1)⊕ C0(G2)

induces a map

H0(G1 ∩G2)
“µ0”−−−→ H0(G1)⊕H0(G2).

The map “µ0” should come from the segment of (26):

(27)

C1(G1 ∩G2) C1(G1)⊕ C1(G2)
µ1

µ0

∂1 ∂1 ⊕ ∂1

C0(G1 ∩G2) C0(G1)⊕ C0(G2) ,

and we need to remember that

H0(G1∩G2) = C0(G1∩G2)/I12, where I12 = Image
(
∂1(G1∩G2)

)
= ∂1

(
C1(G1∩G2)

)
,

and similarly, for j = 1, 2,

H0(Gj) = C0(Gi)/Ij , where Ij = Image
(
∂1(Gj)

)
= ∂1

(
C1(Gj)

)
.

Since µ0(τ) = (τ, τ) in (27), the map “µ0” should map τ ∈ H0(G1 ∩G2) to “(τ, τ),”
provided that this makes sense (i.e., is well defined).

Recall that literally, C0(G1 ∩G2) = R[V1 ∩ V2], where V1, V2 are the vertex sets
of G1, G2, and for j = 1, 2, C0(Gj) = R[Vj ], which for j = 1, 2 gives an “inclusion
map”

ιj : C0(G1 ∩G2) → C0(Gj).

Hence we need to make sure that it extends to a linear map

(28) “ιj” : C0(G1 ∩G2)/I12 → C0(Gj)/Ij .

This will only work if ιj(I12) ⊂ Ij — the more general principle is this: if U1 ⊂ U
and W1 ⊂W are subspaces of vector spaces, then a linear map L : U →W extends
to a map L : U/U1 →W/W1 iff L(U1) ⊂W1. Let us give some examples.



INTRODUCTION TO SIMPLICIAL HOMOLOGY 33

5.7. Aside on Maps of Quotient Spaces, and their Approach via “Dia-
gram Chasing”. Recall the definition of quotient spaces of vector spaces Subsec-
tion 4.7.3. In this Subsection we explain that if U1 ⊂ U and W1 ⊂W are subspaces
of vector spaces, then a linear map L : U →W extends to a map L : U/U1 →W/W1

iff L(U1) ⊂W1.
At this point in CPSC 531F, we gave reviewed the definition of quotient spaces,

maps between quotient spaces, and gave a number of examples; see Section D.8 for
these examples in detail. Then we gave a “diagram chasing” view of this.

For examples of maps between quotient spaces, it is helpful to keep the following
examples in mind: first, in modular arithmetic:

(1) the identity map L : Z → Z extends to a map Z/6Z → Z/3Z;
(2) the identity map L : Z → Z does not extend to a map Z/3Z → Z/6Z; but
(3) the map L : Z → Z given by L(u) = 2u does extend to a map Z/3Z → Z/6Z,

since L(3Z) ⊂ 6Z, or, by example

L(1 + 3Z) = 2 + 6Z ⊂ Z/6Z.

Second, for vector spaces:

(1) Let U = W = F2, U1 = {(x, x)|x ∈ R}, and W1 = {(x,−2x)|x ∈ R}. Then
the identity map L : F2 → F2 does not extend to a map F2/U1 → F2/W1,
since L(U1) is not a subset of W1.

(2) However, the map L : F2 → F2 given by L(x, y) = (x + y,−5x + y) does
extend to a map F2/U1 → F2/W1, since L(U1) ⊂ L(W1), since L(x, x) =
(2x,−4x) ∈W1. For example, the three “coset representatives” of the coset
(0, 3) + U1,

(0, 3), (1, 4), (−1, 2) ∈ (0, 3) + U1 = {(x, 3 + x)|x ∈ R},

are respectively mapped to

(3, 3), (5,−1), (1, 7) ∈ (3, 3) + U2 = {(3 + x, 3− 2x) x ∈ R},

hence each is a “coset representative” of the coset (3, 3) + U1.

To express the last example “in the spirit of diagram chasing,” we write the
diagram:

(29)

U1 W1

L
U W ,

and we notice that if L(U1) ⊂ W1, then we get a (unique) map L′ : U1 → W1,
namely the restriction of L to U1, that gives us a commutative diagram:

U1 W1

L
U W

L′
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(where the newly constructed map L′ : U1 → W1 is indicated in a dashed line).
Now we claim that this gives us a map L′′ : U/U1 →W/W1:

U1 W1

L
U W

L

L′

L′′
U/U1 W/W1

where, again, the dashed arrow is the map L′′ : U/U1 → W/W1 that we need to
build. The details of building L′′ is as follows: pick a β ∈ U/U1, and let us detemine
L′′(β): to do so, we pick a β1 ∈ U mapping to β; then α1 ∈ L(β1) ∈ W and this
maps to an element α′

1 ∈W/W1:

U1 W1

L
U W

L

L′

L′′
U/U1 W/W1β ∈

β1 ∈ ∋ α1

∋ α′
1

Now we want to make sure that the α′
1 ∈ W/W1 we get doesn’t depend on the

choice of β1: so say that we choose another β2 ∈ U mapping to β ∈ U/U1: hence
β1 − β2 maps to 0 in U/U1; by exactness we have σ ∈ U1 maps to β1 − β2 (indeed,
by definition of U/U1, β1−β2 ∈ U1); let τ = L′(σ); by commutativity τ is taken to
τ1 ∈W that must equal α1−α2; hence, if α′

1 ∈W/W1 is as before, and α′
2 ∈W/W1

is the analog for β2, α′
1 − α′

2, is the image of τ under two vertical arrows. Now
notice that applying two vertical arrows takes W1 to 0 in W/W1; hence α′

1−α′
2 = 0

in W/W1, and hence α′
1 = α2 in W/W1. Hence the choice of β1 for β, used to define

α′
1 = L(β1) in W/W1, does not depend on the choice of β1.

U1 W1

L
U W

L

L′

L′′
U/U1 W/W10 ∈

β1 − β2 ∈

σ ∈ ∋ τ = L′(σ)

∋ τ1 = α1 − α2

∋ 0 = α′
1 − α′

2

The exact same “diagram chase” proves the more general result:
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Proposition 5.8. Consider any commutative diagram:

U1 W1

L0

L1

U0 W0

dU dW

Let, as usual, coker(dU ) = U0/Image(dU ), and let U0 → coker(dU ) be the canonical
map taking u ∈ U0 to its image in the quotient space (i.e., to u+Image(dU )). Doing
similarly for dW , we get a diagram:

U1 W1

L0

L1

U0 W0

dU dW

coker(dU ) coker(dW )

Then there is a unique map L′′ : coker(dU ) → coker(dW ) giving a commutative
diagram:

U1 W1

L0

L1

U0 W0

dU dW

coker(dU ) coker(dW )L′′

5.8. The End of Step Three of the Proof of Theorem 5.1. So to extend the
map

µ0 : C0(G1 ∩G2) → C0(G1)⊕ C0(G2)

to a map

H0(G1 ∩G2) → H0(G1)⊕H0(G2),

we need to verify that if τ, τ ′ ∈ C0(G1 ∩ G2) satisfy τ − τ ′ ∈ Image(∂1), then
µ0(τ) and µ0(τ

′) are in the same equivalence class (or coset) in H0(G1)⊕H0(G2).
However, since τ − τ ′ ∈ Image(∂1), we have ∂1σ = τ − τ ′ for some σ ∈ C1(G1 ∩G2),
and hence µ0(τ − τ ′) = ∂1(µ1(σ)), where this ∂1 refers to the middle verticle arrow
in (26). In class we show that you are really using the commutativity of the diagram
(26).

We similarly construct the last map in (26),

H0(G1)⊕H0(G2) → H0(G1 ∩G2),

because the second to last map, built just above, was based on the commutativity
of the horizontal and vertical arrows and nothing particular about these arrows.
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5.9. Step Four of the Proof of Theorem 5.1. The real heart of the argument
is to construct the map

H1(G1 ∪G2)
δ−→ H0(G1 ∩G2),

which is the more remarkable “diagram chasing” argument: for β ∈ H1(G1 ∪ G2)
we determine δ(β) as follows:

(1) By definition, β ∈ H1(G), and hence β ∈ C1(G) and satisfies ∂1β = 0:

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β

∂1β = 0

(2) Since ν1 is surjective, we have ν1(σ1, σ2) = β for some (σ1, σ2) ∈ C1(G1)⊕
C1(G2):

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β = ν1(σ1, σ2)(σ1, σ2)

0

(3) Since the diagram above is commutative, we have (∂1σ1, ∂1σ2) is mapped
by ν0 to 0.

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β(σ1, σ2)

0(∂1σ1, ∂1σ2)

(4) Hence, by short exactness (in the middle position) of the bottom row of the
diagram above, since (∂1σ1, ∂1σ2) maps to 0 under ν0, there is a τ ∈ C0(G1∩
G2) with µ0(τ) = (∂1σ1, ∂1σ2); by short exactness (in the C0(G1 ∩ G2)
position) of the bottom row, the map µ0 is injective, and hence this τ is
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uniquely determined by (∂1σ1, ∂1σ2):

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β(σ1, σ2)

0µ0τ = (∂1σ1, ∂1σ2)τ
(τ is unique)

(5) The way we found τ above depended on a choice of (σ1, σ2) such that
ν1(σ1, σ2) = β. However, we claim that the equivalence class (or coset) of
τ in H0(G1 ∩G2) does not depend on the choice of (σ1, σ2). To prove this,
say that (σ′

1, σ
′
2) satisfies ν1(σ′

1, σ
′
2) = β, and say that τ ′ is the element of

C0(G1∩G2) that would result by the analogous process or “diagram chase”:

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β(σ′
1, σ

′
2)

0µ0τ
′ = (∂1σ

′
1, ∂1σ

′
2)τ ′

Then we now prove that τ ′ and τ are in the same class (or coset) in H0(G1∩
G2): indeed, by linearity we can subtract the digram for τ ′ from that for
τ :

(30)

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β − β(σ1, σ2)− (σ′
1, σ

′
2)

(∂1σ1, ∂1σ2)− (∂1σ
′
1, ∂1σ

′
2)τ − τ ′

In particular

(31) µ0(τ − τ ′) = (∂1σ1, ∂1σ2)− (∂1σ
′
1, ∂1σ

′
2).

Since β − β = 0 (in the upper right or C1(G) position), we have ν1 takes
(σ1, σ2)− (σ′

1, σ
′
2) to 0, and by exactness of the top row we have that

(32) (σ1, σ2)− (σ′
1, σ

′
2) = µ1(α)
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for some α ∈ C1(G1 ∩G2):

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β − β = 0(σ1, σ2)− (σ′
1, σ

′
2)α

(α is unique, by the exactness of the top row, i.e., the injectivity of µ1,
but we don’t really need this). Applying the commutativity of the dia-
gram above (or, equivalently applying ∂1 to both sides of (32) and using
commutativity) we have

(33)

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

(σ1, σ2)− (σ′
1, σ

′
2)α

(∂1σ1, ∂1σ2)− (∂1σ
′
1, ∂1σ

′
2)∂1α

and therefore

µ0(∂1α) = (∂1σ1, ∂1σ2)− (∂1σ
′
1, ∂1σ

′
2).

In view of (31), we have

µ0(∂1α) = µ0(τ − τ ′)

(this can also be obtained by comparing the bottom left corners of diagrams
(33) and (30)). Since µ0 is injective we have

τ − τ ′ = ∂1α.

Hence τ − τ ′ ∈ C0(G1 ∩G2) equals ∂1α, and so τ − τ ′ is in the image of ∂1,
and hence they lie in the same class (or coset) in the quotient space

H0(G1 ∩G2)
def
= C0(G1 ∩G2)

/
∂1
(
C1(G1 ∩ C2)

)
.

(6) Hence the procedure above takes β ∈ H1(G) to a τ ∈ C0(G1 ∩G2), and the
class of τ in H0(G1 ∩G2) is independent of the choices made.

5.10. Step Five of the Proof of Theorem 5.1. Finally, another set of “diagram
chasing” arguments show that the resulting sequence in Theorem 5.1 is exact.

For example, let’s show that the part of the diagram:

(34) H1(G1)⊕H1(G2)
“ν1”−−−→ H1(G)

δ−→ H0(G1 ∩G2)

is exact (in the position of H1(G). So we have to show that

ker(δ) = Image(“ν1”).
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First, let’s show that ker(δ) is contained in Image(“ν1”): so say that β ∈ ker(δ):
hence the τ = δ(β) built in the last subsection equals 0; then we have:

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β(σ1, σ2)

00 = µ0τ = (∂1σ1, ∂1σ2)τ = 0

and hence (∂1σ1, ∂σ2) = 0; it follows that (σ1, σ2) is in the kernel of the map

C1(G1)⊕ C1(G2) → C0(G1)⊕ C0(G2),

and so (σ1, σ2) ∈ H1(G1) ⊕ H1(G2), and under “ν1” (σ1, σ2) maps to β. Hence
β ∈ Image(“ν1”).

Conversely, if (σ1, σ2) ∈ H1(G1) ⊕ H1(G2) and ν1(σ1, σ2) = β, so β is in the
image of “ν1”, then

(∂1σ1, ∂1σ2) = 0,

and so the unique τ ∈ C0(G1 ∩G2) with µ0τ = 0

0 C1(G1 ∩G2) C1(G1)⊕ C1(G2) C1(G) 0
µ1 ν1

µ0 ν0

∂1 ∂1 ⊕ ∂1 ∂1

0 C0(G1 ∩G2) C0(G1)⊕ C0(G2) C0(G) 0

β(σ1, σ2)

00 = (∂1σ1, ∂1σ2)τ

is necessarily τ = 0.
Hence (34) is exact there.
We leave it to the reader as a sequence of EXERCISES to show that the rest of

the sequence in Theorem 5.1 is exact.

5.11. Examples of Theorem 5.1.

Example 5.9. Consider Example 5.2. Let β be the cycle in G = G1 ∪G2 given by
the closed walk (A,A′, B,A′′, A), and its corresponding 1-form

β = (A,A′, B,A′′, A)1−form = [A,A′] + [A′, B] + [B,A′′] + [A′′, A].

(DRAW PICTURE) Hence ∂1β = 0, so β ∈ H1(G). Let us compute δβ: first, need
to find (σ1, σ2) with

β = ν1(σ1, σ2) = σ1 − σ2.

Given that A′ is a vertex of only G1, and A′′ only of G2, here we have no choice
but to take:

σ1 = [A,A′] + [A′, B], σ2 = −
(
[B,A′′] + [A′′, A]

)
.

We therefore easily compute

(∂1σ1, ∂1σ2) = ([B]− [A], [B]− [A]),
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and hence the unique τ with µ0τ = β is τ = [B]− [A] ∈ C0(G1∩G2), and this gives
a class in H0(G1 ∩G2). Since G1 ∩G2 are isolated points, we have C1(G1 ∩G2) = 0
and hence H0(G1 ∩G2) = C0(G1 ∩G2); hence τ = [B] − [A] is a non-zero class in
H0(G1 ∩G2) = C0(G1 ∩G2).

Example 5.10. Consider the graph G = K0
abs of Example 4.9: In other words,

G = K0
abs is a graph, namely the complete graph on vertex set A,B,C,D with the

edge {B,D} omitted:

A C

B

D

G = K0
abs

A C

B

D

G1

A C

B

D

G2

A C

B

D

G1 ∩G2

Let β be the 1-form corresponding to the closed walk (A,B,C,D,A), i.e.,

β = [A,B] + [B,C] + [C,D] + [D,A],

and hence ∂1β = 0. Let’s compute τ = δβ: we can write

τ = σ1 − σ2, where σ1 = [A,B] + [B,C], σ2 = −
(
[C,D] + [D,A]

)
;

but since G1 and G2 both contain the edge {A,C}, we could also write

τ = σ′
1−σ′

2, where σ′
1 = [A,B]+[B,C]+2025[A,C] σ′

2 = −
(
[C,D]+[D,A]

)
+2025[A,C]

(the 2025 is arbitrary). We easily compute

(∂1σ1, ∂1σ2) = ([C]− [A], [C]− [A])

and hence τ = [C]− [A]. However,

(∂1σ
′
1, ∂1σ

′
2) = (2026[C]− 2026[A], 2026[C]− 2026[A])

It follows that τ ′ = 2026[C] − 2026[A]. Notice that both τ, τ ′ are equal to 0 in
H0(G1∩G2), since the image of ∂1 in G1∩G2 is spanned by ∂1([A,C]) = [C]− [A].

5.12. The General Mayer-Vietoris Sequence. If K is an abstract simplicial
complex of dimension d that is the union of two subcomplexes K1,K2, then we
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similarly get a commutative diagram of short exact sequences (the horizontal rows):
(35)

...
...

...

0 Ci+1(K1 ∩ K2) Ci+1(K1)⊕ C1(K2) Ci+1(K) 0

0 Ci(K1 ∩ K2) Ci(K1)⊕ C1(K2) Ci(K) 0

µi+1 νi+1

µi νi

µi−1 νi−1

∂i+1 ∂i+1 ⊕ ∂i+1 ∂i+1

∂i ∂i ⊕ ∂i ∂i

0 Ci−1(K1 ∩ K2) Ci−1(K1)⊕ Ci−1(K2) Ci−1(K) 0

...
...

...

We similarly get the following theorem.

Theorem 5.11. Let K be an abstract simiplicial complex of dimension d, and let
K1,K2 be two subcomplexes of K whose union is K. Then there is a long exact
sequence:

(36)

0 Hd(G1 ∩G2) Hd(G1)⊕Hd(G2) Hd(G)

Hd−1(G1 ∩G2) Hd−1(G1)⊕Hd−1(G2) Hd−1(G)

“µd” “νd”

δd

“µd−1” “νd−1”

δd−1

· · · · · ·

H0(G1 ∩G2) H0(G1)⊕Hd−1(G2) H0(G) 0

δ1

“µ0” “ν0”

To prove the above theorem, it is more convenient (notationally) to prove the
following general lemma.
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Lemma 5.12. Consider a commutative diagram of vector spaces:

(37)

...
...

...

0 Ai+1 Bi+1 Ci+1 0

0 Ai Bi Ci 0

µi+1 νi+1

µi νi

µi−1 νi−1

dAi+1 dBi+1 dCi+1

dAi dBi dCi

0 Ai−1 Bi−1 Ci−1 0

...
...

...

where the rows are short exact sequences, and the columns are chains. Then there
is a (“long”) exact sequence:

(38)

· · ·

δi+2

Hi+1(A,d
A) Hi+1(B,d

B) Hi+1(C,d
C)

Hi(A,d
A) Hi(B,d

B) Hi(C,d
C)

“µi+1” “νi+1”

δi+1

“µi” “νi”

δi

· · ·

(where “µi” is the natural map on quotient spaces induced from µi, and similarly
for other maps in quotation marks, and the δj are the “delta maps” obtained by the
analogous procedure as used to prove Theorem 5.1).

The exact sequence (38) is called the “long exact sequence” associated to the
commutative diagram of short exact sequences (37). The proof of Lemma 5.12 is a
similar set of “diagram chasing” arguments.

EXERCISES: Prove the above lemma. Most likely we will assign only part of
the proof.

Proof of Theorem 5.11. By the definition of Ci(Kabs), we easily verify that (35) is a
commutative diagram whose rows are short exact sequences, where we set

µj(τ) = (τ, τ), νj(σ1, σ2) = σ1 − σ2.

Now we apply Lemma 5.12. □
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6. Cones

We have already introduced the notion of the cone ConeP (K) about P of an
abstract simplicial complex K. We also proved that the Betti numbers of any cone
are β0 = 1 (i.e., any cone is connected), and βi = 0 for i > 0.

On Feb 14, 2025 we will review the definition of a cone, and recall
that its Betti numbers are as above. We will likely skip the rest of this
section, perhaps returning to it later.

In topology, there are many ways of getting new topological spaces from old ones,
including taking the cartesian products, quotients, and joins; however, of these
three operations, only the join takes simplicial complexes and directly produces a
simplicial complexes. The join can also has a simple analog for abstract simplicial
complexes. The simplest non-trivial case of a join is called a cone, which we now
define.

Let K be an abstract simplicial complex, and let P not lie in V (K). The cone of
K at P , which we will denote ConeP (K) refers to the set

= K ∪ {A ∪ P | A ∈ K},

which we easily see is an abstract simplicial complex.
DRAW PICTURE
EXERCISE: Let K be a simplicial complex in RN whose associated simplicial

complex is K. Then, identifying RN+1 with RN × R, the set

{(α0x, α1) ∈ RN+1 | x ∈ |K|, 0 ≤ α ≤ 1}

is the geometric realization of a simplicial complex whose abstract simplicial set is
ConeP (K) where P = (0, 1).

The graph of ConeP (K) contains an edge joining P and any vertex of K; hence
ConeP (K) is connected, and Hsimp

0 (ConeP (K)) ≃ R.

Theorem 6.1. Let L = ConeP (K) be a cone of a complex K. Then Hi(L) = 0 for
i ≥ 1.

The case where K is a graph, even a graph with no edges (i.e., the graph consists
of some number of isolated vertices) illustrates the main ideas in the proof we give.

DRAW THIS AND EXPLAIN WHY THE THEOREM IS TRUE IN THIS
CASE.

We will give three proofs of this Theorem 6.1. The third proof is the quickest,
but uses the fact that a simplicial complex associated to a cone is contractible. The
first two proofs can be given on the level of combinatorics and linear algebra, and
both are instructive.

First proof of Theorem 6.1. Let α ∈ Ck(L) satisfy ∂kτ = 0; we have to show that
there is a σ ∈ Ck+1 for which ∂k+1σ = τ . We claim that it suffices to do this when
τ is of the form

(39) τ =

r∑
i=1

αi[P, vi1, . . . , vik] :
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indeed, if τ contains terms of the form α[u0, . . . , uk] where each ui is distinct from
P , then [P, u0, . . . , uk] is a (k + 1)-form, and

∂k+1[P, u0, . . . , uk] = [u0, . . . , uk] +

k∑
i=0

[P, u0, . . . , ûi, . . . uk](−1)i+1.

Hence, modulo the image of ∂k+1, any τ is of the form (39); hence it suffices to
show that such a τ is in the image of ∂k+1.

Since ∂kτ = 0, it follows that all the sum of all (k − 1)-forms that don’t involve
P of ∂kτ must equal zero. But these terms of ∂kτ equal:

k∑
i=0

αi[vi1, . . . , vik](−1)i+1.

Hence this sum is zero, and hence so is (39). □

Second proof of Theorem 6.1. Let Ci = Ci(L). We will build maps Ki : Ci → Ci+1

for i ∈ Z≥0 such that for all τ ∈ Ci we have

(40) ∀i ≥ 1, τ ∈ Ci, τ =
(
∂i+1Ki +Ki−1∂i

)
τ

We visualize the maps {Ki} in the diagram:

(41)

· · · C2 C1 C0 0

· · · C2 C1 C0 0

∂3 ∂2 ∂1 ∂0

∂3 ∂2 ∂1 ∂0

K2 K1 K0

notice that the above diagram is NOT a commutative diagram, but is the usual
notion of a homotopy of chain maps; see below. To build the maps Ki : Ci → Ci+1,
we set Ki to be the unique linear map such that

Ki

(
[P, u0, . . . , ui−1]) = 0

assuming u0, . . . , ui−1, P are distinct, and

Ki

(
[u0, . . . , ui]) = [P, u0, . . . , ui]

assuming P, u0, . . . , ui are distinct. Now we check:(
∂i+1Ki +Ki−1∂i

)
[P, u0, . . . , ui−1] = Ki−1∂i[P, u0, . . . , ui−1],

and since Ki−1 is zero on any term containing P , the above equals

= Ki−1[u0, . . . , ui−1] = [P, u0, . . . , ui−1],

which verifies (40) for τ = [u0, . . . , ui−1, P ]. If u0, . . . , ui are distinct, we have(
∂i+1Ki+Ki−1∂i

)
[u0, . . . , ui] = ∂i+1[P, u0, . . . , ui]+Ki−1

i∑
j=0

[u0, . . . , ûj , . . . ui](−1)j

= [u0, . . . , ui] +

i∑
j=0

[P, u0, . . . , ûj , . . . ui](−1)j+1 +

i∑
j=0

[P, u0, . . . , ûj , . . . ui](−1)j

= [u0, . . . , ui].
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Now say that i ≥ 1 and τ ∈ ker(∂i). Then ∂iτ = 0, and hence (40) implies that

τ = ∂i+1(Kiτ),

and therefore τ ∈ Image(∂i+1). Hence ker(∂i) = Image(∂i+1), and hence Hi(L) =
0. □

Remark 6.2. There is a simpler way to describe the above maps Ki: first, if
u0, . . . , ui ∈ V (K) are vertices of a simplicial complex, then it makes sense to
interpret

[u0, u0, u1, u2, . . . , ui] ∈ Ci+1(K)
as zero, since exchanging the first two u0 we should have

[u0, u0, u1, u2, . . . , ui] = −[u0, u0, u1, u2, . . . , ui],

and since we are working over R, we should have

[u0, u0, u1, u2, . . . , ui] = 0.

With these conventions, Ki is the unique linear map taking [u0, . . . , ui] to
[P, u0, . . . , ui] (which equals zero if any of u0, . . . , ui equal P ).

Remark 6.3. Generally speaking, if f, g are maps (C,∂) to (C′,∂′), then we say
that f and g are homotopic if there exist Ki : Ci → C′

i+1 for all i such that f −
g = ∂′iKi +Ki−1∂i. This same argument shows that f, g yield the same maps on
homology, i.e., f∗ = g∗ as maps Hi(C) → Hi(C′) for each i. The second proof of
Theorem 6.1 takes (C′,∂′) = (C,∂), f = idC , and g : C → C is given by g : Ci → Ci
is 0 for i ≥ 1, and g : C0 → C0 is given by g(v) = P for all v ∈ V (L).

Remark 6.4. We may wait until later for this remark. Let L, L′ be two abstract
simplicial complexes, with vertex sets V, V ′ respectively. A morphism ϕ : L → L′ is
a map ϕ : V → V ′ such that A ∈ L implies that ϕ(A) ∈ L′, where we extend ϕ to be
defined on all subsets of V in the evident sense, i.e., ϕ(A) = {ϕ(a)|a ∈ A′}. Such
a morphism ϕ gives rise to a map ϕ# : Ci(L) → Ci(L′) given by ϕ#[v0, . . . , vi] 7→
[ϕ(v0), . . . , ϕ(vi)], with the understanding that [u0, . . . , ui] = 0 if u0, . . . , ui are not
all distinct. [This is really “forced upon us,” at least when working over R, since
if we exchange two elements in the sequence [u0, . . . , ui] we should get the same
sequence with a − sign.] If L = ConeP (K) and L′ = {∅, {P ′}} for some P ′, then
L′ has P ′ as its only vertex, and hence there is a single morphism ϕL → L′ (taking
P plus the vertices of K to P ′). Let ψ : L′ → L be the morphism taking P ′ to P .
Then clearly ϕ#ψ# is the identity morphism; we claim that g = ψ#ϕ# is precisely
the map g described in the previous remark. Hence, although g = ψ#ϕ# is not the
identity map (unlike ϕ#ψ#), g is homotopic to the identity map. Now explain the
notion of two chains being chain homotopic.

Remark 6.5. The third proof of Theorem 6.1 is based on the fact that the geo-
metric realization of L is contractible, i.e., homotopic to the point P . However, the
chain homotopy in the previous remark is really a reflection of the fact that L is
contractible to P .

Remark 6.6. Notice that (40) does not hold for i = 0. In this case, the RHS of
(40) is K0∂1 which for u ̸= P takes [u] to [u]−[P ] and also takes [P ] to 0 = [P ]−[P ].
We will see this a yielding a “chain homotopy” between C(Labs) and C({∅, P}). This
is a reflection of the previous remark.
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7. Suspensions, and the Suspension of a Simplicial Complex in R

Definition 7.1. Let K be a simplicial complex on a vertex set V , and P1, P2 /∈ V
be distinct. We define the suspension of K at P1, P2 to be

Susp(K) = SuspensionP1,P2
(K) def

= ConeP1
(K) ∪ ConeP2

(K).

Note also that
ConeP1

(K) ∩ ConeP2
(K) = K.

Clearly P1, P2 are connected to each vertex of K in Susp(K) = SuspP1,P2
(K), and

hence H0(Susp(K)) ≃ R and β0(Susp(K)) = 1. The other Betti numbers can be
computed from the Mayer-Vietoris sequence (Subsection 5.12), setting

L1 = ConeP1(K), L2 = ConeP2(K),

which gives
L1 ∩ L2 = K, L1 ∪ L2 = L = Susp(K).

We then have
∀i ≥ 1, Hi(Lj) = 0.

And we easily see that:
β1(Susp(K)) = β0(K)− 1

(assuming the vertex set of K is non-empty), and that

∀i ≥ 1, βi+1

(
Susp(K)

)
≃ βi(K).

DRAW SOME PICTURES
One feature of the suspension is that the suspension of the sphere Sn ⊂ Rn+1, as

a topological space, is the sphere Sn+1 ⊂ Rn+2. In Section 9 we discuss topological
spaces and make this precise.

Remark 7.2. If K and K′ are two abstract simplicial complexes with disjoint vertex
sets, we define their join to be

K ∗ K′ = {A ∪A′ | A ∈ K, A′ ∈ K′}.

We will see that there is a corresponding join operation of two simplicial complexes.

Remark 7.3. This may be a good time to talk about reduced homology, where
one adds a C−1(K) = R for ∅ ∈ K, which one considers to be a face of dimension
−1, along with the map ∂0 : C0(K) → C−1(K) that for each v ∈ V , ∂0(v) = ∅. Said
otherwise, ∂(

∑
i αivi) =

∑
i αi ∈ R. This only changes Hsimp

0 (K), and the result,
denoted H̃simp

0 (K), has dimension one smaller than Hsimp
0 (K); all other reduced

homology groups, H̃simp
i (K) equal Hsimp

i (K). In terms of reduced homology we
have

∀i ≥ 0, β̃i+1

(
Susp(K)

)
≃ β̃i(K),

(not just for i ≥ 1) where β̃i is the reduced i-th Betti number, β̃i(K) =

dim(H̃simp
i (K)). For reasons like this, the reduced Betti numbers are sometimes

more convenient than regular Betti numbers.

Remark: As Rain Y pointed out in 2025, a number of the exercises in Section A
would be easier with reduced homology.
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Remark 7.4. We caution the reader that there is another notion of reduced Betti
numbers, mainly for graphs, where βred

0 (G) is the number of disconnected compo-
nents of G that are trees, and βred

1 (G) is βred
0 (G) − χ(G), i.e., β1(G) minus the

number of connected components of G that have at least one cycle. This notion
of reduced Betti number behaves well under covering maps (lifts), and plays a
prominent role in combinatorial group theory; see, e.g., [Fri15].

8. Discrete Hodge Theory

For a graph, we defined two Laplacians, the edge Laplacian ∂T1 ∂1, and the vertex
Laplacian ∂1∂T1 . Moreover, for a general simplicial complex, K, we defined the k-th
Laplacian to be

∆k
K = ∂Tk−1∂k + ∂k∂

T
k+1.

We now explain our interest in this construction.
Let µ : A → B and ν : B → C be maps of vector spaces, which we write more

concisely as A µ−→ B
ν−→ C. Say that νµ = 0, and hence Image(µ) ⊂ ker(ν), and we

can define
H

def
= ker(ν)/Image(µ).

Some examples are:

(42) R 1−→ R 0−→ R, R 0−→ R 1−→ R, R 0−→ R 0−→ R,

where 1 above is the identity map, and 0 is the zero map; the corresponding values
of H are, respectively, 0, 0,R. Then point is that for the purposes of determining
H, the examples (42) are essentially the only examples, in the following sense.

Proposition 8.1. Let A µ−→ B
ν−→ C be maps of vector spaces such that νµ = 0

(and therefore Image(µ) ⊂ ker(ν)). Then there are bases of A,B,C with respect to
which µ, ν in this basis equal, in block form:Im 0 0 0

0 0p 0 0
0 0 0n 0

 ,

0m 0 0
0 0p 0
0 0 In
0 0 0

 .
where m + p + n = dim(B), and the subscripts in the diagonal blocks gives the
dimensions of these square matrices (e.g., Im refers to the m×m identity matrix,
and 0n refers to the n × n zero matrix), and otherwise these block are matrices
of compatible dimensions (and we don’t care how many zero columns there are in
the last block column of the first matrix and the second block column of the second
matrix). Hence ∆

def
= ννT+µTµ in block form, with respect to the basis for B equalsIm 0 0

0 0p 0
0 0 In

 ,
and

dim(H) = dim
(
ker(ν)/Image(µ)

)
= p,

and
ker(∆) =

(
0m × Rp × 0n

)
the basis for B

≃ H.
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Moreover, below we review what is meant by an inner product on a vector space;
we will then show that if in Proposition 8.1 A,B,C are each endowed with an inner
product, then, the bases in Proposition 8.1 can be chosen to be orthonormal bases.

Notice that in Proposition 8.1 the extra block column in the block form of µ
has no effect on Image(µ), since it represents elements of A that are taken to 0.
Similarly for the extra row in that of ν. Hence one can view the “interesting part”
of the sequence in A µ−→ B

ν−→ C as being a sum of the examples in (42). Of course,
one could further ignore the second and third columns in the block description of µ,
since they don’t contribute to the image of µ; however, keeping the square matrices
makes it easier to understand the Laplacian and Hodge decomposition.

Corollary 8.2. In Proposition 8.1, B equals the internal direct sum

(43) Image(µ)⊕H⊕ Image(νT ),

where

H def
= ker(∆).

The the first two summands of (43) are taken to zero by ν, and the last two sum-
mands are taken to zero by µT. Moreover H ≃ H, and more precisely each element
of H has a single representative b ∈ H, and for any other representative b′ of the
class of b in H we have

(44) (b, b) ≤ (b′, b′)

with equality iff b′ = b, where (b, b) is the standard inner product bTb.

When we generalize Proposition 8.1 to inner product spaces, then (44) holds
with respect to the given inner product on B.

TO BE CONTINUED...

Part 3. The Singular Homology of a Topological Space

9. Topological Spaces and Singular Homology

The Betti numbers of a graph, G, that is a cycle of some length, are β0 = β1 = 1,
and do not depend on the length. In this section we will explain why this is true. In
fact, we will develop a set of powerful tools that provide a lot of intuition regarding
the simplicial homology groups, namely singular homology and its (most convenient)
setting of topological spaces.

9.1. Overview of Singular Homology. In this section we will define the singular
homology groups, Hi(X) = Hsing

i (X) for any subset X ⊂ Rn. We will list some
fundamental results about the groups Hsing

i (X), (mostly without proof) such as:
(1) Let K be a simplicial complex in Rn (and recall that |K| = |K|geom refers

to the union of the elements of K, which is therefore a subset of Rn). Then
if K is the abstract simplicial complex associated to K, then

Hsing
i (|K|) ≃ Hsimp

i (K).

In this sense, the singular homology and simplicial homology agree.
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(2) We say that X ⊂ Rn and Y ⊂ Rm are homeomorphic if there is a bijection
f : X → Y such that f and f−1 are continuous (we will review the notion
of continuity). If so, then

Hsing
i (X) ≃ Hsing

i (Y ).

(This isomorphism holds even when X,Y are homotopic, which is a much
more general condition.)

We easily see that if K is an abstract simplicial complex that is a graph that is a
cycle of length k, then K is associated to a simplicial complex K in R2 such that
|K| is isomorphic to the circle:

S1 = {(x, y) ∈ R2 | x2 + y2 = 1} ⊂ R2.

It follows that
Hsimp

i (K) ≃ Hsing
i (S1),

where K is a cycle of any length.
The second aspect of the singular homology groups Hsing

i (X) is that they are
defined not only for X ⊂ Rn, but in the much broader context when X is any
topological space. In fact, to study singular homology, at times it is needlessly
cumbersome — or even impossible — to find a subset of some Rm for some m that
is (homeomorphic to a) topological space we want to use. One crucial example
of this is a space X/ ∼, obtained from an equivalence relation ∼ on a topological
space, X, where: (1) X/ ∼ is not generally homeomorphic to a subset of Rm for
some m, and (2) even when X/ ∼ is homeomorphic to some subset of Rm for some
m (such as for toruses, ∆-complexes, etc.), it can be quite cumbersome to find
such a subset S ⊂ Rm and/or to use such an S ⊂ Rm as a replacement of X/ ∼.
Topological spaces are a more versatile tool that will allow us to easily build many
important spaces needed to understand homology groups. Moreover, topological
spaces discard a lot of extraneous information, and gives the minimum structure
we need to define continuous maps.

9.2. Thinking “Geometrically”. Until now, we have only defined the simplicial
homology groups, Hsimp

i (K), where K is a finite, combinatorial structure. However,
we originally defined a simplicial complex, K, as a set of simplicies in Rn (for some
n) such that (1) if X ∈ K, then any face of X lies in K, and (2) if X,X ′ ∈ K, then
X ∩X ′ is a face of both X and of X ′. We then defined

|K| = |K|geom =
⋃

X∈K

X

which is a subset of Rn. If K is the abstract simplicial complex associated to K,
and if K′ is that of another simplicial complex K ′ in Rm, then

(45) ∀i, Hsimp
i (K) ≃ Hsimp

i (K′)

whenever |K| ⊂ Rn and |K ′| ⊂ Rm are homeomorphic, meaning that there is a
bijection f : |K| → |K ′| such that f and f−1 are continuous. So we need to develop
some intuition (and the formal definition) of homeomorphic sets.

[Later it will turn out that (45) holds provided that |K| and |K ′| are of the same
homotopy type; we’ll need to also develop some intuition there...]

In class on Feb 24, 2025, we drew pictures of the following two examples.
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Example 9.1. Let K be a cycle of length 6. Then K is the abstract complex
associated to K which is the collection of vertices and line segments that comprise
a regular hexagon in R2 with vertices on the unit circle. Hence |K| ⊂ R2 is just
a hexagon (without its interior) inscribed in the unit circle, and polar coordinates
sets up a homeomorphism |K| → S1. Similarly if K is a cycle of any length.

Example 9.2. The following abstract simplicial complexes, K have isomorphic
homology groups (their Betti numbers, βi(K) = dim(Hi(K)) are β0 = β2 = 1, and
all other Betti numbers vanish:

(1) K = Power(S) \ {S} where |S| = 4, and
(2) the suspension of any complex that is a (graph that is a) cycle of some

length.

Examining some pictures (e.g., on the Feb 24, 2025 class board scans), we see that
each of these K is the abstract simplicial complex of the simplicial complex K,
where |K| is homeomorphic to

S2 =
{
(x1, x2, x3) ∈ R3

∣∣ x21 + x22 + x33 = 1
}
.

Remark 9.3. There is a standard remark that a (solid) donut (doughnut) and
a (solid) coffee cup are homeomorphic. The same is true of the two-dimensional
surface that is the boundary of a donut and that of a coffee cup, and both surfaces
are homeomorphic to a (two-dimensional) torus (which we will soon define). This
fact lends itself to numerous quips involving topologists, coffee, and donuts.

Example 9.4. We’ve seen that if Kabs is any abstract simplicial complex, and
Labs = ConeP (Kabs) is a cone, then Labs have the same Betti numbers as that of a
single point. There is a “geometric” reason for this. Namely, we say that X ⊂ Rn

is contractible if there is a function f : X × [0, 1] → X ([0, 1] is a unit interval, so
X × [0, 1] ⊂ Rn+1 such that for some x0 ∈ X we have

∀x ∈ X, f(x, 0) = x, f(x, 1) = x0.

On Feb 26, 2025, we drew some pictures of what this means.

To rigorously work with the above ideas, we need to review what we mean by a
continuous map.

9.3. Continuous Maps, Limits, and Relative Neighbourhoods. The main
point of this subsection is to motivate the definition of a topological space. A
secondary goal is to point out the interesting approach of Armstrong’s textbook,
namely in Section 1.4 of [Arm83], where one first defines “neighbourhoods” in a wide
sense (these “neighbourhoods” are not necessarily open sets), as a way to intuitively
transition from continuous maps in the limit sense to topological spaces. Armstrong
does something more extreme, namely to define a topological space as a set, X,
plus, for each x ∈ X, a set of (wide-sense) neighbourhoods of x that satisfy certain
properties; the wide-sense neighbourhoods then give rise to the topology (open sets)
of X. Here we do something less extreme: we use wide-sense neighbourhoods as a
way of motivating topological spaces.

Let us begin with the usual definition of continuous maps that one encounters
in calculus.
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Definition 9.5. Let X ⊂ Rn for some n, and let f : X → Rm be a function. If
x0 ∈ X, we say that f is continuous at x0 if

(46) lim
x→x0

f(x) = f(x0).

We say that f is continuous if it continuous at all x0 ∈ X.

For this definition to make sense, we need to know what is meant by the limit
in (46). Intuitively, this means that f(x) can be made as close as we like to f(x0),
by taking x ∈ X sufficiently close to x0. In other words, we define (46) to mean:

For any ϵ > 0 there is an δ > 0 such that |f(x)−f(x0)| ≤ ϵ provided
that x ∈ X and |x− x0| ≤ δ.

Often one replaces the ≤ in the above with <; the two definitions are equivalent.
Notice that if in Definition 9.5, X = [a, b] ⊂ R with a < b, and so f : [a, b] → Rm,

we understand that f(x) is not defined for x < a. Hence (46) is a “one-sided”
limit when x0 = a; similarly when x0 = b. So we emphasize that (46) always
assumes that x ∈ X, i.e., the limit is taken over those x ∈ X where f(x) is defined.
We next describe a situation where the phrase x ∈ X is extraneous, by defining
“neighbourhoods.”

9.3.1. Balls and Neighbourhoods.

Definition 9.6. Let x ∈ Rn for some n. For any real ρ > 0, we define the closed
ball (respectively, open ball) of radius ρ about x to be the respective sets

Bclos
ρ (x) =

{
x′ ∈ Rn

∣∣ |x− x′| ≤ ρ
}
, Bopen

ρ (x) =
{
x′ ∈ Rn

∣∣ |x− x′| < ρ
}
.

We say that a set N ⊂ Rn is a neigbourhood of x if for some δ > 0 we have that
Bclos

ρ (x) ⊂ N .

Notice that in the definition of neighbourhood above, it would be equivalent to
require that Bopen

ρ (x) ⊂ N ; this is because for any ρ < ρ′ we have

Bopen
ρ (x) ⊂ Bclos

ρ (x) ⊂ Bopen
ρ′ (x).

Returning to (46), if x0 ∈ X and X is a neighbourhood of x, then f(x) in (46) is
defined for all x ∈ Bclos

ρ (x0) for some ρ > 0. Then the limit (46) slightly simplifies
to:

For any ϵ > 0 there is a δ > 0 such that |f(x)−f(x0)| < ϵ provided
that |x− x0| < δ;

in other words, we can drop the condition x ∈ X, namely by replacing δ by min(δ, ρ)
if need be.

9.3.2. Neighbourhood Definition of Continuity. Now we get to the following simpler
definition of continuity.

Theorem 9.7. Let f : Rn → Rm be a function for some n,m. If x0 ∈ Rn, then f
is continuous iff for any neighbourhood, N , of f(x0),

f−1(N) =
{
x ∈ X

∣∣ f(x) = N
}

is a neighbourhood of x0.
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The proof is an EXERCISE, but there is the point: the condition |f(x)−f(x0)| ≤
δ can be expressed as f(x) ∈ Bclos

δ (f(x0)), and N = Bclos
δ (f(x0)) is certainly a

neighbourhood of f(x0). If f−1(N) contains a neighbourhood of x, then it contains
all x such that |x− x0| ≤ ϵ for some ϵ > 0.

It is not hard to generalize the above theorem as follows.
Definition 9.8. If X ⊂ Rn is a subset, for some n, and x ∈ X, then a relative
neighbourhood of x in X (in viewing X as a subset of Rn) is any set of the form
M ∩X where M is a neighbourhood of x.
Theorem 9.9. Let X ⊂ Rn for some n, and let f : X → Rm be a function. If
x0 ∈ X, then f is continuous at x0 iff for each neighbourhood, N , of f(x0), f−1(N)
is a neighbourhood of x in X.

The proof is an EXERCISE.
Theorem 9.9 is terrific news: it tells us that continuity can be defined as soon

as you know that is meant by a “neighbourhood” of the domain and the codomain
(or range).

Now we get to an even simpler definition of continuity.

9.3.3. Open Subset Definition of Continuity.
Definition 9.10. A subset N ⊂ Rn is open if it is a neighbourhood of all its
elements, i.e., for each x ∈ N , there is a ρ > 0 such that Bclos

ρ (x) ⊂ N .

For example, an open interval (a, b) ⊂ R is an open subset of R.
The theorems below are exercises; if you have never seen them, you should make

sure that you understand them.
Theorem 9.11. If f : Rn → Rm, then f is continuous iff for every open subset,
U ⊂ Rm, f−1(U) is an open subset of Rn.
Definition 9.12. If X ⊂ Rn, then a subset W ⊂ X is relatively open subset of X
(viewing X as a subspace of Rn) if W = X ∩ U for some open subset U ⊂ Rn.
Theorem 9.13. If X ⊂ Rn and f : X → Rm is a function, then f is continuous
iff for every open subset, U ⊂ Rm, f−1(U) is a relatively open subset of X.

We can now formally define the term homeomorphic, used in Examples 9.1
and 9.2. First we make some pedantic remarks.

First, if X ⊂ Rn is nonempty, then by definition the elements of X consists of
n-tuples of real numbers. Hence, by definition, then there is a unique n for which
X ⊂ Rn. Second, if in addition Y ⊂ Rm, then any map f : X → Y can be viewed as
a map X → Rm;12 we define f to be continuous if it continuous as a map X → Rm.
The following result is almost immediate.
Proposition 9.14. Let X ⊂ Rn, Y ⊂ Rm, and f : X → Y . Then f is continuous
iff for each relatively open U ⊂ Y , f−1(U) is relatively open in X.
Definition 9.15. Let X ⊂ Rn, Y ⊂ Rm. We say that X and Y are homeomorphic
if there is a bijection f : X → Y such that f and f−1 (hence a bijection Y → X)
are both continuous. [Equivalently, for each U ⊂ Y , U is relatively open in f iff
f−1(U) is relatively open in X.]

As an EXERCISE, one can verify the claims about homeomorphic sets made in
Examples 9.1 and 9.2.

12More pedantically, the map X → Rm involves a change of the codomain or range of f .
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9.4. A Fork in the Road. At this point one can either (1) introduce topological
spaces, or (2) introduce singular homology groupsHsing

i (X) forX ⊂ Rn. Ultimately
we will define Hsing

i (X) for all topological spaces. My preference in 2025 is to start
with (1), since it is important to see a lot of examples of topological spaces before
one can really develop intuition about singular i-chains.

But both are possible...

9.5. Topological Spaces.

9.5.1. The Definition of a Topological Space. According to Proposition 9.14, to
decide whether or not f : X → Y is continuous, we only need to know which are
the relatively open sets of X and of Y , and we can forget that X ⊂ Rn and Y ⊂ Rm.
This motivates the following definition.

Definition 9.16. A topological space is a pair (X,O) consisting of a set, X — the
underlying set — and a set of subsets of X, O, the open sets of X, such that

(1) ∅, X are open, i.e., ∅, X ∈ O;
(2) then intersection of any finite number of open sets is again open; and
(3) the union of an arbitrary number of open sets is again open.

When confusion is unlikely, we simply refer to X as the topological space with
O understood (and its elements referred to as open sets of X). We also call O a
topology on X. We also refer to an element of X as a point in/of X.

Example 9.17. The open sets in Rn are a topology on Rn. If X ⊂ Rn, then the
relatively open subsets of X form a topology on X. (This could be an EXERCISE
if you don’t know this.)

Definition 9.18. Let X,Y be topological spaces. A map f : X → Y is continuous
if for every open set, U , in Y , f−1(U) is open in X.

9.5.2. New Topological Spaces from Old Ones: Subsets and Products. There are
many ways to get new topological spaces from old ones. Many of these will be
crucial to us.

Definition 9.19. Let (X,O) be a topological space, and X ′ ⊂ X a subset. A
subset U ′ ⊂ X ′ is relatively open in X ′ (relative to X ′ as a subset of (X,O)) if
U ′ = X ′ ∩ U for some open set U of X (i.e., U ∈ O). We let O′ denote the set
of all relatively open sets in X ′, and refer to (X ′,O′) or O′ as the subset topology
induced (by (X,O)) or simply (by X) on X ′.

Example 9.20. Let X ⊂ Rn. Then the relatively open subsets of X (Defini-
tion 9.12) is precisely the topology induced by Rn on X.

A standard example of the above is the n-sphere

Sn =
{
x ∈ Rn+1

∣∣ x21 + · · ·+ x2n+1 = 1
}
.

Example 9.21. If X = {p} consists of a single point, p. Then there is only one
possible topology on X, namely O = {∅, p}.

Example 9.22. Let X ⊂ Rn be a finite set of points. Then the relative topology
of X is the topology (X,O) where O consists of all subsets of X. For any set X, the
discrete topology on X is O consisting of all subsets of X. If X = {1, 2, 3, 4, . . .},
then the relative topology of X (in R) is the discrete topology. By contrast, if
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X = {0, 1, 1/2, 1/3, 1/4, . . .} ⊂ R, then the relative topology of X is not the discrete
topology: for example, is {1/2, 1/4, 1/6, . . .} an open subset of X?

Definition 9.23. Let (X1,O1), (X2,O2) be two topological spaces. Their (Carte-
sian) product is the topological space (X1 × X2,O), where O consists of those
U ⊂ X1×X2 that are an union (i.e., an arbitrary union) of sets of the form U1×U2

with U1 ∈ O1 and U2 ∈ O2. Equivalently, U is open if for every (u1, u2) ∈ U there
are U1, U2, which are respectively open in X1, X2, such that U1 × U2 ⊂ U .

Example 9.24. The d-dimensional torus, Td, is the product of d-copies of S1. The
term the torus usually refers to T2.

9.5.3. New Subspaces from Old Ones: Equivalence Relations: Projective Spaces and
the Torus.

Definition 9.25. Let (X,O), and ∼ an equivalence relation on X. We define the
quotient topology (of (X,O) modulo ∼) to be the space (X/ ∼,O∼), where U ∈ O∼
iff U ∈ O, and U is a union of ∼ equivalence classes of X.

In general, O∼ could be uninteresting, in that it may only contain ∅ and X/ ∼.
(EXERICSE: Show that this is the case if X = R, O the open sets of R, and if
∼ is the equivalence relation on R where x ∼ y iff x = y or x, y are both rational
numbers.) However, equivalence relations are crucial in algebraic topology.

Example 9.26. For d ≥ 0, we define real, projective, d-dimensional space, denoted
RPd, to be the space

RPd =
(
Rd+1 \ {0}

) / (
R \ {0}

)
,

i.e., (Rd+1 \ {0})/ ∼, where x ∼ y iff they are scalar multiples of each other.
Equivalently, RPd can be identified with the set of lines in Rd+1, or with Sd/ ∼
under the equivalence relation x ∼ y iff x = ±y. Similarly for complex, projective
space,

CPd =
(
Cd+1 \ {0}

) / (
C \ {0}

)
and lines in Cd+1.

Example 9.27. Generalizing projective space, if we fix 1 ≤ m ≤ n, the m-
dimensional subspaces of Rn is a topological space known as a Grassmannian,
denoted Grass(m,n). One way to describe these as topological spaces is as fol-
lows: let Bases(m,n) denote the sequences of m linearly independent vectors
(u1, . . . ,um) ∈ Rn; hence

Bases(m,n) ⊂
(
Rn
)m
.

One then notes that the set of invertible m×m matrices, denoted GL(m) (“general
linear group”), acts on Bases(m,n), and one sets

Grass(m,n) = Bases(m,n)/GL(m).

A more explicit way to construct Grass(m,n) is to give “coordinates” on this space:
namely, many m-dimensional subspaces can be written as the rowspace of an m×n
block matrix of the form

A = [I|M ],

where I is the m × m identity matrix, and M is an arbitrary m × (n − m) ma-
trix; moreover the set of m-dimensional subspaces of this form is an open subset
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of Grass(m,n). Similarly if we exchange the columns of A, and any element of
Grass(m,n) is the rowspace of some column permutation of a matrix [I|M ]. This de-
scribes Grass(m,n) as the union of open sets, each of which ism(n−m)-dimensional
manifold. We have Grass(1, n+1) = RPn, so Grassmannians are generalizations of
projective spaces.

Example 9.28. Consider the X = [0, 1]× [0, 1] ∈ R2. By identifying the boundary
of X is various ways, the resulting spaces X/ ∼ yield (a simple to describe space
that is isomorphic to) the torus T = T2, the real projective plane RP2, and the
Klein bottle. See Hatcher’s textbook [Hat02], Section 2.1 (page 102).

9.5.4. New Subspaces from Old Ones: Equivalence Relations: Collapsing Along a
Subset, Cones, Wedge Sums, Etc.

Definition 9.29. Let X be a topological space, and A ⊂ X. We use X/A to denote
the space X/ ∼ where x ∼ x′ iff x = x′ or x, x′ ∈ A. We call this the collapse of X
along A.

Example 9.30. Let X be a topological space. We define the topological cone of
X to be

(47) ConeTop(X)
def
=
(
X × [0, 1]

)
/X × {1}.

If X ⊂ Rn, we define the cone of X (as a subspace of Rn) to be the subspace of
Rn+1 given by

ConeRn(X)
def
=
⋃
x∈X

Conv
(
(x, 0), (0, 1)

)
=
{
(tx, 1− t)

∣∣ x ∈ X, 0 ≤ t ≤ 1
}
.

For each X ⊂ Rn, there is a natural bijection of sets

(48) f : ConeTop(X) → ConeRn(X),

given by (x, t) 7→ ((1 − t)x, t) for 0 ≤ t ≤ 1 (thereby taking X × {1} to (0, 1)).
It turns out that f is continuous, and if X = |K| where K is a (finite) simplicial
complex in Rn, then f−1 is continuous; hence, when X = |K|, the two notions of
a cone are homeomorphic. However, the two notions are not homeomorphic for
general X ⊂ Rn.

Example 9.31. Say that (X,O) and (X ′,O′) are topological spaces with X,X ′

disjoint. Then we define their union to be the space (X∪X ′,O′′) where O′′ consists
of all unions of one set of O with another of O′.

The “disjoint union” will be fundamental to much of what we do.

Example 9.32. The disjoint union of two sets X and Y , denoted X⨿Y , intuitively
refers to a union of two disjoint sets, one in bijection with X, the other in bijection
with Y ; it is not a unique set (but it is “unique up to unique isomorphism,” as
we shall explain). Hence if X and Y are disjoint sets, X ⨿ Y can be viewed as
X ∪Y . However, one often has that X,Y intersect (think of vertices and edges of a
graph that have been enumerated {1, . . . , n} and {1, . . . ,m}) or even X = Y ; one
typical convention is to take X⨿Y to mean X×{1}∪Y ×{2}. Formally we define
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X ⨿ Y to be a type of “limit”13, which amounts to a triple (S, f, g) of a set S and
injections f : X → S and g : Y → S such that f(X), g(Y ) are disjoint and their
union is all of S; we usually just use X ⨿ Y to denote S, with f, g understood. We
similarly define an arbitrary disjoint union, e.g., ⨿α∈AXα, which we can take to
mean

⋃
α∈AXα × {α}.14 If X,Y are topological spaces, then their disjoint union

is the set X ⨿ Y where U is open iff U = U1 ∪ U2 where U1 is open in X (viewing
U1 ⊂ X as lying in X ⨿ Y ) and similarly U2 is open in Y .

Example 9.33. The wedge sum of X and Y is the space

X ∨ Y = (X ⨿ Y )/{x, y},
i.e., the disjoint union of X and Y , where x and y are identified. (This generally
depends on the choice of x, y.)

9.5.5. Metric Spaces (Optional, Maybe an EXERCISE). For those who know what
is meant by a metric space, a metric space gives rise to a topological space, and
most spaces of interest to us will arise in this way.

[However, in these notes will won’t have a particular interest in metric spaces,
at least not per se.]

Example 9.34. Let (X, ρ) be a metric space15. We define U ⊂ X to be open if
for each u ∈ U , U contains a ball of some positive radius about u (open or closed
ball, it doesn’t matter). This gives a topology on X.

A topological space arising as such from a metric space is called metrizable; any
such topological space is separated (also known as Hausdorff or “T2”): if x ̸= y,
then there are two disjoint open subsets, one containing x and the other containing
y.

EXERCISE: Let S be an infinite set, and say that U ⊂ S is cofinite if S \ U
is finite. Show that the cofinite sets of S form a topology. Is this topological
space metrizable? [If S = F is an algebraically closed field, then this is the Zariski
topology on A1(F), the 1-dimensional affine line over F, the fundamental topology
of algebraic geometry.]

13Namely a disjoint union is any initial element in the category whose objects are (S, f, g),
consisting of a set S and maps f : S → X and g : S → Y . Hence if (S, f, g) is an initial object, and
(S′, f ′, g′) is another other object, there must be a unique morphism (S, f, g) → (S′, f ′, g′), i.e., a
unique map of sets ϕ : S → S′ respecting the maps in the evident sense, i.e., f ′ϕ = f and g′ϕ = g.
We easily see that an initial object does exist, such as (X × {1} ∪ Y × {2}, f, g) where f takes
X×{1} to X in the evident bijection, and similarly for g : Y ×{2} → Y . By definition, if an initial
object exists, then it is unique up to unique isomorphism: i.e., here, if (S, f, g) and (S′, f ′, g′)
are two initial objects of this category, then there is a unique morphism (S, f, g) → (S′, f ′, g′),
meaning a map ϕ : S → S′ (which turns out to necessarily be a bijection), which respects the
maps in an evident sense. If all this seems like a bunch of abstract nonsense, then you need to
understand why some reasonable notions of “moduli spaces” turn out “wrong,” unless you consider
them as functors via category theory, and these functors — fine moduli spaces — turn out to be
exactly the “right” definition.

14Some authors use “the disjoint union of X and Y ” in a narrow sense, namely to imply that
X and Y are disjoint sets, and then take X ⨿ Y to mean X ∪ Y ; however, this will not work for
us, because we will build ∆-complexes, such as graphs with multiple edges and self-loops, using
disjoint unions where the same set appears many times.

15If you don’t know this definition, you can look this up and see some examples. In brief, X
is a set, and ρ : X × X → R is a function such that: (1) ρ(x, y) ≥ 0, with equality iff x = y; (2)
ρ(x, y) = ρ(y, x); and (3) ρ satisfies the triangle inequality.
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9.5.6. More on Cones and Suspensions of Topological Spaces.

Example 9.35. Let X be a topological space. Just as we’ve defined the topological
cone of X in (47), we can similarly define the topological suspension of X to be:

Suspension(X)
def
=
(
X × [−1, 1]

)
/ ∼

where ∼ “collapses X × {−1} to a point and collapses X × {1} to a point,” i.e.,
(x, t) ∼ (x′, t′) iff either (x, t) = (x′, t′) or t = t′ = ±1. Compare [Hat02], pages 8
and 9.

9.6. Maps from Simplices, Ordered Simplices.

Remark 9.36. At this point (or earlier?), if X,Y are topological spaces, a map
f : X → Y means “continuous map,” unless otherwise mentioned.

If X is a topological space, we will soon speak of the singular homology groups
of X, and a ∆-complex structure on X. Both notions are built using maps S → X
where S is a simplex. However, for numerous reasons we will need to remember an
ordering of the vertices of S.

The following definitions are a bit pedantic, but omitting them might risk con-
fusion.

Definition 9.37. Let n,N,N ′ ≥ 0 be integers. An ordered n-simplex (in RN )
refers to a sequence S = (a0, . . . ,an) of vectors of RN that are in general position
(therefore N ≥ n). [S is the Fraktur letter S.] We refer to

S = Conv(a0, . . . ,an)

as the underlying simplex of S, and a0, . . . ,an as the sequence of ordered vertices
of S. If t = (t0, . . . , tn) is a stochastic vector (i.e., non-negative reals that sum to
1), we use the notation

tS = (t0, . . . , tn)S
def
= t0a0 + . . .+ tnan ∈ RN ,

and recall that each s ∈ S can be written uniquely as such (with t stochastic), and
that t = (t0, . . . , tn) is called the barycentric coordinate of s. If S′ = (a′0, . . . ,a

′
n)

is another ordered n-simplex in RN ′
, then there is a unique isomorphism S → S′

given by tS 7→ tS′ which we call the canonical isomorphism (from S to S′). If
confusion is unlikely, we write S instead of S, understanding that S comes with an
ordering of its vertices.

Both ∆-complexes and singular homology are usually defined by fixing for each
n ≥ 0 a single “standard” ordered n-simplex.

Definition 9.38. Let n ≥ 0 be an integer. The standard (ordered) n-simplex,
denoted Dn, refers to the ordered n-simplex (e1, . . . , en+1) in Rn+1, where
e1, . . . , en+1 are the standard basis vectors of Rn+1. We write ∆n for the asso-
ciated simplex

∆n = Conv(e1, . . . , en+1) ⊂ Rn+1.

If S is any ordered n-simplex, and f : S → X is any map from the underlying
simplex of S to any topological space, X, the standardized version of f , denoted
Stand(f) refers to the map ∆n → X obtained by composing the canonical isomor-
phism ∆n → S with f .
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One novelty of the standard ordered n-simplex, Dn is that its barycentric coor-
dinate, tDn for elements of this simplex actually equals t ∈ Rn+1.

Definition 9.39. Let X be a topological space, and let σ : ∆n → X be a map.
We define the boundary of σ, denoted ∂nσ, to be the formal linear combination of
maps

(49) ∂nσ
def
=

n∑
j=0

(−1)jStand
(
σ|(e1,...,êj ,...,en+1)

)
,

i.e., the alternating sum of the standardized maps obtained by restricting σ to its
(n− 1)-dimensional faces,

(e1, . . . , êj , . . . , en+1),

each such face being an ordered simplex in this way.

Therefore the right-hand-side of (49) is an alternating sum of maps ∆n−1 → X.
Warning: At this point we will usually write ∆n instead of Dn, since this is the
common notation (e.g., in Hatcher’s textbook [Hat02]).

9.7. Singular Homology 1: Simplicial Singular Homology. At this point
we may as well describe one way to build singular homology, since we have all
the necessary definitions. We caution the reader that there are two common ways
to do this, each with one basic advantage over the other (see later); the first is
called (simplicial) singular homology, the second called (cubical) singular homology.
To understand singular homology, it is easiest to (eventually) understand both
constructions. [There are many variants of these two constructions.]

Definition 9.40. Let X be a topological space. For each integer n ≥ 0, we define
the (simplicial) singular n-chains on X, denoted Cn(X) (or sometimes Csing

n (X)

or Csing(simp)
n (X) for clarity) to be the set of formal linear combinations of maps

∆n → X. We define the maps

∂n : Csing
n (X) → Csing

n−1(X)

as the linear extension of ∂n of (49) (of Definition 9.39).

Remark 9.41. (WARNING...) It is crucial to understand that the map ∂n
immediately extends from (49) to a map defined on all of Csing

n (X): this is because
in defining Csing

n (X), we do not identity a map ∆n → X with any other map
∆n → X (say obtained by exchanging the order of vertices). In other words, two
maps σ : ∆n → X and σ′ : ∆n → X are considered the same in Csing

i (X) iff σ
and σ′ are identical maps, agreeing on all of ∆n. This contrasts with the i-chains,
Ci(K), of an abstract simplicial complex, where we identify the 1-chain [A,B] with
−[B,A] (Subsection 4.1), and similarly for permuting the vertices of higher chains
(Subsections 4.4 and 4.5).

Remark 9.42. The term “singular” in singular homology refers to the fact that
the image of a map ∆n → X can be rather pathological, and this image is not
generally homeomorphic to something nice (like a simplex). Note that the set of
maps ∆n → X is a basis of Csing

n (X), and the later is therefore a “vastly” infinite
dimensional space.
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Remark 9.43. One type of very degenerate map ∆n → X is the map taking each
element of ∆n to a single point x ∈ X. We will soon see that these maps are crucial
to getting singular homology to work out.

EXERCISE: A path in a topological space, X, is a (continuous) map p : [0, 1] →
X, and we say that p runs (or is) from p(0) to p(1). We say that x, x′ ∈ X are (path)
connected if there is a path in X from x to x′; show that being (path) connected
is an equivalence relation. The equivalence classes are called the (path) connected
components of X.

Remark 9.44. Had we first discussed the fundamental group, π1(X), of a topolog-
ical space X, we would see how paths in X can be used to get a remarkable amount
of information about X. Of course, [0, 1] can be viewed as an ordered 1-simplex
with the order 0, 1, and hence a path is equivalent to a map ∆1 → X. This may
make it more plausible that singular homology is working in a reasonable setup.

We easily verify that

(50) · · · ∂3−→ Csing
2 (X)

∂2−→ Csing
1 (X)

∂1−→ Csing
0 (X) → 0

is a chain.

Definition 9.45. Let X be a topological space. We define the singular homology
groups and singular Betti numbers of X to be those of (50), i.e.,

Hsing
i (X)

def
= ker(∂i)

/
Image(∂i+1), βsing

i (X)
def
= dim

(
Hsing

i (X)
)
.

Although the Csing
i (X) are “vastly” infinite dimensional spaces, the homology

groups above turn agree with simplicial homology on simplicial complexes.

9.8. Singular Homology 2: Why Do We Care About Singular Homology?
Here are some of the main points of singular homology of interest to us.

(1) The groups Hsing
i (X) are defined for any topological space, X.

(2) If f : X → Y is a map of topological spaces, then clearly f gives a map from
each σ : ∆n → X to a map f ◦ σ : ∆n → Y , which induces maps f#,i from
Csing
i (X) → Csing

i (Y ) and therefore maps f∗,i from Hsing
i (X) → Hsing

i (Y ).
It is generally much easier to work with maps from one topological space to
another than it is to work with maps of simplicial complexes. Here’s why:
(a) IfK,K ′ are simplicial complexes, the easiest way to map f : |K| → |K ′|

in a way that gives maps Hi(K) → Hi(K′) is to insist that f be a
simplicial map, i.e., that f map the vertex sets V (K) → V (K ′) and
that for each X ∈ K, f maps X to an X ′ ∈ K via the map

t0a0 + · · ·+ tnan 7→ t0f(a0) + · · ·+ tnf(an).

Simplicial maps are a very limited type of map. For example:
(i) there is a counter-clockwise rotation by θ map taking S1 → S1

for any θ ∈ [0, 2π). However, if K is a regular k-gon in R2, then
only rotations by a multiple of 2π/k are simplicial maps.

(ii) There is a simple embedding of Sn in Sn+1, and it is easy to
see that Sn+1 is isomorphic to the suspension of Sn (in either
way of defining a suspension). These facts before much more
tedious when we replace spheres by simplicial complexes that
are homeomorphic to spheres.
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(iii) Two maps f, g from X → Y are homotopic if there is a map
F : X × [0, 1] → Y where F (·, 0) = f and F (·, 1) = g; we will
often use homotopies from one map to another. It is more diffi-
cult to build homotopies for simplicial complexes, for numerous
reasons, if we restrict to simplicial maps.

(iv) A good example of homotopic maps to keep in mind was men-
tioned in class: for any K, L = ConeP (K) has the same homology
groups as a point; the proof is actually based on a homotopy be-
tween the identity map, f , on |L| to the map g : |L| → P .

(v) In fairness, if f, g are maps of abstract simplicial complexes,
K → L, one can define a notion of f and g being contiguous (e.g.,
[Mun84], page 67),16 which implies that the induced maps f∗, g∗
from Hi(K) → Hi(L) are equal. This is a sort of “substitute” for
homotopy equivalence of topological spaces. For example, we see
that the (simplicial) identity map, f , on ConeP (K) is contiguous
with the (simplical) map g : ConeP (K) → {P}, which proves that
ConeP (K) and {P} have the same simplicial homology groups.17

(b) If K,L are simplicial complexes, one can take a general continuous
map h : |K| → |L| and obtain maps h# : Hi(K) → Hi(L) in simplicial
homology, but the proof is a bit delicate, namely:

(i) We say that a simplicial map f : K → L is a simplicial approx-
imation of h if for each vertex v ∈ V (K) = V (K) we have that
h(Star(v)) ⊂ Star(f(v)) (see [Mun84], Section 14, Chapter 2,
bottom of page 80); one then proves that any two simplicial
approximations of h are contiguous, so one gets a uniquely de-
termined map of simplicial homology, h∗, H

simp
i (K) → Hsimp

i (L).
(ii) The complex K has a barycentric subdivision, sd(K), where we

define each n-simplex in K to 2n subsimplices according to its
barycentric coordinates (t0, . . . , tn), and according to whether or
not each ti is > 1/2, = 1/2, or < 1/2. Of course, |sd(K)| = |K|.
One can prove that for any h : |K| → |L|, there is a subdivision,
K ′ of K (which we can take to be the M -th iterated barycentric
subdivision of K for some M) such that h, viewed as a map
|K ′| → |L| has a simplicial approximation (see [Mun84] Theorem
16.1, Section 16, Chapter 2, page 89).

So a map h : |K| → |L| of topological spaces does give a map
h∗,i : Hi(K) → Hi(L), but this is rather technical. We feel that work-
ing with topological spaces tends to be a simpler framework to develop
intuition.

(3) A particular case of (2) is that if f : X → Y is a homeomorphism, the maps
f∗,i and (f−1)∗,i provide isomorphisms Hsing

i (X) → Hsing
i (Y ).

(4) If X = |K|geom is the geometric realization of a simplicial complex K,
whose underling abstract complex is K, any i-simplex (u0, . . . , ui) of K

16Namely, two simplicial maps f, g from K → L are contiguous if for every S ∈ K, f(S)∪g(S) ∈
L. [Of course, f(S) is of smaller size than S when f |S is not injective, and similarly for g(S), and
contiguity allows for f(S) and g(S) to intersect.]

17Indeed, if S ∈ K, then f(S) = S when S is the identity on ConeP (K), and g(S) = {P}; by
definition of the cone, S ∪ P always lies in ConeP (K).
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corresponds to an ordered i-simplex S ∈ K, which is therefore entirely
contained in |K| = X. Hence the i-simplex (u0, . . . , ui) of K gives rise
to a map ∆i → |K| = X via barycentric coordinates, which we denote
ξ(u0, . . . , ui). The main theorem we need to know is that the map

(u0, . . . , ui) 7→ ξ(u0, . . . , ui)

extends to an isomorphism

(51) Ξ: Hsimp
i (K) → Hsing

i (|K|)

(which takes [u0, . . . , ui] to ξ(u0, . . . , ui), as it lies in Hsing
i (|K|)). This

takes some work to prove, but this work is very rewarding and illuminating
(this proof starts in Hatcher [Hat02] on page 127 there, Section 2.1). We’ll
describe some of the steps in the next subsection.

(5) We say that two maps f, g from X → Y are homotopic, then the proof
that f∗ and g∗ give the same maps Hsing

i (X) → Hsing
i (Y ) is not difficult

(see Hatcher [Hat02], page 111, Theorem 2.10). The argument is even
simpler when we introduce cubical singular homology, due to the fact that
the product of a “cube” with [0, 1] is again a “cube;” see below.

(6) We say that two spaces, X,Y are homotopy equivalent if there are maps
f : X → Y and g : Y → X such that the map X → X given by gf is
homotopic to idX (the identity map on X) and fg is homotopic to idY .
We easily see that (1) homotopy equivalence is an equivalence relation on
spaces, and (2) if X,Y are homotopy equivalent, then (in view of the facts
above)

f∗,i : H
sing
i (X) → Hsing

i (Y )

is an isomorphism.

9.9. Retractions and Brouwer’s Fixed Point Theorem. At this point we
know that Sn is isomorphic to the suspension of Sn−1, and hence, by induction
on n ≥ 1, we have the Betti numbers of Sn, βi(Sn), equal 1 for i = 0, n, and 0 if
i ̸= 0, n. Since S0 consists of two points, we have βi(S0) equals 2 for i = 0, and 0
otherwise.

In this subsection we will prove Brouwer’s fixed-point theorem.

Theorem 9.46 (Brouwer’s fixed point theorem). Let n ≥ 1, and let Dn be the unit
disc in Rn, i.e.,

Dn = {x ∈ Rn | x21 + · · ·+ x2n ≤ 1}.
Then any continuous map f : Dn → Dn has a fixed point, i.e., for some x ∈ Dn we
have f(x) = x.

Definition 9.47. If X is a topological space, then we say that a subset A ⊂ X is a
retraction of X if there exists a map f : X → A (the retraction map) such that f |A
(i.e., f restricted to A) is the identity map, and f(X) ⊂ A (therefore f(X) = A).

Lemma 9.48. If A ⊂ X is a retraction of X, then for all i we have βi(A) ≤ βi(X).

Proof. Let f : X → A be a retraction map, and let ι : A→ X be the inclusion map.
Then fι = idA. Hence (fι)∗ is the identity map, and this is a composition of maps

Hi(A)
ι∗−→ Hi(X)

f∗−→ Hi(A).
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Hence the map Hi(X) → Hi(A) is surjective, and hence the dimension of Hi(X)
must be at least that of Hi(A). □

Proof of Brouwer’s fixed point theorem. Say that f : Dn → Dn has no fixed point.
For each x in the interior of Dn, the triangle inequality easily implies that Dn is
strictly convex: i.e., for any x1 ̸= x2 ∈ Dn, for any 0 < t < 1, tx1 + (1 − t)x2

is in the interior of Dn. This convexity of Dn implies that there is a unique point
on Sn−1 that meets the ray beginning at x and pointing in the direction of (the
nonzero vector) x− f(x) (draw a picture); therefore

g(x) = {x+
(
x− f(x)

)
t | t ≥ 0} ∩ Sn−1

defines a map from Dn to Sn−1.
We claim g is continuous: to prove this, it is easiest to use sequences: let x ∈ Dn,

and x1,x2, . . . a sequence in Dn whose limit is x. By definition, there are unique
non-negative t1, t2, . . . such that

g(xi) = xi +
(
xi − f(xi)

)
ti,

and therefore ∣∣∣xi +
(
xi − f(xi)

)
ti

∣∣∣ = 1.

Similarly for a unique t ≥ 0 we have

g(x) = x+
(
x− f(x)

)
t

and therefore ∣∣∣x+
(
x− f(x)

)
t
∣∣∣ = 1.

Let us prove that ti → t as i→ ∞.
For every ϵ > 0 we have that x +

(
x − f(x)

)
(t + ϵ) lies outside of Dn, and

x+
(
x− f(x)

)
(t− ϵ) lies in the interior of Dn. Hence there is a δ > 0 such that,∣∣∣x+

(
x− f(x)

)
(t+ ϵ)

∣∣∣ ≥ 1 + δ

and ∣∣∣x+
(
x− f(x)

)
(t− ϵ)

∣∣∣ ≤ 1− δ

By continuity of f , it follows that for sufficiently large i,∣∣∣xi +
(
xi − f(xi)

)
(t+ ϵ)

∣∣∣ ≥ 1 + δ/2,

and ∣∣∣xi +
(
xi − f(xi)

)
(t− ϵ)

∣∣∣ ≤ 1− δ/2.

Hence for i sufficiently large, t− ϵ < ti < t+ ϵ, and therefore as i→ ∞, ti → t.
Since as i→ ∞, ti → t, it follows that

lim
i→∞

g(xi) = lim
i→∞

(
xi +

(
xi − f(xi)

)
ti

)
= x+

(
x− f(x)

)
t
)
= g(x);

hence g is continuous.
Note also that if x ∈ Sn−1, then |x| = 1 and therefore g(x) = x. Hence g is a

continuous function g : Dn → Sn−1 whose restriction to Sn−1 is the identity map.
Hence Sn−1 ⊂ Dn is a retraction of Dn. But we know that,

if n ≥ 2, then βn−1(Sn−1) = 1 and βn−1(Dn) = 0,
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and
if n = 1, then βn−1(Sn−1) = 2 and βn−1(Dn) = 1,

and together these imply that Sn−1 cannot be a retraction of Dn. □

Corollary 9.49. Let X be a topological space that is homeomorphic to Dn, Then
any function f : X → X has a fixed point.

The proof is that if g : X → Dn is a homeomorphism, and f has no fixed point,
then gfg−1 is a map Dn → Dn without a fixed point.

To apply this corollary it will be useful to know that various topological spaces
are isomorphic to Dn. In Exercise B.20 we will prove the following fact.

Definition 9.50. Let X ⊂ Rn be a subset, and x0 ∈ X. We say that X is star-
shaped at x0 if (1) x0 lies in the interior of X, (2) X is closed and bounded (i.e., X
is compact), and (3) for each x ̸= 0, there is a unique t > 0 such that x0+ tx ∈ ∂X,
where ∂X is the boundary of X (i.e., X minus its interior).18

Theorem 9.51. Let X be star-shaped at x0 ∈ X. Then: (1) X is homeomorphic
to Dn, and (2) ∂X is homeomorphic to Sn−1.

For the proof, see Exercise B.20.

Remark 9.52. Our proof of Theorem 9.46 is especially convenient because Sn−1 =
∂Dn, the boundary of Dn, consists of precisely those x with |x| = 1. The proof
would not work if we replaced Dn with an X homeomorphic to Dn such that X is
not convex; it would work, but be a bit more awkward, had we worked with an n-
simplex instead of Dn. Hence working with topological spaces allows us the freedom
to prove various theorems, like Theorem 9.46, with a particularly convenient space,
such as Dn, within a homeomorphism class of topological spaces.

In Subsection B.3, we give some applications of the Brouwer fixed point theorem,
including a proof of the Perron-Frobenius theorem and the existence of a Nash
equilibrium.

9.10. Singular Homology 3: The Isomorphism between Simplicial Homol-
ogy and Singular (Simplicial) Homology. Let us describe some basic steps
needed to show that

[u0, . . . , ui] 7→ ξ(u0, . . . , ui)

extends to an isomorphism (51). In doing so we will develop some rewarding intu-
ition regarding homology.

(1) First, we claim that if X = {p} is a single point, then β0(X) = 1 and
βi(X) = 0 for i ≥ 1. This may seem like a trivial step, but this will shed
some light on the setup of singular (simplicial) homology. Moreover, this
will shed some crucial light on how cubical singular homology is defined
below, which requires a somewhat awkward convention in order for βi({p})
to be 1 if i = 0 and 0 for i ≥ 1. So for X = {p}, there is exactly one

18Munkres’ textbook [Mun84] defines a weaker notion of star-convex for an open, bounded
subset U ∈ Rn, namely that for any x ∈ U , Conv(0,x) ⊂ U ; see Exercise 5 there, end of
Section 1, page 7. For this weaker definition, U , i.e., the closure of U , need not be star-shaped at
0.
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singular n-simplex, namely the map σn : ∆
n → {p} that is the constant

map. Hence, for X = {p}, the sequence

· · · ∂4−→ Csing
3 (X)

∂3−→ Csing
2 (X)

∂2−→ Csing
1 (X)

∂1−→ Csing
0 (X) → 0

amounts to a sequence of 1-dimensional spaces

· · · ∂4−→ R[σ3]
∂3−→ R[σ2]

∂2−→ R[σ1]
∂1−→ R[σ0] → 0

and, identifying R[σn] with R:

· · · ∂4=id−−−−→ R ∂3=0−−−→ R ∂2=id−−−−→ R ∂1=0−−−→ R → 0

where “id” is the identity map, and hence the homology groups and Betti
numbers work out the way we need. Note: if we did not fix a standard
n-simplex ∆n, but allowed singular homology to be built from maps of
arbitrary simplices to X, then we would build our i-chains from all maps
S → X where S is an arbitrary i-simplex; hence C0({p}) would be built
from the unique map S → {p} from an arbitrary 0-simplex, and we’d have
to identify some of these or take some other step so that H0({p}) is one-
dimensional.

(2) The above computation shows that the “degenerate simplicies” ∆n → X
are essential to singular homology. Here is another example of the need for
“degenerate simplicies:” if {u0, u1} is a edge of K, then [u0, u1] = −[u1, u0]

in Csimp
1 (K); so it had better be true that in Hsing

1 (|K|) we have ξ(u0, u1) =
−ξ(u1, u0). To see this, if (u0, u1, u2) is a sequence of vertices of a simplex
in K, with the ui not necessarily distinct, then “barycentric coordinates”
on (u0, u1, u2) gives a map ξ(u0, u1, u2) : ∆

2 → |K| (whose image is ei-
ther a 0-simplex, a 1-simplex, or a 2-simplex, depending on how many of
u0, u1, u2 are distinct). We easily see that — using the barycentric coordi-
nates that determine ξ(u0, u1, u2) — that the restriction of ξ(u0, u1, u2) to
its faces, and then standardizing these maps, are just maps ∆1 → X given
by ξ(u1, u2), ξ(u0, u2), and ξ(u0, u1); therefore

∂2ξ(u0, u1, u2) = ξ(u1, u2)− ξ(u0, u2) + ξ(u0, u1)

which is therefore 0 in Hsing
1 (|K|). Taking u0 = u1 = u2 shows that

ξ(u0, u0)− ξ(u0, u0) + ξ(u0, u0) = 0 in Hsing
1 (|K|),

and hence ξ(u0, u0) = 0 in Hsing
1 (|K|) (so ξ(u0, u0) is therefore the constant

map ∆1 → |K| taking each point in ∆1 to u0). Taking u0 = u2 ̸= u1 shows
that ξ(u0, u1)+ ξ(u1, u0) is also 0 in Hsing

1 (|K|). It follows that ξ(u0, u1) =
−ξ(u1, u0) in Hsing

1 (|K|). So the use of degenerate maps ∆2 → |K| are
needed to show that Ξ is well-defined, i.e., taking [u0, u1] + [u1, u0] to 0 in
Hsing

1 (|K|).
(3) The basic approach to proving the isomorphism (51) is quite simple and

works by induction: to prove (51) for a simplicial complex, K, imagine and
that there K1,K2 ⊂ K with K1 ∪ K2 = K, and that (51) is an isomor-
phism for K1 ∩ K2,K1,K2. Say that we have proved the Meyer-Vietoris
theorem in singular homology (this is slightly trickier than in simplicial
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homology). This means that we would have a diagram whose rows are long
exact sequences:

Hi(K1 ∩ K2)

Hi(|K1| ∩ |K2|)

Hi(K1 ⨿ K2)

Hi(|K1| ⨿ |K2|)

Hi(K)

Hi(|K|)

Hi−1(K1 ∩ K2)

Hi−1(|K1| ∩ |K2|)

Hi−1(K1 ⨿ K2)

Hi−1(|K1| ⨿ |K2|)

and where all vertical arrows except the middle ones are known to be iso-
morphisms. In the case the “five lemma” (another lemma in homological
algebra) states that if the middle arrow exists (i.e., we have to show that
(u0, . . . , ui) 7→ ξ(u0, . . . , ui) gives a well-defined map Ξ in (51)), then if the
above diagram commutes, then the middle arrow is also an isomorphism
(you can get by with a slightly weaker assumption on the first vertical arrow
and on the last).

(4) The above is an oversimplification, because in general the Mayer-Vietoris
sequence in singular homology for topological spaces X1, X2 ⊂ X requires
X to be the union of the interiors of X1, X2. Hence, when X = |K| for a
simplicial complex, K, if K1,K2 ⊂ K are subcomplexes with K1∪K2 = K,
we cannot take Xi = |Ki| if we want to apply the usual Mayer-Vietoris
sequence in singular homology; if we “thicken” X1, X2, by defining X̃i to
be those points of distance ≤ ϵ to Xi in X (distance makes sense since K
is a complex in RN ), then we could show that X̃i has Xi as a deformation
retract, and we could then apply the Mayer-Vietoris sequence to X̃i, whose
homology groups equal those of Xi (and similarly for X̃1∩X̃2 and X1∩X2).
But more often one uses different long exact sequences akin to the Mayer-
Vietoris sequence. For example, if A ⊂ X are topological spaces, we define

Csing
i (X,A)

def
= Csing

i (X)/Csing
i (A),

and defines the relative homology groups Hi(X,A) to be the homology
groups of the sequence (which we easily check is a chain complex):

· · · ∂3−→ Csing
2 (X,A)

∂2−→ Csing
1 (X,A)

∂1−→ Csing
0 (X,A) → 0

The advantage is that it is immediate that

0 → Csing
i (A) → Csing

i (X) → Csing
i (X,A) → 0

is short exact for all i, and this yields a long exact sequence

· · · → Hsing
i (A) → Hsing

i (X) → Hsing
i (X,A) → Hsing

i−1 (A) → · · ·

The relative homology groups are often easy to determine. Moreover, in
certain cases, in X/A, which is X/ ∼ where ∼ identifies all points in A as
a single point, then

(52) ∀i ≥ 1, Hsing
i (X,A) = Hsing

i (X/A)

where X/A is X/ ∼ where ∼ identified all points in A (which therefore
becomes a single point in X/A).

(5) As a test of relative homology groups, let A ⊂ X be the case where A = X.
Then X/A is a single point, p. Clearly, in this case

Csing
i (X,X) = Csing

i (X)/Csing
i (X) = 0,
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so all the groups Hi(X,X) vanish. Hence (52) holds, but it does not hold
when i = 0; to allow the condition i = 0 in (52), we can use reduced
homology, H̃i, which simply reduces β0 by 1 (one defines C−1 to be R, and
takes C0 → C−1 to be the map that sums the scalar coefficients of a formal
R-linear sum). (For relative homology with A ⊂ X and X connected, we
still have H̃0(X,A) = 0, since we take C−1(X,A) = C−1(X)/C−1(A) =
R/R = 0.) The resulting homology groups are denoted with tildes, and
(52) becomes

∀i, H̃sing
i (X,A) = H̃sing

i (X/A)

(for “good pairs” A ⊂ X). [Relatively homology is also good for suspensions,
since we know that β1(ConeP (K)) = β0(K)− 1 = β̃0(K).]

Again, for more of the story above, you can start reading Hatcher’s textbook
[Hat02], starting at page 127 there, Section 2.1.

9.11. ∆-Complexes. Simplicial complexes are quite inefficient to describe certain
topological spaces. Indeed, a one-dimensional simplicial complex gives rise to only
simple graphs, meaning graphs without self-loops and multiple edges; in other
words, at most one edge (or 1-simplex) can join any two vertices of a simplicial
complex, and a 1-simplex isn’t allowed to have the same two endpoints. In graph
theory, it is often far more efficient to work graphs that can have multiple edges and
self-loops. ∆-complexes are analogs of simplicial complexes where we allow (some
possible) higher dimension analogs of multiple edges and self-loops.

∆-complexes is a term introduced — or, at least, popularized — in Hatcher
[Hat02] (Section 2.1). Let us limit ourselves to finite ∆-complexes here. We will
borrow Hatcher’s definitions in Section 2.1, slightly changing the notion; we refer
the reader to Hatcher’s textbook for more details.

Definition 9.53. Let X be a topological space. A ∆-complex structure on X is a
collection {σα}α∈A of maps σα : ∆nα → X where nα ≥ 0 is an integer, such that

(1) if ∆nα
◦ denotes the interior of ∆nα , then σα restricted to ∆nα

◦ is injective;
(2) each element of X lies in σα(∆nα

◦ ) for a unique α ∈ A;
(3) for any α and integer 0 ≤ j ≤ nα, for some β ∈ A we have

(53) σβ = Stand
(
σ|(e1,...,êj ,...,enα+1)

)
(4) a set U ⊂ X is open iff for all α ∈ A, σ−1

α (U) ⊂ ∆nα is open (i.e., relatively
open in ∆nα as a subset of Rnα).

(Also we may as well assume that the {σα}α∈A are distinct maps, since we may as
well discard any repeated maps.) The i-simplicies of this ∆-complex refers to all
the σα : ∆nα → X such that nα = i.

The above definition ensures us that X is isomorphic to(∐
α∈A

∆nα

)/
∼,

where ⨿ is the disjoint union, ∼ identifies the j-th (n − 1)-dimensional boundary
component of each ∆nα with ∆nβ with β ∈ A as in (53).
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Example 9.54. Any simplicial complex comes with a canonical structure of a ∆-
complex. Namely, if K is a simplicial complex, and X = |K|, then we orient each
simplex S ∈ K, so that when we standardize the map S → |K| = X we get a map
a map σS : ∆nS → X where nS = dim(S). We easily see check that {σS}S∈K gives
X the structure of a ∆-complex.

Example 9.55. ∆-complexes are often a simpler way to describe topological
spaces. For example, S1 can be described as the space

X = [0, 1]/{0, 1},

i.e., interval [0, 1], with 0 and 1 identified as a single point p ∈ X. Hence, S1 can
be endowed with the structure of a ∆-complex {σα, σβ}, where σα : ∆1 → X takes
the interior of ∆1 to (0, 1) ⊂ X, and where σβ is the map ∆0 → X taking 1 to
p = 0 = 1 ∈ X. This realizes S1 as essentially one interval whose endpoints both
equal a single point, which is a graph with one vertex and one self-loop. By contrast,
if K is a simplicial complex with |K| homeomorphic to S1, then as a graph, the
abstract simplicial complex of K must have at least three vertices and three edges.

Example 9.56. The sphere X = Sn can be endowed with the structure of a ∆-
complex as follows: we have two n-simplexes ∆n → X, whose boundaries are glued
together. Hence we can endow X with the structure of a ∆-complex with two
n-simplices, and whose lower dimensional simplicies are the boundary of a single
n-simplex.

Example 9.57. The spaces T2, RP2, and the Klein bottle, can be realized as
[0, 1]2/ ∼ where ∼ is the appropriate identitfication of points in the boundary
of [0, 1]2. See Hatcher’s textbook [Hat02], Section 2.1 (page 102). By drawing
a diagonal edge, these can each be given a ∆-complex structure with only two
2-simplicies. (DRAW PICTURE IN CLASS.)

Like abstract simplicial complexes, if X is endowed with the structure of a ∆-
complex, {σα}α∈A, then X has a natural “simplicial homology:” namely, we let
Csimp
i (X) be the formal R-linear combination of its i-dimensional simplicies, and

for each i-simplex σα we define

∂i(σα) =

i+1∑
j=1

(−1)jStand
(
σ|(e1,...,êj ,...,ei+1)

)
.

This gives rise to a chain

· · · ∂3−→ Csimp
2 (X)

∂2−→ Csimp
1 (X)

∂1−→ Csimp
0 (X) → 0,

and we define the simplicial homology of the ∆-complex structure on X to be the
homology groups of this chain. Again, each σα can be viewed as a singular chain,
which extends to a morphism

Hsimp
i (X) → Hsing

i (X),

which turns out to be an isomorphism (see Hatcher [Hat02], page 128).
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9.12. Singular Homology 4: Cubical Singular Homology. Cubical singular
homology is a bit simpler to work with when it comes to homotopy and is quite
popular in introductory textbooks; otherwise it is defined similarly to simplicial
singular homology. Here are the basics. (See [Mas80, Ful95, Wei14].)

[Simplicial singular homology has the advantage that it is more readily related
to simplicial complexes and ∆-complexes.]

Let X be any topological space. Let I = [0, 1] ⊂ R; for n ≥ 0 define the standard
n-cube to be In ⊂ Rn. By a singular n-dimensional cube on X we mean a map
In → X. The cube In has 2n “faces,” each being a subcube of dimension (n − 1):
so to any singular cube f : In → X and 1 ≤ j ≤ n, the front j-th side is the map
In−1 → X:

Frontj(f)
def
= f(x1, . . . , xj−1, 0, xj+1, . . . , xn),

and similarly its back j-th side

Backj(f)
def
= f(x1, . . . , xj−1, 1, xj+1, . . . , xn)

(i.e., xj = 0 is the “front,” and xj = 1 is the “back” here). We define the boundary
of f to be the formal combination

∂nf
def
=

n∑
j=1

(−1)j
(
Frontj(f)− Backj(f)

)
.

[For example, for n = 1 we have ∂1f = f(1) − f(0) (a formal difference of two
constant functions on I0), which should make sense if [0, 1] is oriented “from 0 to 1
in R.” For n = 2,

∂2f = f(1, x1)− f(0, x1) + f(0, x1)− f(1, x1),

and formal R-linear sum of 4 functions, which is what you’d expect if I2 ⊂ R2 is
given the usual orientation of dx1 ∧ dx2, i.e., counterclockwise.]

We easily see that ∂n−1∂n = 0. We then define Qsing(cube)
i (X) to be the R-linear

combination of singular i-cubes on X, and we have a chain of vector spaces

(54) · · · ∂3−→ Qsing(cube)
2 (X)

∂2−→ Qsing(cube)
1 (X)

∂1−→ Qsing(cube)
0 (X) → 0,

and we are tempted to define the i-th homology group of this chain as the i-th
(cubical) singular homology group.

This approach turns out to fail — quite spectacularly — when X = {p} is
a single point: for then (54) has each Qn({p}) one-dimensional (for the unique
constant map In → {p}), and (56) becomes

(55) · · · ∂3=0−−−→ R ∂2=0−−−→ R ∂1=0−−−→ R → 0,

whose i-th homology group is R for all i. To fix this, we essentially ignore (!) all
the Qi({p}) for i ≥ 1: more precisely we say that a map f : In → X is degenerate
if there is at least one coordinate that f is independent of, i.e., for some 1 ≤ j ≤ n,
f = f(x1, . . . , xn) is independent of j. We easily check that if f is degenerate, then
∂nf is a formal linear combination of degenerate functions In−1 → X (the point
is that Frontj −Backj vanishes on any function that is independent of xj , and the
remaining terms of ∂nf are degenerate functions). It follows that setting Dn(X) to
be the formal linear combinations of degenerate maps In → X, we have

Dn(X) ⊂ Qn(X), ∂n
(
Dn(X)

)
⊂ Dn−1(X),
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and therefore ∂n extends to a quotient map

∂n : Cn(X) → Cn−1(X), where Cn(X)
def
= Qn(X)/Dn(X).

We call Cn(X) the (cubical) singular n-chains of X. Since ∂n−1∂n = 0 on Qn(X),
the same holds on Cn(X), and we get a chain of vector spaces:

(56) · · · ∂3−→ Csing(cube)
2 (X)

∂2−→ Csing(cube)
1 (X)

∂1−→ Csing(cube)
0 (X) → 0.

We define the (cubical) singular homology groups of X to be the homology groups
of the above chain, whose i-th group is denoted H

sing(cube)
i (X), and we define the

(cubical) singular Betti numbers of X to be, as expected

β
sing(cube)
i (X)

def
= dim

(
H

sing(cube)
i (X)

)
.

Remark 9.58. Because degenerate functions are crucial to simplicial singular ho-
mology, the above suggested fix for cubical singular homology — i.e., passing from
Qi(X) to Ci(X) — may seem intuitively questionable. To develop some intuition
as to why quotienting by Di(X) ⊂ Qi(X) “works,” first note: H0(X) is the same
whether we work with Qi(X) or Ci(X). However, H1({p}) is different; moreover,
the constant map I → {p} needs be 0 in H1({p}), and cubical singular homology
has the “defect” that I → {p} is not in the image of ∂2. By contrast, in simplicial
singular homology the map ∆2 → {p} plays the crucial role of having ∂2 take this
map to ∆1 → {p}, and the constant map ∆1 → {p} is the analog of the cubical
singular map I → {p}. Hence quotienting out by Di({p}) is needed to correct
this “defect” of the chains Qi({p}) regarding H1({p}). Another possible correction
would be to add to C2({p}) some element(s) whose image(s) via ∂2 would be the
constant map I → {p}.

Remark 9.59. Note that in simplicial singular homology, the map ∆n → {p}
vanishes in Hn({p}) iff n is odd; indeed, the map ∆0 → {p} does not vanish, and
gives rise to the one-dimensional vector space Hsing(simp)

0 ({p}). The map ∆2 → {p}
does not appear in Hsing(simp)

2 ({p}), simply because ∆2 → {p} is not in the kernel of
∂2. But if one defined the constant map ∆2 → {p} as 0 in the chain Csing(simp)

2 (X),
the groups Hsing(simp)

i ({p}) would be incorrect.

Remark 9.60. Many topology textbooks define the fundamental group, π1(X), of
a topological space, X, before defining homology groups. The fundamental group
is built by fixing a point x0 ∈ X (assuming X is connected), and π1(X) is defined
as the set of paths p : [0, 1] → X with p(0) = p(1) = x0, and where the constant
path (i.e., p(t) = x0 for all t ∈ [0, 1]) plays the role of the identity. H1(X) is
essentially the abelianization of π1(X) (in our case tensored with R, since we have
defined H1(X) as a R-vector space). This is another reason why the constant path
should be 0 in H1(X) (although this doesn’t directly motivate the formulation of
Ci = Qi/Di).

9.13. Singular Homology 5: Homotopy Equivalence. TO BE CONTIN-
UED...

10. Barcodes for Simplicial Complexes

10.1. Point Clouds and Simplicial Complexes. In class, March 26, 2025, we
explained how point clouds give rise to an increasing sequence of abstract simplicial
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complexes. This gives rise to a sequence

K0 f0

−→ K1 f1

−→ · · · fn−1

−−−→ Kn,

where the fi : Ki → Ki+1 are inclusions. The discussion in this section applies,
more generally, when Ki are arbitrary simplicial complexes, and f i : Ki → Ki+1 are
arbitrary maps of simplicial complexes (i.e., f i maps the vertices of Ki to those of
Ki+1, in a way that each k-simplex of Ki is taken to a k-simplex of Ki+1. As we
explained in class, for each j = 0, 1, 2, . . . we get a sequence of maps:

Hj(K0)
f0
∗−→ Hj(K1)

f1
∗−→ · · · fn−1∗

−−−−→ Hj(Kn)

(of course, the f i∗ = f i∗,j depend on j, but it is customary to drop the j, which is
clear from the context).

Similarly, if

X0 f0

−→ X1 f1

−→ · · · fn−1

−−−→ Xn

is a sequence of continuous maps of topological spaces, then each f i maps each
singular j-simplex of Xi to one of Xi+1 (by composing with f i), and we similarly
get a map for each j:

Hj(X
0)

f0
∗−→ Hj(X

1)
f1
∗−→ · · · fn−1∗

−−−−→ Hj(X
n)

On March 26, 2025 we drew some examples and asked ourselves: is there a “most
persistent element of H1(Ki)?

Example 10.1. Consider the sequence of complexes:

A C

B

D

K0

A C

B

D

K1

A C

B

D

K2

A C

B

D

K3

A C

B

D

K4

(these should look familiar from Example 4.9). The associated sequence of ze-
roth Betti numbers, which reflects the number of connected components, is not
particularly interesting here. Then the sequence of first Betti numbers, β1(Kj) =

dim(H1(Kj)) is 0, 1, 2, 1, 0. Notice that the cycle τ1 = [A,B] + [B,C] + [C,A],
which first appears in K1, remains a cycle in Hi(Kj) for j = 2, 3, 4 and is non-zero
in H1(K2) and H1(K3). Hence there is an obvious sense in which τ1 is the “most
persistent H1 feature” of this sequence.



INTRODUCTION TO SIMPLICIAL HOMOLOGY 71

Example 10.2. Consider the same sequence of complexes with a slightly different
K1:

A C

B

D

K0

A C

B

D

K1

A C

B

D

K2

A C

B

D

K3

A C

B

D

K4

The cycle τ1 = [A,B] + [B,C] + [C,A] doesn’t appear until K2, but the cycle
τ2 = [A,B] + [B,C] + [C,D] + [D,A] appears in K1 and is nonzero in homology
there and in K2 and K3. Hence τ2 is the “most persistent H1 feature” of this
sequence.

Example 10.3. Let us again modify K1:

A C

B

D

K0

A C

B

D

K1

A C

B

D

K2

A C

B

D

K3

A C

B

D

K4

The cycle τ3 = [A,C] + [C,D] + [D,A] appears in K1, but vanishes in H1(K3).
The cycles τ1 = [A,B] + [B,C] + [C,A] and τ2 = [A,B] + [B,C] + [C,D] + [D,A]
don’t appear until K2, but remain nonzero in homology in K3. So there is “fully
persistent” cycle in this example.

Now the question is can one describe the homology and “persistent cycles” in
some simplified diagram. Let us give some examples of what we have in mind.
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Example 10.4. Consider Example 10.3 and how H1(Ki) “evolves in i:” since
H1(Ki) = 0 for i = 0, 4, we will focus on i = 1, 2, 3:

A C

B

D

A C

B

D

A C

B

D

H1(K1) ≃ R H1(K2) ≃ R2 H1(K3) ≃ R

A C

B

D

τ3 =
R R 0

A C

B

D

τ2 =
0 R R

The meaning of this diagram is that τ3 exists in K1 and is nonzero in H1 for K1,K2,
but then is 0 in H1(K3). Similarly, τ2 does not exist in K1, but does in K2,K3 and
is nonzero in H1 there. Moreover, τ3, τ2 form a basis for H1(K2). Hence we can
represent H1(Ki) for i = 1, 2, 3 in simpler terms:

τ3
τ2

H1(K1) H1(K2) H1(K3)

which is called a “barcode diagram.” Note that there is some freedom here: one
could alternatively replace τ2 with τ1 above, yielding the chart:

A C

B

D

A C

B

D

A C

B

D

H1(K1) ≃ R H1(K2) ≃ R2 H1(K3) ≃ R

A C

B

D

τ3 =
R R 0

A C

B

D

τ1 =
0 R R
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which yields the same “barcode diagram”

τ3
τ1

H1(K1) H1(K2) H1(K3)

The point is that τ1 and τ2 both first appear in K2, and τ1, τ3 form another basis
for H1(K2), and τ1 = τ2 as elements of H1(K3).

Example 10.5. One can create a similar “simplification” of H1 for Example 10.2:

A C

B

D

A C

B

D

A C

B

D

H1(K1) ≃ R H1(K2) ≃ R2 H1(K3) ≃ R

A C

B

D

τ3 =
0 R 0

A C

B

D

τ2 =
R R R

which yields the “homology simplification” or “barcode” for H1:

τ3
τ2

H1(K1) H1(K2) H1(K3)
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Example 10.6. Warning: in the last example, we cannot replace τ3 with τ1, since
individually the picture now looks like:

A C

B

D

A C

B

D

A C

B

D

H1(K1) ≃ R H1(K2) ≃ R2 H1(K3) ≃ R

A C

B

D

τ1 =
0 R R

/

A C

B

D

τ2 =
R R R

The problem is that although τ1, τ2 form a basis for H1(K2), and both are nonzero
in H1(K3), they are linearly dependent in the one-dimensional space H1(K3) ≃ R.
So we want to identify a set of 1-forms, each that is first found in some H1(Ki),
but the set of 1-forms that are non-zero in each H1(Kj) are linearly independent
there. In this example, τ2 is the unique 1-form (up to scalar multiplication) that
persists for the entire sequence; hence we must use τ2 in such a “simplification” or
“barcode.” However, the second 1-form we choose in K2 needs to be taken to 0 in
K3.

The existence of an appropriate basis of 1-forms to make a simplification or bar-
code with the right independence properties can be done in a very general context,
which we next describe as the “abstract barcode” theorem.

10.2. The Abstract Barcode Theorem. The “barcode theorem” is a theorem
in linear algebra that is an integral part of persistent homology, first discovered in
[ELZ02, ELZ00]. Yet, the “barcode theorem” can be viewed as a general theorem in
linear algebra, and specifically [CZCG04] a consequence of the structure of graded
modules over a PID.

We will describe a few simple algorithms to find “bar codes.” Let us give the
relevant definitions and results.

Throughout this article we work with the field of scalars R, although the same
discussion holds over an arbitrary field.

Definition 10.7. Let n ≥ 0 be an integer. A string of R-vector spaces of length
n+1 refers to the data consisting of a sequence V 0, . . . , V n of R-vector spaces, and
linear maps Li : V i → V i+1 for i = 0, . . . , n − 1. We often use the symbols V ·,L·

to refer collectively to {V i}0≤i≤n and {Li}0≤i≤n−1, and (V ·,L·) to the string.



INTRODUCTION TO SIMPLICIAL HOMOLOGY 75

We may represent a string of vector spaces with the diagram:

(57) V 0 L0

−−→ V 1 L1

−−→ · · · Ln−1

−−−→ V n.

Definition 10.8. In Definition 10.7, let i, j be integers with 0 ≤ i ≤ j ≤ n. For
0 ≤ k ≤ n, let Vk = R if i ≤ k ≤ j, and otherwise let Vk = 0. For i ≤ k ≤ j − 1, let
Lk be the identity map. We call this string of n+ 1 R-vector spaces the (i, j)-bar.
As a diagram, the (i, j)-bar can be represented as:

0 → · · · → 0 → R → · · · → R → 0 → · · · → 0,

where the first appearance of R is in V i, and the last in V j , and all morphisms
R → R are the identity maps (there is only one morphism 0 → R, and only one
R → 0). By a bar we mean any (i, j)-bar.

Our main theorem states that any string of finite dimensional vector spaces is
isomorphic to a direct sum of bars of the form in Definition 10.7. Hence we need
to define the direct sum.

Definition 10.9. Let S1 = (V ·
1 ,L·

1), S2 = (V ·
2 ,L·

2) be strings of R-vector spaces of
the same length n+ 1. The direct sum of S1 and S2 is the string whose i-th vector
space is V i

1 ⊕ V i
2 , and whose i-th morphism is Li

1 ⊕ Li
2.

Hence the diagram representing the direct sum is:

V 0
1 ⊕ V 0

2

L0
1⊕L0

2−−−−→ · · ·
Ln−1

1 ⊕Ln−1
2−−−−−−−−→ V n

1 ⊕ V n
2 .

The direct sum of any set of strings is similarly defined.

Example 10.10. Let n = 2. The direct sum of the bar (0, 0), the bar (2, 2), 2
copies of the bar (1, 2), and the bar (0, 2) is visualized by the barcode

V 0 V 1 V 2

To formalize this, we label each bar with a unique letter from A, . . . , E:

A
B

C
D

E
V 0 V 1 V 2

This describes V 0, V 1, V 2 as

V 0 = R{A,E} → V 1 = R{C,D,E} → V 2 = R{B,C,D,E},

where we understand the following convention: if S is a set, then RS (as usual) refers
to the R-vector space of maps S → R; if S1, S2 are two sets (one usually thinks of
S1, S2 ⊂ T as subsets of an “ambient” set T ), then one defines a “canonical map”
KS1→S2

: RS1 → RS2 taking v ∈ RS1 to the function that agrees on v on S1 ∩ S2,
and otherwise, i.e., on S2 \ S1, takes the value 0.

We now want to formalize the notion of isomorphic strings of vector spaces.
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Definition 10.11. Let S1 = (V ·
1 ,L·

1), S2 = (V ·
2 ,L·

2) be strings of R-vector spaces
of the same length n+1. A morphism S1 → S2 is a collection of maps Mi : V i

1 → V i
2

that intertwine with the morphisms of S1 and S2 in the evident sense, i.e., for all
0 ≤ i ≤ n, we have Mi+1Li+1

1 = Li
2Mi for all i.

Hence we can depict this morphism with a “commutative diagram”:

V 0
1 L0

1

V 1
1 L1

1

· · ·
Ln−2

1

V n−1
1 Ln−1

1

V n
1

V 0
2

L0
2 V 1

2

L1
2

· · ·
Ln−2

2 V n−1
2

Ln−1
2

V n
2

M0 M1 Mn−1 Mn

It is immediate that this morphism is an isomorphism (i.e., this morphism has an
inverse morphism) iff each Mi is an isomorphism.

The main point of this subsection is to prove the following theorem, and to give
an algorithm in the general case.

Theorem 10.12. Any string, F , of length n+1 of finite dimensional vector spaces
is isomorphic to a direct sum of bars. Moreover, for each 0 ≤ i ≤ j ≤ n, the number
of (i, j)-bars in this direct sum is independent of this direct sum.

Definition 10.13. The direct sum of bars for a string, F , as in Theorem 10.12 is
called a barcode decomposition of F .

We will now give different algorithms for finding these bars, all of which provide
a proof of Theorem 10.12. Let us describe these in rough terms:

(1) To any string, F , there is a natural “total space” of F , namely the direct
sum of the vector spaces of F , and a linear map on this “total space” that
combines the linear maps in F . This is easily seen to be nilpotent; then
the usual algorithm for bringing a nilpotent matrix into Jordan canonical
can be adapted to provide a barcode decomposition for F .

(2) There is a simple “forward sweeping” algorithm that finds all the bars be-
ginning at V 0, then those at V 1, etc. The idea is that all the bars beginning
in V 0 span the the “sub-string” of F consisting of the images of V 0 in the
V i for i ≥ 1, i.e.,

(58) V 0 L0

−−→ V 1,0 = L0(V 0)
L1

−−→ · · · Ln−1

−−−→ V n,0 = Ln−1Ln−2 . . .L0(V 0);

furthermore, the subspaces V i,0 ⊂ V i are fixed, regardless of how any of
the bars for F are chosen. Hence the choice of bars beginning in V 1, V 2,
etc., is independent of our choice for bars beginning in V 0. So we first find
a set of bars for (58) (which we can do by longest bar first). We then find
bars beginning in V 1 which in V 1 give a basis for V 1/V 1,0. We then find
bars for V i for i = 2, 3, . . . , n in this way.

(3) There are likely many variants of the above algorithms. See Remark 10.19
regarding the algorithm in the textbook by Horn and Johnson for finding
Jordan canonical form starting with a Schur decomposition.
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10.3. The Forward Sweep Algorithm. In this subsection we prove Theo-
rem 10.12 using what we call the forward sweep algorithm. We will introduce a
lot of terminology and notation without formally writing out definitions.

What we will discover, after explaining the algorithm, is that although our “for-
ward sweep” algorithm requires some

(
n+2
2

)
“sweeps” which we gather into n + 1

phases. However, it will turn out that each of these sweeps can be performed “in-
dependently,” using information determined by the string but independent of the
choice of bars in each phase of the algorithm.

Consider a string F = (V ·,L·) of vector spaces:

V 0 L0

−−→ V 1 L1

−−→ · · · Ln−1

−−−→ V n.

For 0 ≤ i ≤ j ≤ n we let Li→j : V i → V j be the evident composition, i.e.,

Li→j = Lj−1 ◦ Lj−2 ◦ . . . ◦ Li : V i → V j

(understanding Li→i to be the identity map), and we let

V i→j = Image(Li→j) = Li→j(V i) ⊂ V j

(understanding V i→i = V i), and

mi,j = dim
(
V i→j

)
, mi = mi,i = dim(V i).

The V 0 generated string of F refers to the sub-string (a sub-string of F in the
evident sense):

(59) V 0 → V 0→1 → · · · → V 0→n

where the map V 0→i → V 0→i+1 is the restrictions of Li. It will be crucial to note
that all the maps in (59) are surjective, since for all 0 ≤ i ≤ n− 1,

V 0→i+1 = LiL0→iV 0 = Li
(
V 0,i

)
.

It follows that for any i ≤ i′, the map V 0→i → V 0→i′ , which is restriction of Li→i′

to V 0→i, is a composition of surjective maps, and is therefore surjective.
Our algorithm is based on the following observations: assume that a barcode

decomposition of F exists; then bars that are nonzero in V 0 must contain a basis
V 0, and the images of these vectors in V i that are non-zero must be a basis for V i,0.
Hence, even if the choice of bars beginning at V 0 is not unique (and it generally is
not), their spans in each V i must equal V 0→i. In this way if we produce a “full”
set of (0, q)-bars for all q with 0 ≤ q ≤ n, meaning bars whose direct sum equals
(59), the selection of the (ℓ, q)-bars for 1 ≤ ℓ ≤ q only depends on (59), and not the
particular choice of bars. This observation will be crucial to what follows.

We will call the selection of all (0, q)-bars with 0 ≤ q ̸= n the “0-th phase” of the
algorithm.

10.3.1. Phase 0, First Step: A Forward Sweep on the Longest Bars in (59). First
we choose the (0, n)-bars, which represent the “longest” or “most persistent” bars
of the string F = (V ·,L·).

Since dim(V 0→n) = m0,n, we may choose a basis w0,n
i , with 1 ≤ i ≤ m0,n of

V 0→n (which is the emptyset if V 0→n = 0 and therefore m0,n = 0). Since the map
V 0 → V 0→n is surjective, for each 1 ≤ i ≤ m0,n we may choose v0,ni such that
L0→nv0,ni . Each v0,i therefore determines a (0, n)-bar in F = (V ·,L·), namely

(60) v0,i 7→ L0→1v0,i 7→ L0→2v0,i 7→ · · · 7→ L0→nv0,i = w0,i ̸= 0.
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The number of these (0, n)-bars is m0,n, and since

m0,n = dim
(
V 0→n

)
,

the number of these bars is depends only on F = (V ·,L·). (Of course, the choice
of the w0,i is not unique if m0,n ≥ 1.)

Now we claim that for any 0 ≤ j ≤ n, the V j part of the (0, n)-bars in (60)
are linearly independent, i.e., the vectors L0→jv0,ni with 1 ≤ i ≤ m0,n are linearly
independent: indeed, say that for scalars α1, . . . , αm0,n we have

(61)
m0,n∑
i=1

αiL0,jv0,ni = 0.

Then apply Lj→n to both sides: since Lj→nL0→jv0,ni = L0→nv0,i = w0,n
i , applying

Lj→n to (61) gives
m0,n∑
i=1

αiw
0,n
i = 0.

But since the w0,n
i form a basis for V 0→n, we must have αi = 0 for all i.

10.3.2. Phase 0, Second Step: A Forward Sweep on the Second Longest Bars in
(59). The next step is to find all the (0, n− 1)-bars, which need to be of the form

v0 7→ L0→1v0 7→ . . . 7→ L0,n−1v0 7→ L0,nv0 = 0

for some v0 ∈ V 0. So for each 0 ≤ ℓ ≤ q ≤ n− 1, let

(62) Kℓ,q = ker(Lq) ∩ V ℓ→q = {w ∈ V ℓ→q | Lqw = 0}.
By the surjectivity of the maps in (59),

dim(K0,n−1) = dim
(
V 0→n−1

)
− dim

(
V 0→n

)
= m0,n−1 −m0,n.

Choose a basis, w0,n−1
i , with 1 ≤ i ≤ m0,n−1−m0,n, for K0,n−1 ⊂ V 0→n−1, and (by

surjectivity) choose for each i a vector v0,n−1
i ∈ V 0 such that L0→n−1(v0,n−1

i ) =

w0,n−1
i . This gives for each 1 ≤ i ≤ m0,n−1 −m0,n a (0, n− 1)-bar

v0,n−1
i 7→ L0→1v0,n−1

i 7→ . . . 7→ L0→n−1v0,n−1
i 7→ L0→nv0,n−1

i = 0.

We now claim that for any j with 0 ≤ j ≤ n− 1, the images of the vectors

{v0,ni }i∈[m0,n] ∪ {v0,n−1
i }i∈[m0,n−1−m0,n]

in V j are linearly independent. The argument is similar to the preceding linear
independence algorithm: namely, say that

(63)
m0,n∑
i=1

αiL0,jv0,ni +

m0,n∑
i′=1

βi′L0,jv0,ni′ = 0.

Applying Lj→n to both sides we get
m0,n∑
i=1

αiw
0,n
i = 0,

and hence all the αi are zero; then applying Lj→n−1 we then get
m0,n∑
i′=1

βi′w
0,n
i′ = 0,
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and therefore all the βi′ are zero.
Similarly to before, the number of (0, n− 1)-bars built above is m0,n−1 −m0,n,

which depends only on F = (V ·,L·).

10.3.3. Phase 0: The General Forward Sweep Step for (59). We similarly find the
(0, q)-bars for any 0 ≤ q ≤ n− 1: We choose a basis w0,q

i for K0,q as in (62), hence
for 1 ≤ i ≤ m0,q −m0,q+1, and choose v0,qi ∈ V 0 such that L0→qv0,qi = w0,q

i . An
argument similar to the second step shows that for any 0 ≤ j ≤ q, the images in
V j of all the v0,q

′

i ranging over all q′ ≥ q and relevant i are linearly independent.
Note also that the total number of vectors v0,q

′

i with q′ ≥ q equals
(64)(
m0,q−m0,q+1

)
+
(
m0,q+1−m0,q+2

)
+· · ·+

(
m0,n−1−m0,n

)
+m0,n = m0,q = dim

(
V 0→q

)
.

Hence the part of each (0, q′)-bar that lives in V 0→q forms a basis there.
Hence we have found a set of (0, q)-bars for q = n, n− 1, . . . , 0 whose direct sum

equals (59). This is the end of “phase 0.”

10.3.4. Cleaning Up Phase 0. Note that in phase 0, the (0, n)-bars found have a
slightly different notation. To clean this up, let V n+1 = 0 and add this into the
string F = (V ·,L·), yielding

(65) V 0 L0

−−→ V 1 L1

−−→ · · · Ln−1

−−−→ V n Ln

−−→ V n+1 = 0.

We will call this the augmented string of vector spaces. Hence Ln is the zero map.
Then we can extend Li→j and V i→j to j = n + 1, and mi,n+1 = 0 for all i. Also
(62) also makes sense for q = n, and as such

Kℓ,n = ker(Ln) ∩ Lℓ→n = Lℓ→n

since Ln is the zero map. In this way, the basis w0,n
i is equivalently a basis for

K0,n = V 0→n, and the size of this basis is m0,n = m0,n − m0,n+1. This means
that the (0, n)-bars constructed are constructed from a basis of K0,n, just as the
(0, q)-bars are constructred from a basis of K0,q.

Hence, with the above conventions, the (0, n)-bar construction is identical to the
(0, q)-bar construction for q ≤ n− 1.

10.3.5. Phase 1 and Beyond, and the General Step. At this point we have found
(0, q)-bars for all 0 ≤ q ≤ n whose direct sum is (59), and this is the end of phase
0.

The next phase, “phase 1,” is to add the appropriate (1, q)-bars for all 1 ≤ q ≤ n;
these additional bars, together with the (0, q)-bars, should therefore have a direct
sum equal to

(66) V 0 → V 1 → V 1→2 → · · · → V 1→n

At this point we may as well describe “phase ℓ” for any ℓ ≥ 1.
For ℓ = 0, 1, . . . , n the “ℓ-th” phase can be described as follows: consider the two

(augmented) sequences:

V 0 → V 1 → · · ·V ℓ−1 →V ℓ−1→ℓ → V ℓ−1→ℓ+1 → · · · → V ℓ−1→n → 0 = V ℓ−1→n+1,

(67)

V 0 → V 1 → · · ·V ℓ−1 →V ℓ → V ℓ→ℓ+1 → · · · → V ℓ→n → 0 = V ℓ→n+1.

(68)
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Before phase ℓ begins, we have found (ℓ′, q)-bars for all ℓ′ ≤ ℓ − 1 and all q ≥ ℓ′

whose direct sum equals (67). During phase ℓ we proceed find (ℓ, q)-bars for q =
n, n−1, . . . , ℓ — in this order — whose direct sum, along with the bars found before
phase ℓ, equals (68).

The following definition is convenient.

Definition 10.14. Let U ′ ⊂ U be vector spaces (over an arbitrary field). A basis
of U relative to U ′ refers to any set u1, . . . , um ∈ U , with m = dim(U) − dim(U ′)
that satisfy any of the equivalent conditions:

(1) any basis of U ′ combined with u1, . . . , um yields a basis for U ;
(2) the vectors in U/U ′ given by u1 + U ′, . . . , um + U ′ are a basis for U/U ′;
(3) any vector in U can be written uniquely as a vector in U ′ plus a linear

combination of u1, . . . , um.

(It is possible to give a number of other equivalent conditions in the above
definition.)

For j ≤ ℓ − 1, j-th vector space in (67) and in (68) are both equal to V j ; for
j ≥ ℓ, the j-th vector space in (67) and in (68), respective, are

V ℓ−1→j , V ℓ→j

respectively. Hence we can rephrase the task for phase ℓ in terms of a relative basis:
we want to add (ℓ, q)-bars for each q with ℓ ≤ q ≤ n so that for each j ≥ ℓ, the
sum of the V j element of the (ℓ, q) bars for all q ≥ j is a relative basis for V ℓ→j to
V ℓ−1→j .

The (ℓ, q) bars for all q ≥ ℓ that we add can be described as follows: by surjec-
tivity of (65), we have V ℓ−1,q ⊂ V ℓ,q since

V ℓ−1→q = Lℓ−1→qV ℓ−1 = Lℓ→qLℓ−1V ℓ−1 ⊂ Lℓ→qV ℓ = V ℓ,q.

It follows that Kℓ−1,q ⊂ Kℓ,q, since

Kℓ−1,q = ker(Lq) ∩ V ℓ−1,q ⊂ ker(Lq) ∩ V ℓ,q = Kℓ,q.

So choose a basis {wℓ,q
i }i for Kℓ,q relative to Kℓ−1,q, where i ranges from 1 to

kℓ,q
def
= dim

(
Kℓ,q

)
− dim

(
Kℓ−1,q

)
=
(
mℓ,q −mℓ,q+1

)
−
(
mℓ−1,q −mℓ−1,q+1

)
.

We then choose vℓ,qi ∈ V ℓ such that Lℓ→qvℓ,qi = wℓ,q
i .

Hence phase ℓ ends by building all these (ℓ, q)-bars, with q ranging over ℓ ≤ q ≤ n.
We now prove that for any j ≥ ℓ, the sum of the V j parts of all (ℓ, q)-bar vectors
over all q ≥ j forms a relative basis for V ℓ→j relative to V ℓ−1→j .

So fix j ≥ ℓ. We have∑
q≥j

kℓ,q =
∑
q≥j

(
mℓ,q −mℓ,q+1

)
−
∑
q≥j

(
mℓ−1,q −mℓ−1,q+1

)
which, similarly to (64), equals

mℓ,q −mℓ−1,q = dim
(
V ℓ→q

)
− dim

(
V ℓ−1→q

)
.

Hence

(69)
∑
q≥j

kℓ,q = dim
(
V ℓ→q

)
− dim

(
V ℓ−1→q

)
.
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Hence the number of (ℓ, q)-bars with q ≥ j is the number of vectors in a basis
for V ℓ,j relative to V ℓ−1,j . Hence it suffices to show that the vectors Lℓ→j(vℓ,qi )
summed over all q ≥ j and appropriate i are linearly independent relative to V ℓ−1,j .

So say that ∑
q≥j

kℓ,q∑
i=1

αq
iL

ℓ→j
(
vℓ,qi

)
∈ V ℓ−1,j

for some scalars αq
i . Applying Lj→n we have

kℓ,n∑
i=1

αn
i Lℓ→n

(
vℓ,ni

)
∈ V ℓ−1,n

so
kℓ,n∑
i=1

αn
i w

ℓ,n
i ∈ V ℓ−1,j

and hence αn
i = 0 for all i, since the wℓ,n

i form a basis of V ℓ,j relative to V ℓ−1,j .
We then apply Lj→n−1 and conclude that all αn−1

i = 0; similarly we inductively
apply Lj→n′

for n′ = n− 2, n− 3, . . . , ℓ to show that αn′

i = 0 for all i.
Hence for any j ≥ ℓ, the sum of the V j parts of all (ℓ, q)-bar vectors over all

q ≥ j are linearly independent as vectors in V ℓ→j/V ℓ−1→j ; in view of (69), we have
that these V j parts form a basis for V ℓ,j relative to V ℓ−1,j .

10.3.6. All Phases, All Steps in Parallel. Now we observe that for fixed ℓ ≤ q,
the (ℓ, q)-bars constructed above only need to know Kℓ,q and Kℓ,q−1; in view of
(62), Kℓ,q depends only on the kernel of Lq and V ℓ,q = Image(Lℓ→q). Hence from
F = (V ·,L·) we can determine Kℓ,q and Kℓ−1,q. In this sense we can find all (ℓ, q)-
bars for any ℓ, q using a procedure that is independent of all other choices of the
other bars.

10.4. A Backward Sweep Algorithm. There is, of course, a corresponding
“backwards sweep” algorithm. Perhaps the conceptually simplest way to under-
stand this is that passing to the dual spaces we get the “dual string”

(V n)∗
(Ln−1)∗−−−−−→ (V n−1)∗

(Ln−2)∗−−−−−→ · · · (L0)∗−−−→ (V 0)∗

(practically speaking, the matrix representation of (Li)∗ is the transpose of that
of Li, assuming we’ve chosen bases for the V i and we use the corresponding dual
basis for each (V i)∗). Then given a bar decomposition for the dual string, we get
a basis for each (V i)∗; taking the dual basis for V i, we easily check that for any
(n− j, n− i)-bar in the dual string (so i ≤ j)

(vj)∗ → (vj−1)∗ → · · · → (vi)∗

with (vℓ)∗ ∈ (V ℓ)∗ for i ≤ ℓ ≤ j, then the dual vector vℓ ∈ V ℓ for i ≤ ℓ ≤ j satisfies
Lℓvℓ = vℓ+1 for all i ≤ ℓ ≤ j − 1 (EXERCISE). It follows that a bar decomposition
of the dual string gives rise to one of the original string. However, since the order
of the bars is reversed, a bar in the dual string

(vj)∗ → (vj−1)∗ → · · · → (vi)∗

can be seen as starting with (vj)∗ ∈ (V j)∗ and determining (vℓ)∗ as (Lℓ→j)∗((vj)∗).
In this way the “forward sweeps” in the dual string become “backward sweeps” in
the original string.
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10.5. A Barcode Algorithm Based on Jordan Canonical Form.

Definition 10.15. Consider a string F = (V ·,L·) of vector spaces:

V 0 L0

−−→ V 1 L1

−−→ · · · Ln−1

−−−→ V n.

The total space of F is the pair (V,L) where

V = V 0 ⊕ · · · ⊕ V n,

and L : V → V is the map given by

L(v0, . . . , vn) → (0,L0v0, . . . ,Ln−1vn−1).

Hence, in the definition above, L is nilpotent, i.e., Ln = 0.
We next recall the algorithm to put L into its Jordan canonical form, which

determines the barcode of F = (V ·,L·).

10.5.1. Jordan Canonical Form of a Nilpotent Linear Operator. In this section we
review Jordan canonical form linear operator L : V → V , assuming that L is nilpo-
tent, i.e., Lk = 0 for some k ∈ N. We will then apply this to the linear transforma-
tion L : V → V in Definition 10.15.

[The general case of Jordan canonical form is not much harder, but we won’t
need it in this article.]

[This article shows the usefulness of Jordan canonical form in certain “applied
settings,” despite the fact that “almost all” matrices are diagonalizable.19 ]

So let L : V → V be a linear transformation of an R-vector space V . Further
assume that L is nilpotent, i.e., Lk = 0 for some k ∈ N, and fix k to be the smallest
such integer. It follows that all eigenvalues of L are 0; since 0 ∈ R whether or not
R is algebraically closed, we can put L into Jordan canonical form (whether or not
R is algebraically closed). Let us review the algorithm.

A Jordan chain20 of length k generated by w of L is any sequence

(70) w,Lw, . . . ,Lk−1w

such that w ∈ V and Lk−1w ̸= 0. Then it is almost immediate that these elements
are linearly independent: indeed, if α0w+α1Lw+ · · ·+αk−1Lk−1w = 0 for αi ∈ R,
and some αi ̸= 0, then for the smallest i with αi ̸= 0 we apply Lk−1−i to both sides
of the equation and conclude that αiLk−1w = 0, which is impossible.

Next note that for a Jordan chain (70), if we restrict L to the subspace, V ′, of V
spanned by Lk−1w,Lk−2w, . . .Lw,w, then these vectors, in this order, give a basis
for V ′ that turns L|V ′ (the restriction to V ′) into the matrix J ∈ Rn×n acting on

19A matrix M ∈ Rn×n (i.e., an n×n matrix with entries in R), M , is necessarily diagonalizable
(over R = C, the algebraic closure of R) when its characteristic polynomial pM (x) = det(Ix−M)
has n distinct roots, i.e., its discriminant (i.e., the resultant of pM and p′M ) is nonzero. [The 2×2

all zeros matrix is diagonalizable, and has characteristic polynomial x2, so this condition is not
necessary.] Hence there is a polynomial Q = Q(M), of the entries of M , such that Q(M) ̸= 0

implies that M is diagonalizable. Since Q(M) is not identically zero (it is nonzero on a diagonal
matrix with distinct diagonal elements in R = C), it follows that Q is not the zero polynomial. It
follows that the set of non-diagonalizable matrices in Rn×n is of measure 0. Moreover, the set of
non-diagonalizable matrices in Rn×n

= Cn×n lies in a proper, Zariski closed subset, and therefore
is “exceptional” in various senses that we will not bother to specify. Similar remarks hold with R
replaced with any field, and R = C replaced with algebraic closure of the field.

20We would add “with respect to the eigenvalue 0” for a general L, not assumed to be nilpotent,
and the chain would be w, (L − λ)w, . . . , (L − λ)k−1w for an eigenvalue λ.
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column vectors (i.e., acting to the left of column vectors) where J = Jk(0) ∈ Rk×k

is the standard k × k Jordan block matrix for the eigenvalue λ, i.e.,

(71) Jk(λ)
def
=


λ 1

λ 1
. . . . . .

λ 1
λ


(where a blank space implies a 0).

It follows that to write L in Jordan canonical form is to find w1, . . . , ws ∈ V and
k1, . . . , ks ∈ N such that (1) for each i, wi generates a Jordan chain of length ki,
(2) k1 + · · ·+ ks = n, and (3) the union of

s⋃
i=1

{wi,Lwi, . . . ,Lki−1wi}

is a basis for V .

Definition 10.16. By a Jordan basis for a nilpotent linear operator L : V → V we
mean any pair of sequences w1, . . . , ws ∈ V and k1, . . . , ks ∈ N satisfying (1)–(3) in
the previous paragraph.

Example 10.17. Let

L =

0 1
0 0

0


(where a blank space implies a 0). Then L is a block diagonal matrix with a J2(0)
block and a J1(0) block. If e1, e2, e3 are the standard basis vectors, then e1, e3 are
eigenvectors (with L acting to the left of column vectors). Also, e2,Le2 and e3 are
two Jordan chains, where L is the operator on R3 expressed as column vectors via
the basis e1, e2, e3.

We say that a Jordan chain in (70) is maximal if Lkw = 0 and if there is no w′

such that Lw′ = w. It is easy to see — and helpful for intuition — to note that
any Jordan basis for L must consist of maximal Jordan chains.

It is now easy to give an algorithm for finding a Jordan basis for a nilpotent
operator L : V → V . The point is that you want to find the longest Jordan chains
of the Jordan basis first.

So let k ∈ N be the largest integer with Lk−1 nonzero. Let u1, . . . , ur be a
basis for the image of Lk−1; then, by definition, there exist w1, . . . , wr such that
Lk−1wi = ui for all i. We easily see that each wi generates a (maximal) chain
of length k, and the vectors Bk = {Ljwi} with i, j ranging over 1 ≤ i ≤ s and
0 ≤ j ≤ k − 1 are linearly independent, similarly to the above argument. Since
Lk = 0, we see that all chains are of length at most k, and that any chain of length
k is generated by a w that is a linear combination of w1, . . . , wr above (since Lk−1w
must be a linear combination of u1, . . . , ur above).

We next find the maximal chains of length k − 1 whose elements are linearly
independent from Bk above: consider the image of Lk−2, which clearly contains
Lk−2wi and Lk−1wi for all 1 ≤ i ≤ r; since these 2r vectors are linearly independent,
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we can choose u′1, . . . , u′r′−1 to complete these vectors to a basis for the image of
Lk−2; we then choose w′

i such that Lk−2w′
i = u′i for all i. We easily show that

Bk = {Ljwi | 1 ≤ i ≤ r, 0 ≤ j ≤ k − 1}
and

Bk−1 = {Ljw′
i | 1 ≤ i ≤ r′, 0 ≤ j ≤ k − 2}

are disjoint subsets whose union is linearly independent.
Next we repeat this step to find vectors Bk−2, independent of Bk ∪ Bk−1 and

coming from chains of length k − 2. We similarly find vectors Bk−3, Bk−4, . . . B1.
Since B1 is a basis of vectors in the image of L0 = idV , i.e., all of V , that completes
B2 ∪ . . .∪Bk, we have that B1 ∪ . . .∪Bk is a basis for all of V . The union over all
i of the chains of length i arising from the Bi is therefore a Jordan basis.

Example 10.18. In Example 10.17, the image of L on R3 is the span of e1; since
Le2 = e1, this gives us the chain e2,Le2 = e1, so B2 = {e2, e1}. Moreover, B2 is
determined up to scalar multiple. Then B1 consists of a single element, which may
be any vector γ1e1 + γ3e3 with γ1, γ3 ∈ R with γ3 ̸= 0. Notice that if we started
by looking for Jordan chains of length 1, i.e., eigenvectors, there is 2-dimensional
possible space. If we take e1 + e3 and e3 as such a basis, there is no way to extend
either of these “backwards” to make one of them a chain of length 2. This is why we
start by finding the longest Jordan chains and then find successively shorter ones.

Remark 10.19. Despite the problem arising by starting with shorter chains and
extending them backwards, identified in Example 10.18, one can still roughly do
this, using one trick. Namely, in Section 3.1 of [HJ85] one first finds a basis with
respect to which L is an upper triangular matrix, using the Schur decomposition;
hence the diagonal is all 0’s. From there one does an inductive argument, reducing
the n×n case (assuming the matrix is upper triangular with 0’s on the diagonal) to
the (n−1)× (n−1) case (see Subsection 3.1.5 there). So provided that L is already
written in upper triangular form, one can start with short chains and progressively
look for longer (or new) ones.

Remark 10.20. Note that the total space (V,L) of a string of vector spaces is
already an upper triangular matrix: indeed, choose arbitrary bases B0, . . . , Bn for
the respective vector spaces V 0, . . . , V n; then L with respect to Bn, . . . , B0 is a
block matrix whose only nonzero blocks are those just above (or to the right of)
the main diagonal. Hence in Remark 10.19 we can skip the Schur decomposition
step.

Remark 10.21. There are likely very many algorithms to find a barcode decom-
position of a string of vector spaces, and I currently (December 2024) don’t know
what is known here for a general string and/or strings arising in homology. However,
given the previous two remarks, I’m guessing there are a lot of options, depending
on the precise features of the string of vector spaces.

10.5.2. Proof of the Barcode Theorem. Let notation be as in Definition 10.15. Since
L is nilpotent, we will use the algorithm in the previous section. So let k ∈ N be the
smallest natural number with Lk = 0, and let u1, . . . ,ur be a basis for the image
of Lk−1; let w1, . . . ,wr be such that ui = Lk−1wi.

Say that a nonzero element u ∈ V is purely of degree d if u = (u0, . . . , un) and
ui = 0 for i ̸= d. Clearly any nonzero element of V can be uniquely written as a
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sum of elements purely of degrees d1 < d2 < . . . < dt with 0 ≤ d1 < . . . < dt ≤ n;
we call each such summand a pure component of u. Clearly if ui is in the image
of Lk−1, then so is each pure component of ui. It follows from the “basis exchange
theorem” that we can replace the basis u1, . . . ,ur of the image of Lk−1 with one
where each uj is purely of some degree. Then if Lk−1wj = uj and uj is purely of
degree d, then the same holds with wj replaced by its pure component of degree
d− (k − 1).

This gives us a set Bk as in the previous section, which is the union of chains
of length k each of which is generated by a wi that is purely ofsome degree. We
easily see that for any d, the dimension of the image of V d in V d+k−1 is precisely
the number of wi that are purely of degree d; hence the number of w1, . . . ,wr that
are purely of some degree d depends only on d and not the particular choice of
w1, . . . ,wr.

In this way we similarly generate Bk−1, Bk−2, . . . , B1, which give a Jordan basis
for L. Moreover the number of Jordan chains of a given length k′ in Bk′ beginning
in an element purely in any given degree is independent of the choice of elements
in Bk′ . But the decomposition of V into Jordan chains generated by elements of
V, each of which is purely of some degree, is clearly the same thing as a barcode
decomposition.

Part 4. Exercises and Appendices

Appendix A. Exercises for January 2025 and February 2025

A.1. Exercises for January 2025. Some of the EXERCISES in the main text
will actually be done in class. Here we gather some exercises to be handed in, which
includes some additional exercises.

Exercise A.1. Show that if {a0, . . . ,ad} are in general position, then for any b
satisfying

b = α0a0 + · · ·+ αdad,

for any αi ∈ R such that α0+· · ·+αd = 1, then these αi (satisfying α0+· · ·+αd = 1)
are unique.21

Exercise A.2. Prove that if a0,a1,a2 ∈ RN are any three vectors in generalized
position, and if

Conv(a0,a1,a2) = Conv(b0,b1,b2),

then
{a0,a1,a2} = {b0,b1,b2}.

Do this by proving that none of b0,b1,b2 equals a0, then a0 cannot lie in
Conv(b0,b1,b2). [Hint: It may help to express b0,b1,b2 in barycentric coor-
dinates.] Then explain how to modify this argument to prove the analogous result
where a0,a1,a2 is replaced by any arbitrary set a0, . . . ,ad ∈ RN in general position.

21For simplicies, we are interested in non-negative αi; however, for this exercise we don’t need
to assume that the αi are non-negative.
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Exercise A.3. For i ∈ N = {1, 2, . . .}, let xi = (i, i2, i3) ∈ R3. Show that for any
distinct i, j, k, ℓ ∈ N we have that xi,xj ,xk,xℓ are in general position. You may
use the fact that any Vandermonde matrix, such as a 4× 4 matrix of the form

1 a1 a21 a31
1 a2 a22 a32
1 a3 a23 a33
1 a4 a24 a34


with a1, . . . , a4 distinct is invertible, i.e., has nonzero determinant.

Exercise A.4. Give an equivalent condition for vectors x0, . . . ,xN in RN to be
in general position, in terms of an (N + 1)× (N + 1) matrix (and prove that your
condition is equivalent). (Exercise A.3 indicates the condition.)

Exercise A.5. Let Kabs be an abstract simplicial complex of dimension at most
D, i.e., each set in Kabs has at most D+1 elements. Show that there is a simplicial
complex S ⊂ R2D+1 whose associated abstract simplicial complex is Kabs. [Hint:
In class we did the case D = 1. First show that if X = {x0, . . . ,xr} and X ′ =
{x′

0, . . . ,x
′
s} are sets in R2D+1 such that X ∪X ′ are in general position, then

conv(X) ∩ conv(X ′) = conv(X ∩X ′).

[Notice that it is very easy to see that conv(X)∩ conv(X ′) contains conv(X ∩X ′);
what you really have to show is that if conv(X)∩ conv(X ′) can’t contain anything
more than conv(X ∩X ′), assuming that X ∪X ′ are in general position.] In class
we did this by hand in all the special cases. To do this more systematically, you
could consider the result in Exercise A.1.]

Exercise A.6. In this exercise we compute the homology groups of K0
abs,K

1
abs,K

2
abs

in Example 4.9. For calculations regarding ∂1, analogous computations were per-
formed for a complete graph on four vertices (hence ∂1 is a bit different) in Exam-
ple 4.4; this should serve as a model for the first parts of this exercise.
A.6(a) Write down the matrix M that represents ∂1 of K0

abs in Example 4.9, with
respect to the basis for C0(K0

abs)

(72) [A], [B], [C], [D]

and basis for C1(Kabs)

(73) [A,B], [A,C], [A,D], [B,C], [C,D].

A.6(b) Determine the row reduced echelon form of the matrix M for ∂1.
A.6(c) Explicitly determine Z1 = ker(∂1) for K0

abs, as a formula

f1(α1, α2)[A,B] + · · ·+ f5(α1, α2)[C,D]

where fi(α1, α2) are linear functions.
A.6(d) Determine B0 = Image(∂1), by computing the column reduced echelon form

of M , and then using it write a formual

g1(β)[A] + g2(β)[B] + g3(β)[C] + g4(β)[D]

where g1, . . . , g4 are linear functions of a vector β whose number of param-
eters is the rank of M . [Hint: See Example 4.4.]

A.6(e) Determine β0, β1 of K0
abs.
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A.6(f) Write down the matrix that represents ∂2 of K1
abs with respect to the basis

[A,B,C] of C2(K1
abs) and the above basis (73) for C1(K1

abs).
A.6(g) Show that ker(∂2(K1

abs)) = 0. (Thanks to a student who came to office
hours on Feb 6, 2025; the original (incorrect) version read “ker(∂2(K1

abs)) =
C2(K1

abs).”) What is β2(K1
abs)?

A.6(h) Show that for any two-dimensional complex, Kabs, we have

β0 − β1 + β2 = |V | − |E|+ |F |,

where F is the set of 2-faces of Kabs. [Hint: See Example 4.4.] The left-
hand-side above is called the Euler characteristic of Kabs.

A.6(i) Note that ∂1(Ki
abs) depends only on the underlying graph of Ki

abs, and hence
they are all the same. What is β0(Ki

abs)?
A.6(j) Use the previous three parts to determine β1(K1

abs).
A.6(k) Similarly, determine βj(K2

abs) for j = 0, 1, 2.

Exercise A.7. Let G = (V,E) be a graph. A walk w = (v0, . . . , vk) in G is closed if
vk = v0; moreover we say that w is cyclic if it is closed and v0, . . . , vk−1 are distinct
vertices (hence w “traverses a cycle in G once”22). To any walk (closed, cyclic, or
not) w = (v0, . . . , vk), the 1-form of w is the element of C1(G)

w1−form = (v0, . . . , vk)1−form
def
= [v0, v1] + · · ·+ [vk−1, vk].

For example, consider the graph G given by:

(74)

A C

B

D

G

As examples we have
(1) (A,B,C)1−form = [A,B] + [B,C] ∈ C1(G);
(2) (A,B,A)1−form = [A,B] + [B,A] ∈ C1(G), which equals 0 in C1(G) (since

in C1(G) we identify [A,B] with −[B,A]);
(3) (A,B,C,A)1−form = [A,B] + [B,C] + [C,A] ∈ C1(G) (which is non-zero in

C1(G)).
(4) (A,B,C,D,A)1−form = [A,B] + [B,C] + [C,D] + [D,A] ∈ C1(G)

The closed walk in (2) has associated 1-form equal to 0 in C1(G). But the closed
walks in (3) and (4) has associated 1-form that is non-zero in C1(G), and that we

22In class we explained that in graph theory, a cycle (of length k) refers to a graph with vertices
v1, . . . , vk, and edges {v1, v2}, . . . , {vk−1, vk}, {vk, v1} (when working with simple graphs we must
insist that k ≥ 3), and that a cycle in G refers to any subgraph that is a cycle. Note to any walk
in a simple graph, w = (v0, v1, . . . , vk) there is a reverse walk of w, wrev = (vk, vk−1, . . . , v0), and
wrev

1−form = −w1−form. In particular, a cycle graph of length k can be “traversed” by a closed walk
of length k in either “direction” and beginning at any vertex; the associated 1-form is unchanged,
up to a ± sign.
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depict as:

A C

B

D

Depiction of [A,B] + [B,C] + [C,A]

A C

B

D

Depiction of [A,B] + [B,C] + [C,D] + [C,D]

Notice that these two 1-forms each traverse a subgraph of G that is a cycle graph,
namely:

A C

B

D

A cycle graph of length 3

A C

B

D

A cycle graph of length 4

Notice also that the “reverse walk” would traverse a cycle in the reverse direction:
e.g., the reverse walk of (A,B,C,D,A) is (A,D,C,B,A) (i.e., you reverse the order
of the letters), and the reverse walk is depicted by arrows in the reverse orientation:

A C

B

D

(A,B,C,D,A)1−form

= [A,B] + [B,C] + [C,D] + [C,D]

A C

B

D

(A,D,C,B,A)1−form

= [A,D] + [D,C] + [C,B] + [B,A]

[Some of the exercises below are really exercises in graph theory.]

A.7(a) Show that if w is a closed walk in G, then its associated 1-form equals the
sum of (zero or more) 1-forms associated to cyclic walks in G.

Example: let G be the graph in (74). Here are some examples:
(a) (A,B,A)1−form = [A,B] + [B,A] = 0 in C1(G), which equals the sum

of zero cyclic walks.
(b) (A,B,A,B,C,A)1−form = [A,B] + [B,A] + [A,B] + [B,C] + [C,A] =

[A,B] + [B,C] + [C,A] in C1(G), which equals (A,B,C,A)1−form, and
(A,B,C,A) is the cyclic walk in (3) just below (74). Hence

(A,B,A,B,C,A)1−form = (A,B,C,A)1−form
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expresses the left-hand-side as a sum of one 1-form associated to a
cyclic walk.

(c) Similarly

(A,B,C,A,D,C,A)1−form = (A,B,C,A)1−form + (A,D,C,A)1−form

(A,B,C,D,A,C,B,A)1−form = (C,D,A,C)1−form

express the left-hand-sides as a sum of 1-forms associated to cyclic
walks.

A.7(b) Let τ =
∑

v ̸=v′ αv,v′ [v, v′] ∈ C1(G) satisfy (1) αv,v′ ∈ Z≥0 for all v ̸= v′

(i.e., the αv,v′ are non-negative), and (2) ∂1τ = 0, i.e., τ ∈ Z1(G). Show
that there is a set of closed walks w1, . . . , wr such that

τ = w1
1−form + · · ·+ wr

1−form,

and for any v, v′ ∈ V , the number of times v, v′ appears consecutively
(in this order) in all these walks is αv,v′ . [Hint: You can use a “greedy
algorithm” plus induction. To get the idea, you could play around with
some small examples, e.g., the graph in (74).]

A.7(c) Show that the closed walks w1, . . . , wr in the previous part can be taken
to be cyclic walks, provided that for all v ̸= v′ we have that αv,v′ = 0 or
αv′,v = 0. [Hint: Again, a “greedy algorithm” will work.]

A.7(d) Show that the previous part is not true if we are allowed to have both
αv,v′ , αv′,v to be nonzero for any v ̸= v′. [Hint: this is true for any graph
with at least one edge.]

A.7(e) Let τ =
∑

v ̸=v′ αv,v′ [v, v′] ∈ C1(G) satisfy (1) αv,v′ ∈ Z for all v ̸= v′,
and (2) ∂1τ = 0, i.e., τ ∈ Z1(G). Show that there is a set of cyclic walks
w1, . . . , wr such that

τ = w1
1−form + · · ·+ wr

1−form.

A.7(f) Illustrate each of the previous parts with examples that come from K0
abs of

Example 4.9. (It is your choice to give an example that is not too compli-
cated, but complicated enough to show how the previous parts works.)

A.7(g)∗ Show that if

τ =
∑
v ̸=v′

αv,v′ [v, v′] ∈ Z1(G) = ker(∂1) ⊂ C1(G),

with αv,v′ ∈ R, there are real β1, . . . , βr and cyclic walks w1, . . . , wr in G
such that

τ = β1w
1
1−form + · · ·+ βrw

r
1−form.

[Hint: consider the Q-linear span of the αv,v′ in R; this is a Q-vector space
in R.]

The above exercise provides the strong intuition that an element of Z1(G) equals a
linear combination of elements of Z1(G) that arises from cyclic walks in G.

Exercise A.8. Let

Kabs = Power({A,B,C}) \
{
{A,B,C}

}
=
〈
{A,B}, {A,C}, {B,C}

〉
=
{
∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}

}
(hence Kabs is a 1-dimensional abstract simplicial complex consisting every proper
face (i.e., every proper subset) of the 2-dimensional set {A,B,C}).
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A.8(a) Find a non-zero element τ ∈ Z1(Kabs) = ker(∂1).
A.8(b) Is this element τ also non-zero in H1(Kabs)? [Recall the notation: H1 =

Z1/B1, where B1 = Image(∂2) and Z1 as above.] Explain.
A.8(c) If Labs is Kabs and the set {A,B,C}, i.e., Labs = Power({A,B,C}), is the τ

from the previous part still in Z1(Labs)? Would this τ still be non-zero in
H1(Labs)? Explain.

A.8(d) More generally, let i ≥ 2 be an integer, S = {A0, A1, . . . , Ai} and Kabs =
Power(S) \ {S} (Kabs is often called an “i-simples without its interior” or
“the boundary of an i-simplex”); find a non-zero element τ of Zi−1(Kabs).

A.8(e) Is τ nonzero in Hi−1(Kabs)? Explain. (We will later prove that for this
complex we have Hj(Kabs) = 0 if j ̸= 0, i− 1, and H0(Kabs), Hi−1(Kabs) are
one-dimensional.)

A.8(f) Let Labs be Kabs and the set S, i.e., Labs = Power(S). Is the τ from the pre-
vious part still in Zi−1(Labs)? Would this τ still be non-zero in Hi−1(Labs)?
Explain.

Exercise A.9. Let Kabs = Power({A,B,C}) \
{
{A,B,C}

}
as in the previous

exercise. Let τ = [A,B] + [B,C] + [C,A].
A.9(a) Show that ∂1τ = 0.
A.9(b) Let P be distinct from A,B,C. Let Labs = ConeP (Kabs). Use the first proof

of Theorem 6.1 (as done in class on Jan 24, 2025) to find a σ ∈ C2(Labs)
such that ∂2σ = τ .

A.9(c) Let P ′ be distinct from A,B,C, P , and let

SKabs = ConeP (Kabs) ∪ ConeP ′(Kabs)

(which is called a (or the) suspension of Kabs). Using the construction in
the previous part, give an element σ̃ ∈ C2(SKabs) that is non-zero and has
σ̃ ∈ ker(∂2(SKabs)), i.e., ∂2(σ̃) = 0.

A.9(d) Is σ̃ in the previous part equal to 0 in H2(SKabs)? Explain.

A.2. Exercises for Februrary 2025.

Exercise A.10. Consider Example 5.2. Let α be the 1-form in C1(G) = C1(G1∪G2)
given by

β = (1−form(A,A
′′, B,A′′, A)) = [A,A′′] + [A′′, B] + [B,A′] + [A′, A]

A.10(a) Use the Mayer-Vietoris theorem to compute δ(β).
A.10(b) In class on Feb 12, 2025, we computed δ(β′) for

β′ = [A,A′] + [A′, B] + [B,A′′] + [A′′, A],

and where G a slightly smaller graph. How does your computation of δ(β)
compare with our computation of δ(β′) in class?

Exercise A.11. Let K and L be abstract simplicial complexes whose vertex sets
are disjoint. The join of K and L refers to the simplicial complex

K ∗ L = {S1 ∪ S2 | S1 ∈ K, S2 ∈ L}.
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A.11(a) Show that if L = ⟨{P}⟩ (i.e., L = {∅, {P}} with P therefore disjoint from
the vertex set of K), then K ∗ L equals ConeP (K).

A.11(b) Show that if L = ⟨{P1}, {P2}⟩, then K ∗ L is a suspension of K.
A.11(c) Show that if L = ⟨{P1}, . . . , {Pm}⟩ with P1, . . . , Pm distinct (and distinct

from the vertices of K), then for all i ∈ Z,

βi(K ∗ L) =

 1 if i = 0,
(m− 1)

(
β0(K)− 1

)
if i = 1,

(m− 1)βi−1(K) if i ≥ 2,

where βi(·) denotes the i-th Betti number (i.e., βi(·) = dim(Hi(·))). [Hint:
Use induction on m; the cases m = 1, 2 were (or will be) covered in class;
use the Mayer-Vietoris sequence.]

Exercise A.12. An abstract simplicial complex K is
(1) an i-simplex if it is of the form

K = Power(S)

where S is a set of size |S| = i+ 1, and
(2) an i-simplex without its interior or the boundary of an i-simplex if it is of

the form
K = Power(S) \ {S}

where |S| = i+ 1.
(This is the same terminology as in Exercise A.8). Let S = {A0, . . . , Ai} be a set
of size i+ 1, and let

K = Power(S) \ {S}.
Let

K1 = K \ {{A1, . . . , Ai}},
i.e., K1 is K minus one of its i-faces; let

K2 = Power({A1, . . . , Ai}).

Hence K1 ∪ K2 = K.
A.12(a) Show that K1,K2 are both cones.
A.12(b) Using the Mayer-Vietoris sequence and induction on i, show that for i ≥ 2,

the Betti numbers of K are: βj(K) = 1 for j = 0, i − 1 (this originally was
written: for j = 0, 1, and was corrected by QW during office hours, March
6), and otherwise βj(K) = 0. [For i = 1 we have β0(K) = 2 and βi(K) = 0
for i ≥ 1.]

Exercise A.13. Let K1 be any simplicial complex, and let K2 = Power(S) be an
i-simplex (i.e., |S| = i+ 1) for some i ≥ 1 such that

(1) S /∈ K1, and
(2) if S′ ⊂ S is any proper subset of S (i.e., S′ ̸= S), then S′ ∈ K1.

Let K = K1 ∪K2. (Hence K1 equals K minus a single i-simplex whose boundary lies
entirely in K1.)
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A.13(a) Show that either

(75) βi−1(K) = βi−1(K1)− 1, and ∀j ̸= i− 1, βj(K) = βj(K1);

or

(76) βi(K) = βi(K1) + 1, and ∀j ̸= i, βj(K) = βj(K1).

(In other words, in passing from K1 to K, all Betti numbers are the same
except that either (1) βi increases by one, or (2) βi−1 decreases by one.)
[Hint: you can (and will need to...) use the result in Exercise A.12; hint
added during office hours on March 6, thanks to QY.]

A.13(b) Show that we have

(77) βi(K)− βi−1(K) = βi(K1)− βi−1(K1) + 1.

Exercise A.14. Let L be any simplicial complex, and let Ci be the number of
i-faces of L. Show that

β0(L) + β1(L) + · · · ≤ C0 + C1 + . . . .

[The left-hand-side is sometimes called the homological complexity of L.] [Hint: use
a previous exercise.]

Do either Exercise A.15 or Exercise A.16.

Exercise A.15. Let L be any simplicial complex, and let Ci be the number of
i-faces of L. Use (77) to show the following.
A.15(a) β0(L) ≤ C0.
A.15(b) β1(L) − β0(L) ≤ C1 − C0. [Hint: let L0 consist of only the 0-faces (or

vertices) of L, and let L≤1 consist of the 0-faces and 1-faces of L; we have

C1 =
(
β1(L≤1)− β0(L≤1)

)
−
(
β1(L0)− β0(L0)

)
.

What do we know about β1(L0) and β0(L0)? What can you say about

β1(L)− β0(L) versus β1(L≤1)− β0(L≤1) ?

]
A.15(c) More generally, show that for any d:

βd(L)− βd−1(L) + · · ·+ (−1)dβ0(L) ≤ Cd − Cd−1 + . . .+ (−1)dC0.

Exercise A.16. Let L be any simplicial complex, and let Ci be the number of
i-faces of L. For an integer i ≥ 0, let L≤i denote the union of all j-faces in L with
j ≤ i. Hence L≤0 is the set of vertices of L (which we also write as L0), and for each
i ≥ 1, L≤i is obtained from L≤i−1 by adding Ci i-faces. Say that we add these Ci

i-faces to L≤i−1 in some order, and let C ′
i be the number of i-faces such that (76)

holds, and C ′′
i be the number of i-faces such that (75) holds. Hence Ci = C ′

i+C
′′
i .

A.16(a) Show that
βi(L≤i) = C ′

i,

and
βi−1(L≤i) = βi−1(L≤i−1)− C ′′

i ,

and
∀j ̸= i, i− 1, βj(L≤i) = βj(L≤i−1)
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[It follows that C ′
i, C

′′
i do not depend on the order in which we attach the

i-faces.]
A.16(b) Conclude that for all i,

βi(L) = C ′
i − C ′′

i+1.

A.16(c) Use these results to give another proof that for any integer d ≥ 0,

βd(L)− βd−1(L) + · · ·+ (−1)dβ0(L) ≤ Cd − Cd−1 + . . .+ (−1)dC0.

Exercise A.17. Recall that if L : U → W is a linear map of finite dimensional
vector spaces, then we define

rank(L) def
= dim

(
Image(L)

)
,

and we have
dim(U) = rank(L) + dim

(
ker(L)

)
.

Let
0

dm+1−−−→ Vm
dm−−→ · · · d1−→ V0

d0−→ 0

be a finite chain, (implying that Vi = 0 for i ≥ m + 1 and i ≤ −1). Assume that
each Vi is finite dimensional, and let βi be the i-th Betti number of (V,d) (see
(22)).
A.17(a) Show that

β0 − β1 + . . .+ (−1)mβm = dim(V0)− dim(V1) + · · ·+ (−1)m dim(Vm).

Hence we get a second formula for the Euler characteristic of (V,d) (see
(23)).

A.17(b) Conclude that if (V,d) is exact, then:

dim(V0)− dim(V1) + · · ·+ (−1)d dim(Vd) = 0.

Appendix B. Exercises Assigned in March 2025

B.1. Basic Facts About Continuous Maps and Topological Spaces. I will
only assign a subset of the problems in this subsection.

If you have never studied point-set topology, you may want to do more of the
exercises in this subsection.

For all problems after this subsection, you can assume the results in
this subsection.

Note: Many commonly used functions Rn → Rm are known to be continuous.
We will not prove these results from scratch, but we will give some tools to do
so in the exercises below. Generally speaking, you can assume that the following
functions R → R are continuous: (1) functions x 7→ ax+ b for a, b ∈ R; (2) x 7→ |x|;
x 7→

√
x, as a function restricted to x ≥ 0; (3) common trigonometric functions,

such as x 7→ sin(x); (4) exponentials, x 7→ ax for real a > 0; (5) logarithms,
x 7→ loga(x) for real a > 0; etc. The exercises below give you additional tools to
build continuous functions, especially functions Rn → Rm given (1)–(5) above.

Exercise B.1. Let (X,O) be a topological space, and let f, g be continuous maps
X → R (where R has its usual topology of open subsets of R). Show that:
B.1(a) f + g is continuous;
B.1(b) fg (their product) is continuous;
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B.1(c) if g(x) ̸= 0 for all x ∈ X, then f/g is continuous.

Exercise B.2. Let (X,U) and (Y,O) be topological spaces.
B.2(a) Show that the identity map idX : X → X (i.e., given by idX(x) = x is

continuous.
B.2(b) If y0 ∈ Y , show that the map f : X → Y given by f(x) = y0, i.e., the

constant map (to y0), is continuous.
B.2(c) Use the above, plus the previous exercise, to show that if a, b ∈ R, then the

map f : R → R given by f(x) = ax + b is continuous; state very carefully
which parts of this exercise and the previous one you are using.

B.2(d) Directly show that the map f : R → R given by f(x) = ax+ b is contiuous,
by showing that if U ⊂ R is open then

f−1U
def
= {x ∈ R | ax+ b ∈ U}

is an open set in R.

Exercise B.3. Let (X1,O1), (X2,O2), (X3,O3) be topological spaces. Show that if
f1 : X1 → X2 is continuous, and f2 : X2 → X3 is continuous, then f2 ◦f1 : X1 → X3

is also continuous.

Exercise B.4. Let (X,U) and (Y,O) be topological spaces, and f : X → Y be a
continuous map. Let X ′ ⊂ X be endowed with topology of relatively open subsets
(Definition 9.19). Show that the restriction of f to X ′, i.e.,

f |X′ : X ′ → Y,

is continuous.

Exercise B.5. Let (X,U) and (Y,O) be topological spaces, and f : X → Y be
a map of sets. Let Y ′ ⊂ Y be endowed with topology of relatively open subsets
(Definition 9.19). Say that f(X) ⊂ Y ′, and let f ′ : X → Y ′ given by f ′(x) = f(x)
(i.e., f ′ is the same map as f , but now codomain(f ′) = Y ′ (“codomain” is sometimes
called the “range”). Show that f is continuous iff f ′ is continuous.

[To add after 2025: Also if ∼ is an equivalence relation on X, and f : X → Y is
continuous, then provided that x1 ∼ x2 implies f(x1) = f(x2), f extends to a map
X/ ∼ → Y , and this map is also continuous. (Thanks to RY.)]

Exercise B.6. Let (X,U), (Y1,O1), and (Y2,O2) be topological spaces. Let
f1 : X → Y1 and f2 : X → Y2 be maps of sets, and let f : X → Y1 × Y2 be the
map of sets.

f(x) =
(
f1(x), f2(x)

)
.

Show that f is continuous iff f1 and f2 are continuous. (Recall Definition 9.23.)

Exercise B.7. Let X ⊂ Rn and Y ⊂ Rm be topological spaces with their relative
topologies. Let L : Rn → Rm be a linear map.
B.7(a) Show that L is continuous. To prove this, carefully state which of the above

exercises you will use.
B.7(b) Let c ∈ Rm, and let M : Rn → Rm be given by M(x) = L(x) + c.
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B.2. Simplicial Complexes and Topological Spaces.

Exercise B.8. Let S ⊂ RN and S′ ⊂ RN ′
be two n-simplices. Hence

S = Conv(a0, . . . ,an), S′ = Conv(a′0, . . . ,a
′
n),

where a0, . . . ,an ∈ RN are in general position, and a′0, . . . ,a
′
n ∈ RN ′

are in general
position.
B.8(a) Let L : S → S′ be the bijection of sets given by barycentric coordinates,

L(t0a0 + · · ·+ tnan) = t0a
′
0 + · · ·+ tna

′
n.

Show that L is continuous, by quoting results in Subsection B.1.
B.8(b) Using the result from part (a), show that S and S′ are homeomorphic.

Exercise B.9. Let K be a simplicial complex in RN . and K ′ another in RN ′
. Let

Kabs,K′
abs be their associated abstract simplicial complexes, and V, V ′ their vertex

sets. Say that Kabs,K′
abs are isomorphic, i.e., there is a bijection f : V → V ′, such

that for each subset {v0, . . . , vd} ⊂ V we have

Conv(v0, . . . , vd) ∈ Kabs ⇐⇒ Conv
(
f(v0), . . . , f(vd)

)
∈ K′

abs

(i.e., f sets up a bijection between the elements of Kabs and those of K′
abs). Show

that |K| ⊂ RN is isomorphic to |K ′| ⊂ RN ′
.

Exercise B.10. The discrete topology on a set, X, refers to the topological space
(X,O) where O is the set of all subsets of X.
B.10(a) Let N = {1, 2, 3, . . .}. Show that the relatively open sets of N as a subset of

R consists of all subsets of N. This is therefore the discrete topology on N.
B.10(b) Let S = {0} ∪ {1/n | n ∈ N}. Show that the relatively open sets of S as a

subset of R does not consist of all subsets of S, i.e., find a subset of S that
is not relatively open.

Exercise B.11. Let Q ⊂ R be the set of rational numbers. Let ∼ be the equivalence
relation on R given by x1 − x2 ∈ Q.
B.11(a) Show that ∼ is an equivalence relation.
B.11(b) Show that the only open subsets of R/ ∼ are ∅ and all of R/ ∼.

Exercise B.12. Let A ⊂ X. We use X/A to denote the quotient space X/ ∼
where x1 ∼ x2 iff x1 = x2 or x1, x2 ∈ A. Let A = {0, 1} and X = [0, 1]; show that
X/A is isomorphic to S1. [Recall: you can assume that trigonometric functions are
continuous.]

Exercise B.13. Let K′,K′′ be abstract simplicial complexes, and v′, v′′ a vertex
of each. We use K = K′ ∨ K′′ to denote the abstract simplicial complex K′ ⨿ K′′,
where we identify v′ and v′′ (hence K = K′ ∨K′′ generally depends on the choice of
v′, v′′). [Hence K can be described as follows: there is a vertex v of K representing
v′, v′′, and a simplex S ∈ K is either of the form: (1) S′ ∈ K′, where if v′ appears
in S′ then v′ is replaced with v; or (2) S′′ ∈ K′′, similarly replacing v′′ with v if it
appears in S′′.
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B.13(a) Use a Mayer-Vietoris sequence to show that if K′,K′′ is connected, then
(K = K′ ∨ K′′ is connected and) for i ≥ 1 we have

Hi(K) = Hi(K′)⊕Hi(K′′).

B.13(b) Show that for any sequence of non-negative integers m0, . . . ,mk with
m0 ≥ 1, there is an abstract simplicial complex K whose Betti numbers
are: βi(K) = mi for 0 ≤ i ≤ k, and βi(K) = 0 for i ≥ k + 1. [Hint: you
may use the fact that for any set, S, of size |S| = n ≥ 2, we have that
K = Power(S) \ S has βi(K) = 1 for i = 0, n− 1, and otherwise βi(K) = 0.]

Exercise B.14. LetX ⊂ Rn and Y ⊂ Rm be given their induced subset topologies.
For x0 ∈ X and y0 ∈ Y , we define X ∨ Y ⊂ Rn+m to be the subset

(78) X ∨ Y def
= {(x, y0)|x ∈ X} ∪ {(x0, y)|y ∈ Y }

(which therefore depends on x0 and y0). Let K ′ and K ′′ be simplicial complexes
in, respectively Rn and Rm, and let K′,K′′ be their associated abstract simplicial
complexes. [Some extra text was added for clarification] Then |K| ⊂ Rn and
|K ′| ⊂ Rm, and so (78) defines |K| ∨ |K ′| as a subset of Rn+m.
B.14(a) Show that the topological space Z/A, where Z = X ⨿ Y (where ⨿ is the

disjoint union) and A = {x0, y0}, is homeomorphic to X ∨ Y above. Hence
X ∨ Y can be more simply defined as a topological space arising from X
and Y .

B.14(b) Describe a simplicial complex, L, in Rn+m such that |L| = |K ′| ∨ |K ′′|.
B.14(c) Show that if L is the abstract simplicial complex associated to L, then

L = K′ ∨ K′′ (with notation as in the previous problem), where ∨ identifies
the vertex x of K′ with y of K′′.

Exercise B.15. Let X ⊂ Rn, and let f be as in (48). Show that f is continuous.

Exercise B.16. Let X = (0, 1) ⊂ R (with its subspace topology), and let f be as
in (48). Show that f−1 is not continuous.

Exercise B.17. A topological space is compact if any open covering of X, i.e., any
family of open subsets {Ui}i∈I with ∪i∈IUi = X, has a finite subcovering, i.e., for
some finite set I ′ ⊂ I we also have ∪i∈I′Ui = X. Show that if X ⊂ Rn is compact,
then with f as in (48) we have that f−1 is continuous.

Exercise B.18. If X is a topological space and A ⊂ X, a weak deformation
retraction from X to A is a map F : X × [0, 1] → X such that F (·, 0) : X → X is
the identity map, and F (·, 1) : X → X is a retraction to A (Definition 9.47). A
strong deformation retraction adds the condition that for all 0 ≤ t ≤ 1, F (·, t)|A is
the identity on A. [Hatcher [Hat02] use “deformation retraction” to mean a strong
deformation retraction; other authors (e.g., Massey [Mas80] page 21, Definition 4.4,
Fulton [Ful95], page 93, just below Proposition 6.23) use “deformation retraction”
to mean a weak deformation retraction.] Show that in either case (i.e., if there
is a weak deformation retraction from X to A), then X and A are homotopy
equivalent (recall the definition at the end of Subsection 9.8, just before the start
of Subsection 9.9).
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Exercise B.19. We say that X is weakly (strongly) collapsible if there is a weak
(strong) retraction from X to a point x ∈ X. (See the previous problem for
definitions.) Write out these conditions in simpler terms.

B.3. Applications of the Brouwer Fixed Point Theorem: The Perron-
Frobenius Theorem, Nash Equilibrium, etc. In March 2025, we will do
some parts of the exercises below in class. You don’t have to submit
Exercise B.23, but you should understand it since it is a special case of
(and a “warm-up” for) Exercise B.24. The exercises in this subsection
are all applications of the Brouwer fixed point theorem, Theorem 9.46,
or related to its application. You do not need to submit Exercise B.20,
since it uses compactness, which we did not cover in 2025. Thanks
to office hours with QW on March 27, you don’t need compactness to
do Exercise B.20; but if you don’t, the argument is a more elaborate
computation.

Exercise B.20. The point of this exercise is to give many examples of X ⊂ Rn

that are homeomorphic to Dn. Say that X ⊂ Rn is star-shaped at x0 if (1) x0 lies
in the interior of X, (2) X is closed and bounded (i.e., X is compact), and (3) for
each x ̸= 0, there is a unique t > 0 such that x0 + tx ∈ ∂X, where ∂X is the
boundary of X (i.e., X minus its interior).23

B.20(a) Let x ̸= 0, and let f(x) be the unique positive number such that x0 +
f(x)x ∈ ∂X. Show that f : X → R≥0 is continuous. (Here R≥0 is the set
of non-negative real numbers.) [Hint: look at the proof of the Brouwer fixed
point theorem, specifically the argument that shows that g is contiuous; in
more detail, for any x ̸= 0 and any δ1 > 0 we have that x0 + (f(x) + δ1)x
is in Rn \X, which is an open set, and x0 + (f(x) − δ1)x lies in X \ ∂X,
i.e., the interior of X, which is also an open set.]

B.20(b) Define the map g : Dn → X where for each |x| = 1 and 0 ≤ t ≤ 1,

g(tx)
def
= x0 + tf(x)x.

Corrected on March 27 in office hours by QW. Show that g is a homeomor-
phism.

B.20(c) Show that the restriction of g to Sn−1 gives a homeomorphism from Sn−1 →
∂X.

Exercise B.21. Let M be an n × n matrix with non-negative, real entries, and
n ≥ 1. We say that M is irreducible if for all i, j ∈ [n], for some k ∈ N = {1, 2, . . .},
(Mk)ij , i.e., the (i, j)− th entry of Mk, is positive.
B.21(a) Let M be any n× n matrix with non-negative, real entries such that each

column (not row) of M has at least one non-zero entry. Show that for some
x ∈ ∆n−1 = Conv(e1, . . . , en) we have Mx = λx for some λ > 0. [Hint:
consider the function g : ∆n−1 → ∆n−1 given by g(x) =Mx/((Mx) · (1)),
where 1 = (1, . . . , 1) and · is the usual “dot product.”]

23Munkres’ textbook [Mun84] defines a weaker notion of star-convex for an open, bounded
subset U ∈ Rn, namely that for any x ∈ U , Conv(0,x) ⊂ U ; see Exercise 5 there, end of
Section 1, page 7. For this weaker definition, U , i.e., the closure of U , need not be star-shaped at
0.
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B.21(b) Show that if, in addition, M is irreducible, then each entry of x is positive.
[In this case, λ is called the Perron-Frobenius eigenvalue of M , and x is
called a Perron-Frobenius eigenvector.]

B.21(c) Show that in the previous part, if My = µy for some µ ∈ C and non-zero
vector y ∈ Cn (i.e., (µ,y) is a pair of an eigenvalue and a corresponding
eigenvector), then |µ| ≤ λ [Hint: consider the maximum value, m̃ (the
original version used M , which is a clash of notation), of |yi|/xi (where
y = (y1, . . . , yn) and similarly for x); hence |yj | ≤ m̃xj and equality holds
when j = i; apply absolute values to the equation µyi =

∑
j Mijyj .]

B.21(d) Show that in the previous part, if µ = λ, then y = αx for some nonzero
α ∈ C. [Hint: again, we can assume |yj | ≤ m̃xj for all j, and that equality
holds for j = i; let α be such that yi = αxi; applying absolute values
to both sides of µyi =

∑
j Mijyj , show that yj = αxj for all j such that

Mij > 0.]
B.21(e) Show that in part (c), if k ∈ N and Mk has a nonzero diagonal element,

and if |µ| = λ, then µ = λζ where ζk = 1.
We remark that the GCD (greatest common divisor), p, of all k such that Mk has
a nonzero diagonal element is called the period of M . It is not hard to show that
(1) for sufficiently large n ∈ N, all diagonal elements of Mnp are nonzero, and (2)
[n] can be partitioned into subsets V0, . . . , Vp−1 such that if Mij ̸= 0, then i ∈ Vr
implies that j ∈ Vr+1 mod p.

Exercise B.22. We say that an n× n matrix, P , with non-negative real entries is
a Markov matrix if each row of P is stochastic, i.e., if pij is the (i, j)-th entry of P ,
then for all i we have

n∑
j=1

pij = 1.

Warning: in probability theory, a Markov matrix generally acts to the right of a
row vector; so when we write aP , we understand a to be a row vector.
B.22(a) Show that P1 = 1. Note: since P is acting to the left of 1, we understand

that 1 is a column vector.
B.22(b) Show that if π = (π1, . . . , πn) is any stochastic row vector (i.e., π1, . . . , πn

are non-negative and sum to 1), then (πP ) · 1 = 1, and that πP is a sto-
chastic (row) vector.

B.22(c) Say that P is irreducible, i.e., for all i, j ∈ [n] there is an integer k ≥ 0
such that (P k)ij > 0 (the i, j entry of P k). Show that there is a unique
stochastic (red) vector π = (π1, . . . , πn) such that π = πP . (You may use
the results of the previous exercise.).

Exercise B.23. Say that there are a, b ∈ R such that for each 0 ≤ p ≤ 1, we define

Reward(p) = ap+ b(1− p).

[This “Reward” is just a definition, but we intuitively think of a “game” where you
choose a value p ∈ [0, 1], and you are “rewarded” or “paid” the value of Reward(p);
you can also think of a and b as being the “payouts” of playing one of two “pure”
strategies, and Reward(p) being the payout of a “mixed strategy” of playing one
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strategy with probability p, the other with probability 1 − p.] Fix a real p with
0 ≤ p ≤ 1, and set

RewardToSwitch1
def
= max

(
0,Reward(1)− Reward(p)

)
,

RewardToSwitch0
def
= max

(
0,Reward(0)− Reward(p)

)
,

which therefore represents the rewards to switching from a given p to p = 1 and
p = 0 respectively, i.e., to the two mixed strategies; let

RewardToSwitch =
(
RewardToSwitch1,RewardToSwitch0

)
which organizes the RewardToSwitch values into a vector. Say that for some c we
have

RewardToSwitch = c (p, 1− p).

B.23(a) Show that if 0 < p < 1 then a = b.
B.23(b) Show that if p = 0 then a ≤ b.
B.23(c) Show that if p = 1 then a ≥ b.
B.23(d) Show that whatever p is, i.e., in all cases above, c = 0, i.e.,

RewardToSwitch = 0 = (0, 0),

and for any q ∈ [0, 1] we have

Reward(q) ≤ Reward(p).

B.23(e) For each x ∈ R2 with x1, x2 ≥ 0 and x ̸= (0, 0), define

Stochastic(x) =
x

x · 1
=

x

x1 + x2
.

Show that for any p ∈ ∆1 = Conv(e1, e2) ⊂ R2 and any R = (R1, R2) with
R1, R2 ≥ 0 we have

Stochastic(p,R) = p

iff R = cp for some c. [The point of this part is that it is an idea used by
Nash in his original proof of the existence of a Nash equilibrium, to reduce
its existence to the Brouwer fixed point theorem; see below.]

Exercise B.24. Let a ∈ Rn, and for each p ∈ ∆n−1 = Conv(e1, . . . , en) we define

Reward(p)
def
= a · p = a1p1 + · · ·+ anpn,

(which we interpret as a “reward” or “payout” of the “mixed strategy” p of “playing
strategy i” with probability pi), and

RewardToSwitchi(p)
def
=
(
max(0,Reward(ei)−Reward(p)

)
=
(
max(0, ai−Reward(p)

)
,

(which is therefore the reward to switch to the “pure strategy” ei), and

RewardToSwitch(p) =
(
RewardToSwitch1(p), . . . ,RewardToSwitchn(p)

)
,

which therefore gathers the rewards to switch into a vector. Say that for some
c ∈ R and p ∈ ∆n−1 we have

RewardToSwitch(p) = cp.

For the exercises below, you can use the results of Exercise B.23 (or not...).
B.24(a) Show that if pi, pj > 0, then ai = aj .



100 JOEL FRIEDMAN

B.24(b) Show that if pi > 0 and pj = 0, then ai ≥ aj .
B.24(c) Show that c = 0, i.e.,

RewardToSwitch(p) = 0 = (0, . . . , 0),

and that for any q ∈ ∆n−1 we have

Reward(q) ≤ Reward(p).

B.24(d) For each x ∈ Rn with non-negative coefficients and x ̸= 0, let

(79) Stochastic(x) =
x

x · 1
=

x

x1 + · · ·+ xn
,

which therefore lies in ∆n−1. Show that for any p ∈ ∆n−1 and R ∈ Rn

with non-negative coefficients,

Stochastic(p+R) = p

iff R = cp for some c ≥ 0. [The point of this part is that it is an idea
used by Nash in his original proof of the existence of a Nash equilibrium,
to reduce its existence to the Brouwer fixed point theorem; see below.]

B.24(e) Let I ⊂ [n] be the set of i where ai attains its maximum value. What is
the set of p ∈ ∆n−1 where Reward(p) attains its maximum value?

Exercise B.25. In this exercise we prove the existence of a Nash equilibrium for
a k-player game with a finite set of “pure strategies” for each player; see [Nas51].
You may use the results in Exercise B.24. Let k ∈ N = {1, 2, . . .}. By a k-person
game we mean any function

(80) A : [k]× [n1]× · · · × [nk] → R.

where (n1, . . . , nk) ∈ Nk. We interpret A is a “k-person game,” where each jm ∈
[nm] represents a (“pure”) “strategy” that player j ∈ [k] can play, and A(i; j1, . . . , jk)
is the “reward” or “payout” to person i, when each player ℓ ∈ [k] plays strategy jℓ.
Let ∆ denote ∆n1−1 × . . . ×∆nk−1. For any sequence p = (p1, . . . ,pk) ∈ ∆, and
any i ∈ [k], we define

(81) Rewardi(p)
def
=

∑
(j1,...,jk)∈[n1]×...[nk]

A(i; j1, . . . , jk)p1(j1) . . .pk(jk).

So we interpret the above as the “reward” or “payout” to person i when each player
ℓ ∈ [k] plays a “mixed strategy” pℓ. For each such i and p, and each m ∈ [ni] we
define

RewardToSwitchi,m(p)
def
=
(
max(0,Rewardi(p1, . . . ,pi−1, em,pi+1, . . . ,pk)−Rewardi(p)

)
,

which is therefore the maximum of 0 and the reward to player i for switching their
strategy from pi to em, with the strategies of all other players fixed. We say that
p = (p1, . . . ,pk) is a Nash equilibrium if RewardToSwitchi,m(p) = 0 for all i and
m ∈ [ni]. We define the “i-th Nash reward vector of p” to be

RewardToSwitchi(p) =
(
RewardToSwitchi,1(p), . . . ,RewardToSwitchi,ni(p)

)
,

which therefore combines the rewards to switch for player i into a vector of rewards.
For any i ∈ [k] and p ∈ ∆ define the “Nash modified i-player strategy” by

(82) NashModifiedi(p) = Stochastic
(
pi +RewardToSwitchi(p)

)
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with Stochastic as in (79), and let

(83) NashModified(p) =
(
NashModified1(p), . . . ,NashModifiedk(p)

)
.

B.25(a) Show that NashModified: ∆ → ∆ is continuous.
B.25(b) Show that ∆ is homeomorphic to the disk DN where N = n1 + . . . + nk.

Conclude that NashModified has a fixed point.
B.25(c) Let p be a fixed point of NashModified. Show that p is a Nash equilibrium.

[Hint: Use the results of Exercise B.24.]
B.25(d) Say that for a real α > 0 you define

NashModifiedα(p) = Stochastic
(
pi + αRewardToSwitchi(p)

)
.

Show that a fixed point of NashModifiedα is also a Nash equilibrium. [Hence
the definition Nash’s modified strategy allows for some flexibility. For much
greater flexibility, see Exericse C.7.]

B.4. ∆-Complex Computations.

Exercise B.26. Consider the following ∆-complexes:

a a

a a

Torus

a b

b c

S2
a b

b a

RP2

a a

a a

Klein Bottle

For the torus, we computed its simplicial homology (as a ∆-complex) in class on
March 24. By a similar computation on these other ∆-complexes, compute the
homology groups of:
B.26(a) S2 (this is two 2-simplices glued together on their boundary, which you can

easily see is homeomorphic to the suspension of S1) (of course, we have
already computed the homology groups of S2 by other means);

B.26(b) RP2 (you should be able to convince yourself that this is isomorphic to the
RP2 defined in class, i.e., S2/ ∼ where ∼ identifies each point x with −x);
and

B.26(c) the Klein Bottle (which is basically a cylinder [0, 1]× S1 with its bounding
circles identified in “opposite orientation”).

B.5. Barcodes.

Exercise B.27. Say that K0 ⊂ K1 ⊂ · · · ⊂ Km are an increasing sequence of
simplicial complexes that all have the same set, V , of vertices (i.e., 0-simplicies,
i.e., sets of size 1). Say also that K0 = V ∪ {∅} (hence K0 consists of V , each an
isolated point of K0, so that

β0(K0) = dim
(
H0(K0)

)
= |V |.

We easily see that β0(Ki) is non-increasing in i, and β0(Ki) = 1 provided that V is
connected in Ki. Hence the barcode decomposition of H0(Ki) is particularly simple,
and the groups H0(Ki) depend only on the vertices and edges of Ki. Give a barcode
decomposition of H0(Ki) in the following cases:
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B.27(a) V = {v1, . . . , v4}, and the edges in each Ki consists of

E(K0) = ∅,

E(K1) =
{
{v1, v2}

}
,

E(K2) =
{
{v1, v2}, {v2, v3}

}
,

E(K3) =
{
{v1, v2}, {v2, v3}, {v3, v4}

}
.

B.27(b) V = {v1, . . . , v4}, and the edges in each Ki consists of

E(K0) = ∅,

E(K1) =
{
{v1, v2}

}
,

E(K2) =
{
{v1, v2}, {v3, v4}

}
,

E(K3) =
{
{v1, v2}, {v2, v3}, {v3, v4}

}
.

B.6. More on Relative Homology. Recall from Subsection 9.10, if A ⊂ X is a
subset of a topological space, then we define an i-singular chain of X relative to A
to be an element of

Csing
i (X)/Csing

i (A),

and the maps ∂i on Csing
i (X) and on Csing

i (A) give rise to maps

· · · ∂3−→ Csing
2 (X,A)

∂2−→ Csing
1 (X,A)

∂1−→ Csing
0 (X,A) → 0

which form a chain complex (i.e., ∂i∂i+1 = 0 for all integers i ≥ 0). We define
Hsing

i (X,A) to be the homology groups of this sequence. We easily see that

0 → Csing
i (A) → Csing

i (X) → Csing
i (X,A) → 0

is short exact for all i, and this yields a long exact sequence

· · · → Hsing
i (A) → Hsing

i (X) → Hsing
i (X,A) → Hsing

i−1 (A) → · · ·
MORE TO COME...

Appendix C. Exercises Not Assigned in Spring 2025

These exercises will not be assigned in Spring 2025, but they may be interesting.

Exercise C.1. For any integer n ≥ 0, the n-sphere, Sn ⊂ Rn+1 is the set

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 | x21 + · · ·+ x2n+1 = 1}.

C.1(a) Show that any three points on S1 are in general position.
C.1(b) Are any four points on S2 in general position?

Exercise C.2. Let U ⊂W be finite dimensional vector spaces over a field, F. Let
B = {u1, . . . , um} be a basis for U . By the basis exchange theorem24, there is a
basis for W consisting of B plus some additional vectors w1, . . . , wp.
C.2(a) Show that w1 + U, . . . , wp + U is a basis for W/U .
C.2(b) Conclude that dim(W/U) = dim(W )− dim(U).

24If you don’t know this theorem, you should look it up in a linear algebra textbook; at UBC,
we tend to use the textbooks [J9̈4, Axl15] (currently free of charge to UBC Library card holders).
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Exercise C.3. Let U1, . . . , Ur ⊂ U be F-vector spaces for some field, F, and say
that U equals the internal direct sum U1 ⊕ · · · ⊕ Ur (hence every vector in U can
be written uniquely as a sum of vectors in U1, . . . , Ur.
C.3(a) Show that if for each i = 1, . . . , r, Bi is a basis for Ui, then:

(a) the sets B1, . . . ,Br are disjoint;
(b) the set B = B1 ∪ . . . ∪ Br are linearly independent; and
(c) each vector in U can be written uniquely as a linear combination of

the vectors in B.
C.3(b) Explain why, using the above, we have

dim(U) =

r∑
i=1

dim(Ui).

Exercise C.4. Let U1, . . . , Ur ⊂ U be F-vector spaces for some field, F, and say
that U equals the internal direct sum U1 ⊕ · · · ⊕ Ur (hence every vector in U can
be written uniquely as a sum of vectors in U1, . . . , Ur. Let A ⊂ U .
C.4(a) Show that if Ai = A ∩ Ui and Ai is a basis for Ai (for i = 1, . . . , r), then

the Ai are distinct and their union is linearly independent.
C.4(b) Show that dim(A) ≥

∑r
i=1 dim(Ai).

C.4(c) TO BE CONTINUED...

Exercise C.5. Let
0 → V2

d2−→ V1
d1−→ V0 → 0

be a short exact sequence of vector spaces (Definition 5.6).
C.5(a) Show that d2 is injective.
C.5(b) Show that d1 is surjective.
C.5(c) Show that if V0, V1, V2 are finite dimensional, then

dim(V1) = dim(V2) + dim(V0)

using (84).

Exercise C.6. Let U1, U2 ⊂ U be subspaces of an R-vector space U , and U1 + U2

is their span. Describe a short exact sequence

0 → U1 ∩ U2
µ−−→ U1 ⊕ U2

ν−−→ U1 + U2 → 0,

constructed similarly to (24).

Exercise C.7. What we called the NashModified in Exercise B.25 works in very
great generality. Specifically, consider the one player, n-strategies game in Ex-
ercise B.24: hence we fix real numbers a1, . . . , an, and for each p ∈ ∆n−1 =
Conv(e1, . . . , en) we define

Reward(p)
def
= a · p = a1p1 + · · ·+ anpn.

Consider a function RewardToSwitch : ∆n−1 → Rn
≥0, where RewardToSwitchi

denotes i-th component of RewardToSwitch (hence a function ∆n−1 → R≥0).
Say that RewardToSwitch is sensible if for all i ∈ [n],

ai ≤ Reward(p) ⇐⇒ RewardToSwitchi(p) = 0,

(i.e., the “reward to switch to i” is positive iff ai is greater than the current reward).
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C.7(a) Say that we have a sensible RewardToSwitch function, and for some
c ∈ R and p ∈ ∆n−1 we have

RewardToSwitch(p) = cp,

Show that c = 0. [Hint: among all i with pi > 0, consider the i at which ai
is minimized.]

C.7(b)∗ (This part is more difficult only because you need to be familiar with some
point-set topology; in particular, you need to know what is a limit point of
a sequence of points in Rn.) Say that RewardToSwitch is both sensible
and continuous. Let p0 ∈ ∆n−1 be an arbitrary vector, and let p1,p2, . . .
be the sequence given by:

pm+1 = Stochastic
(
pm +RewardToSwitch(pm)

)
.

Show that if p is any limit point of the sequence {pm}, then

p = Stochastic
(
p+RewardToSwitch(p)

)
and that for any i ∈ [n] such that ai < maxj∈[n] aj , pi = 0.

C.7(c)∗ (Here you need to know that any sequence in closed and bounded subset of
Rn has a limit point.) Let pmi to denote the i-th component of pm. Show
that for any i ∈ [n] such that ai < maxj∈[n] aj ,

lim
m→∞

pmi = 0.

C.7(d)∗ Say that you have an k-player game, (80), with reward function (81), and
for i ∈ [k] you have a function

RewardToSwitchi : ∆
n1−1 ×∆nk−1 → ∆ni−1

that is continous and that for any fixed pj for all j ̸= i, the resulting
function ∆ni−1 → Rn

≥0 is sensible. Prove Nash’s equilibrium existence the-
orem (i.e., reprove (a)–(c) of Exercise B.25) with these RewardToSwitchi

functions (so Nash’s modified strategy is given in (83) and (82)).

Appendix D. Review of Linear Algebra

In this appendix we summarize the facts we need from linear algebra we need in
these notes.

D.1. “Abstract” Linear Algebra at UBC as of 2025. Most of the linear alge-
bra we will need is taught at UBC in Math 223 (Honours Linear Algebra), which in-
troduces vector spaces. Sometimes vector spaces are called “abstract vector spaces,”
to contrast with Rn and subspaces of Rn which are sometimes called “concrete vec-
tor spaces”).25 Math 223 typically uses textbooks such as [J9̈4, Axl15], currently
available online for free to folks with UBC Library privileges.

Everything we need in linear algebra is contained in the (deservedly) classic
reference Matrix Analysis by Horn and Johnson ([HJ13], or earlier editions, [HJ85,
HJ90], and one of these is currently available online for UBC Library clients). The

25The more commonly taken course is Math 221 (Linear Algebra), which deals with more
“concrete” linear algebra, meaning solving systems of equations, and dealing with Rn and subspaces
thereof (e.g., the kernel or nullspace of a matrix). Math 221 typically has a free online textbook,
such as https://personal.math.ubc.ca/~tbjw/ila/index.html. Engineering students typically
take UBC’s Math 152 instead.

https://personal.math.ubc.ca/~tbjw/ila/index.html
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basics definitions are in Chapter 0 there. A number of Computer Science courses
at UBC use this book as a textbook or reference.

D.2. Fields. Linear algebra works over an arbitrary field, F, although for most of
these notes we work over the field F = R, the real numbers. We assume you will
look up the definition of a field;26 intuitively speaking, a field is a what one calls
the “scalars” of a vector space, and these scalars have a + and × operations (and
their inverses, subtraction and, for non-zero elements, division) so that one can “do
linear algebra” (e.g., solve systems of linear equations by reducing a matrix to row
echelon form) just as one does for R or Q, the rational numbers.

We often work with the field R, although other useful fields are Q (the rational
numbers), C (the complex numbers), and finite fields (for any prime p, Z/pZ is a
field, although for any m ∈ N there is an essentially unique field with pm elements).

Hence we will mostly work with the field of real numbers F = R, and there
is no harm in viewing everything in this appendix in this context. However, you
should be aware that everything here works over any field, F. You should also
be aware that if a linear system of equations over R has all of its coefficients and
constants in Q, the rational numbers (at times these coefficients and constants will
all be integers), then the solutions to these systems can all be found by working
in Q; hence when we construct kernels, quotients, cokernels, etc., all the resulting
matrices, vector spaces, and their bases, can be taken to have coeffients in Q.27

D.3. Vector Spaces. Let F be a field. A vector space over F is a standard concept,
that you can look up in many linear algebra textbooks (e.g., [J9̈4, Axl15, HJ85,
HJ13], all currently free for UBC library customers). One way to define a vector
space is as follows: a vector space over F is triple (V,+, ·) consisting of

(1) a set V (of vectors),
(2) a map +: V × V → V (the addition of vectors, where +(v1, v2) is usually

denoted v1 + v2), and
(3) a map · : F × V → V (the scalar multiplication, where ·(α, v) is usually

denoted α · v or just αv,
such that:

(1) The operation + is commutative and associative28, V has an identity ele-
ment 0 = 0V under + (i.e., 0V + v = v for all v ∈ V ), and each v ∈ V has
an additive inverse −v (i.e., v + (−v) = 0V ).29,

26Briefly, a field is a triple (F,+, ·) where + and · are binary operations (respectively, addition
with +(α, β) denoted α+β and multiplication with ·(α, β) denoted α·β) on F that are commutative
and associative (i.e., α+β = β+α and (α+β)+γ = α+(β+γ) for all α, β, γ, and similarly with
+ replaced with ·, such that F is a group under + with identity element 0 (i.e., 0 + α = α for all
α ∈ F, and any α ∈ F has an additive inverse, denoted −α, such that α+ (−α) = 0), F \ {0} is a
group under · with identity element 1 (where the multiplicative inverse of α ∈ F \ {0} is denoted
1/α or α−1), and · distributes over + in that (α+ β)γ = αγ + βγ. Many properties follow from
the above. Generally we also assume 1 ̸= 0, for otherwise we easily see that F = {0}, which is of
no interest to us or, generally, to linear algebra; every other field F has an interesting theory of
linear algebra.

27More formally, if V is a vector space over the Q (see below), and if you know what is meant
by the “tensor product” of two F vector spaces, then then V ⊗QR is the “same” vector space where
you view V as “living” over R.

28See the previous footnote for commutative and associative and related terms.
29In other words, V is a commutative group under +.
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(2) The operations + and · satisfy the distributive laws

α(v + v′) = αv + αv′, (α+ β)v = αv + βv

for all α, β ∈ F and v, v′ ∈ V .

We easily verify a number of other properties, e.g., (0)v = 0V and (−1)v = −v; we
typically write 0 instead of 0V if confusion is unlikely to occur.

If V,W are F-vector spaces, a linear transformation from V to W is a map of
sets L : V →W such that for all α ∈ F and v, v′ ∈ V we have

L(αv) = αL(v), L(v + v′) = L(v) + L(v′).

For F-vector spaces V and W we have the following terminology and facts.

(1) We say that a subset V ′ ⊂ V is a subspace of V if V ′ is closed under
the + and · operations of V , and therefore V ′ is a vector space under the
restrictions of + and · of V to V ′.

(2) If A,B ⊂ V are subsets, then we use the notation

A+B
def
= {a+ b | a ∈ A, b ∈ B}.

(3) If A ⊂ V , the span of A in V is the subspace of V :

SpanV (A)
def
= {α1v1 + · · ·+ αrvr | ∀i ∈ [r], αi ∈ F, vi ∈ V },

which can also be defined as (informally) the smallest subspace of V con-
taining A, or (formally) the intersection of all subspaces of V containing
A.

(4) If V1, V2 ⊂ V , then V1 + V2 is a subspace of V , equal to Span(V1 ∪ V2).
(5) Let U ⊂ V is be a subspace; the quotient space V/U refers to all sets of the

form v + U (also called the U -coset of v); the operations + and · of V are
well-defined on V/U , in that (v1 + U) + (v2 + U) = (v1 + v2) + U (see the
above definition of a + of sets), and

α · (v1 + U)
def
= {α(v1 + u) | u ∈ U}

equals αv1 + U ; we understand V/U to be a vector space under these
operations + and · on U -cosets.

(6) If L : V → W is a linear transformation, we define the kernel or nullspace
of L to be

ker(L) def
= {v ∈ V | L(v) = 0W } ⊂ V

which is a subspace of V , the image of W to be

Image(L) = {L(v) | v ∈ V } ⊂W

which is a subspace of W , and

coker(L) def
= W/Image(L)

which is a quotient space of W .
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D.4. Bases (the plural of basis), Dimension, Linear Systems. The following
ideas are used to define the dimension of a vector space.

If B ⊂ V is a subset, we say that:
(1) B is a linearly independent set if for any b1, . . . , br ∈ B and α1, . . . , αr ∈ F

we have
α1b1 + · · ·+ αrbr = 0

(hence 0 = 0V ) implies that α1 = . . . = αr = 0 (we alternatively say that
the elements of B are linearly independent);

(2) B spans V if Span(B) = V ;
(3) B is a basis of V if B is a linearly independent set and spans V .

The following properties are immediate when V is spanned by a finite set of
vectors, which is equivalent to saying that V is finite dimensional (we define the
dimension of V below). Otherwise, most of these properties require the Axiom of
Choice, or, equivalently transfinite induction.30

(1) If B is a basis of V and v ∈ V is non-zero, then there is a b ∈ B such that
{v} ∪ (B \ {b}) is a basis of V .31 Applying this repeatedly: if A is a subset
of linearly independent vectors, then there is a subset B′ ⊂ B such that
|B′| = |A| (i.e., B′,A have the same cardinality or “size”), and A∪ (B \ B′)
is another basis of V ; this is called the basis exchange principle).32

(2) If S ⊂ V is a subset such that Span(S) = V , then some subset of S is a
basis for V .

(3) If A is a subset of linearly independent vectors, then there is a subset A′

that is disjoint from A such that A ∪A′ is a basis for V .
(4) Any vector space, V , has a basis; the dimension of V , denoted dim(V ) =

dimF(V ) is cardinality of any basis of V , which is independent of the par-
ticular basis.

To see that any two bases of V have the same cardinality, you can use the basis
exchange theorem. You can also prove this directly when dim(V ) < ∞, i.e., V is
finite dimensional (or, equivalently, some finite subset of V spans all of V ): to do

30When V is spanned by a some finite set of vectors, then the statements are true under the
usual axioms of set theory. Otherwise, to prove that V has a basis, and that its cardinality does
not depend on the particular basis, requires the Axiom of Choice (or, equivalently, transfinite
induction). Similarly for the basis exchange principle when exchanging an infinite set of inde-
pendent vectors into a basis. In homology theory, such as singular homology, we typically work
with chains (and cochains) of vector spaces of (vastly) infinite dimension. On the other hand, we
typically don’t care about the Axiom of Choice and transfinite induction: we typically only write
down bases for the homology groups, which are typically finite dimensional quotient subspaces or,
at times, infinite dimensional but for which we can easily write down a basis. A good example
of an uncountably infinite dimensional vector space is R, viewed as a vector space over Q (more
generally, if F′ is a subfield of F, then F is a vector space over F′). A basis for R as a Q-vector
space is called a Hamel basis, and such a basis is typically used to do curious things, such as to
construct a non-measurable set. In one of the exercises in these notes we use choose a basis for
a subspace of R over Q; however, fortunately this subspace is finitely generated, and hence has a
finite basis. In fact, often when one uses transfinite induction (e.g., in proving the Hahn-Banach
Theorem), in practice one only applies the induction finitely many (or countably infinitely many)
times.

31This does not require the Axiom of Choice.
32If A is not countably infinite, then you generally need transfinite induction (which is equiv-

alent to the Axiom of Choice) to prove this.
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this, we can use some results regarding linear systems of equations. Here are the
most useful results:

(1) Any m ×m matrix, A, with entries in F can be brought into row echelon
form, which allows one to solve the system Ax = b for the variable x ∈
Fn and constant b ∈ Fm; alternatively we view Ax = b as a system of
m equations in n unknowns, where x represents n variables, A are the
coefficients of the equations, and b ∈ Rm are the constants of the system.

(2) If m < n are integers, then any system of m linear equations in n vari-
ables with coefficients in F that is homogeneous (i.e., the constants in the
equations are all 0) has a nonzero solution.

(3) A system of n equations in n variables has a unique solution iff the corre-
sponding homogeneous system has a unique solution, and this is equivalent
to a number of conditions regarding the n × n matrix, M , of coefficients,
such as: the determinant of M is nonzero; the rows of M are linearly inde-
pendent as elements of Fn; the same with “columns” replacing “rows;” M is
an invertible matrix; the rank of M , meaning the dimension of the image
of M , equals n; etc.

The fact that any two finite bases of a vector space have the same cardinality,
and the basis exachange theorem, then follows from (2) above. However, some
textbooks (e.g., [J9̈4]) go the other way: by proving the basis exchange theorem,
one can directly prove (2) and (3); however, to solve systems of linear equations in
practice, row echelon form (or some more limited form of row reduction) is useful
in small examples.

D.5. Coordinates. Let V be a F-vector space of dimension n (n finite), and A =
{v1, . . . , vn} be a basis, whose elements have therefore been arranged in some order.
For α1, . . . , αn ∈ F we write

α1

α2

...
αn


{v1,...,vn}

= α1v1 + · · ·+ αnvn,

which we view as giving “coordinates” for each element of V as a “column vector”
in Fn; we simply write A 

α1

α2

...
αn


A

or


α1

α2

...
αn


when v1, . . . , vn is understood, although we mention that the order of the elements
v1, . . . , vn in A is crucial; we may call A = {v1, . . . , vn} an ordered basis for empha-
sis.

Let L : V → W be a linear map of V to an m < ∞ dimensional F-vector space
W with ordered basis B = {w1, . . . , wn}. Then we identify L with the m×n matrix

L =

 ℓ11 · · · ℓ1n
...

. . .
...

ℓm1 · · · ℓmn


A,B
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where the ℓij ∈ F are given (uniquely) by

L(vi) = ℓi1w1 + · · ·+ ℓimwm,

so that in the usual rules of matrix multiplication we have

L


α1

α2

...
αn


A

=


 ℓ11 · · · ℓ1n

...
. . .

...
ℓm1 · · · ℓmn


A,B


α1

α2

...
αn


A


B

In practice (and in these notes), to work with L in coordinates with respect to the
bases A,B it can be helpful to write the ℓij in the table:

v1 · · · vn

w1 ℓ11 · · · ℓ1n
...

...
. . .

...
wm ℓm1 · · · ℓmn

or

v1 · · · vn
w1 ℓ11 · · · ℓ1n
...

...
. . .

...
wm ℓm1 · · · ℓmn

D.6. Some Additional Useful Concepts and Formulas. In these notes, we
will use the following concepts and formulas.

(1) If V is finite dimensional, then for any subspace V ′ ⊂ V we have
dim(V/V ′) = dim(V )− dim(V ′).

(2) For any linear transformation L : V → W we define the rank of L to be
Rank(L) = dim(Image(L)), whose dimension is at most dim(V ); L then
gives an isomorphism V/ ker(L) → Image(L), and hence

(84) dim(V ) = dim(ker(L)) + dim(Image(L)) = dim(ker(L)) + Rank(L).

(3) Let V,W be F-vector spaces. We define the direct sum of V and (or followed
by) W , to be

V ⊕W = V ×W = {(v, w) | v ∈ V, w ∈W}

which becomes a vector space by applying the + and · operations “compo-
nent by component.” More generally one can define the direct sum of any
finite number of vector spaces.33 We have

dim(V ⊕W ) = dim(V ) + dim(W )

(for finite dimensional space, V,W , but which also holds, appropriately
interpreted, for arbitrary vector spaces).

(4) There is also a very important tensor product, V ⊗W (for which dim(V ⊗
W ) = dim(V ) dim(W ), but we will not need this here.

33We warn the reader that if we have an infinite number of vector spaces {Vi}i∈I , then their
product refers to vector space based on their cartesian product, i.e.,

∏
i∈I Vi, while their direct

sum refers to the subspace of their product⊕
i∈I

Vi
def
=

{
(vi)i∈I ∈

∏
i∈I

Vi

∣∣∣∣ vi = 0 for all but finitely many value of i ∈ I

}
.
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(5) If V1, . . . , Vr ⊂ V are subspaces, we say that V equals the internal sum
V1⊕· · ·⊕Vr if any vector in V can be uniquely written as a sum of vectors
in V1, . . . , Vr; equivalently, the map

f : V1 ⊕ · · · ⊕ Vr → V given by f(v1, . . . , vr) = v1 + · · ·+ vr

(where the domain of f is the usual direct sum) is an isomorphism. In this
case we have

dim(V ) = dim(V1) + · · ·+ dim(Vr);

moreover, if A1, . . . ,Ar are bases for, respectively, V1, . . . , Vr, then the Ai

are disjoint and A = A1 ∪ . . . ∪Ar is a basis for V . If W is another vector
space, and W equals the internal direct sum W1 ⊕ · · · ⊕Ws, then choosing
bases B1, . . . ,Bs for the W1, . . . ,Ws, the matrix repsentation of any linear
transformation L : V →W naturally decomposes into an r×s block matrix,
whose i, j-th block is a |Bi| × |Aj | matrix. Block matrices are sometimes
called partitioned matrices; see Section 0.7 of Matrix Analysis by Horn and
Johnson ([HJ13, HJ90, HJ85]).

D.7. Formal R-Linear Combinations of a Set. The definition we gave of R[S]
for a set, S, of formal R-linear sums of S (Definition 4.1) is not entirely precise.
Here is one very precise (but tedious) definition of these formal sums.

Definition D.1 (Tedious But Precise Definition of Formal Sums). Let S be any
set. An R× S sequence is a (possibly empty) sequence of elements of R× S, i.e., a
sequence

(
(α1, s1), · · · , (αr, sr)

)
, which we write in shorthand as

(85) α1s1+ · · ·+αrsr

(hence the + is just notational shorthand, at least temporarily). We say two such
sequences are equivalent, writing

α1s1+ · · ·+αrsr ∼ α′
1s

′
1+ · · ·+α′

r′s
′
r′ ,

if for each s ∈ S, the sum of the αi over those i with si = v equals the sum of
the α′

i′ over those i′ with s′i′ = s; it is immediate that ∼ is an equivalence relation.
A formal R-linear sum in S refers to an equivalence class of R × S-sequences; we
use R[S] denote the set of all formal R-linear sums in S We define the sum (+) on
R× S sequences as the concatenation of squences,(
α1s1+ · · ·+αrsr

)
+
(
α′
1s

′
1+ · · ·+α′

r′s
′
r′)
) def
= α1s1+ · · ·+αrsr+α

′
1s

′
1+ · · ·+α′

r′s
′
r′ ,

and we see that + is well-defined on equivalence classes of R[S], and is associative
and commutative. By definition of +, the equivalence class of (85) equals

(86) α1s1 + · · ·+ αrsr,

and this is the usual way we write elements of R[S]. (Hence a posteriori, the +
becomes + in R[S].) Defining a scalar multiplication

β(α1s1 + · · ·+ αrsr
) def
= βα1s1 + · · ·+ βαrsr

turns R[S] into an R-vector space.
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D.8. Examples of Maps of Quotient Spaces. Many students in CPSC 531F
have seen quotient spaces abstractly, but most will never have needed to use them.
Here we give the usual intuition in working with quotient spaces, review their
definition (see Subsection 4.7.3 and the definition earlier in this appendix), and
provide examples to show that a linear map L : U →W of R-vector spaces extends
to a map of quotient spaces U/U1 →W/W1 when (and only when) L(U1) ⊂W1.

We will need these remarks in Subsection 5.7, when we need this in the Mayer-
Vietoris sequence.

(If U1 ⊂ U are R-vector spaces, one can identify U/U1 with any U2 ⊂ U such
that U1 ∩ U2 = 0 and U1 + U2 = U . An important example of such a U2 is U⊥

1 ,
the orthogonal complement of U1. However, it is truer to say that the elements of
U2 are “coset representatives” of U/U1, in that each element of U/U1 is uniquely of
the form u2 +U1, where u2 ∈ U2. There is often no harm in identifying U/U1 with
U2. However, when we want to describe maps of quotient spaces, such as what we
will need in the Mayer-Vietoris sequence, it becomes much simpler to work with
the spaces U/U1. The reason is that the maps in the Mayer-Vietoris sequence
are canonical when working with quotient spaces, but become very awkward if we
choose a set of coset representatives of U/U1.)

It is also important to understand that while textbooks often define U/U1 as
U1-coset spaces, i.e., subsets of the form u+ U1, we just as often think of U/U1 as
representing equivalence classes of the equivalence relation u ∼ u′ iff u − u′ ∈ U1.
Here we will provide some examples.

D.8.1. “Real World” Intuition, or “Math Stories”. It is important to conceptualize
mathematics — when possible — in terms of “real world” examples. So, for example,
when you write down the formula (AB)−1 = B−1A−1 for invertible, compatible
matrices, you can prove the formula, or give a 2× 2 example to show that (AB)−1

is not generally equal to A−1B−1. However, the typical “real world” example of
this is that in the morning, many of us put our socks on first, and then our shoes,
but to reverse this process we first take off our shoes, not our socks.

Here we will do our best with equivalence relations and coset spaces.

Example D.2. If you are currently in Vancouver or Burnaby (in Canada), you are
also in British Columbia; however, if you are in British Columbia, you can’t tell
whether you are in Vancouver or some other city. Similarly, the class of an integer
modulo 6 determines its class modulo 3, but not vice versa. In computer science
one often thinks of “the integers modulo 3” as a set {0, 1, 2}, and of “mod 3” as a
map Z → {0, 1, 2} (taking n to mod(n, 3)). From this point of view, knowing an
integer mod 6 tells us its value mod 3, an represents a “refinement of information;”
of course, knowing an integer’s value mod 3 does not tell you its value mod 6 (but
if mod(n, 3) = 2, then you know that mod(n, 6) is either 2 or 5).

Example D.3. If you are currently in Vancouver or Burnaby (in Canada), you
don’t know if you are currently drinking coffee or not, and vice versa. Similarly,
knowing mod(n, 3) does know tell you anything about mod(n, 4) (in the absence
of other information).

Example D.4. Say that you celebrated your birthday one day late. If your birth-
day is January 1, then this celebration occurred on January 2. However, if your
birthday is February 28, then this celebration occurred on either February 29 or
March 1. Also, if your birthday is January 1 (or February 28), you can’t really tell
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(1) on which day of the week you were born, or (2) whether or not you are currently
drinking coffee. By constrast, if you know your birthday is January 1, then you do
know the month during which you were born.

D.8.2. Equivalence Relations, Equivalence Classes, and Quotients. If S is a set, a
relation is an arbitrary subset R ⊂ S × S; R is called an equivalence relation if
it is is reflexive (i.e., (s, s) ∈ R for all s ∈ S), symmetric (i.e., (s, s′) ∈ R implies
(s′, s) ∈ R), and transitive (i.e., (s, s′), (s′, s′′) ∈ R implies that (s, s′′) ∈ R; also, we
typically write s ∼R s′ to mean that (s, s′) ∈ R, or just s ∼ s′ if R is understood.
An equivalence class of R (in S) refers to any set of the form

[s]∼R

def
= {s′ | s′ ∼R s},

and each element of S is in a unique equivalence class. We use S/ ∼R (or simply
S/ ∼ if R is understood) to denote the set of equivalence classes.

Example D.5. Let P be a set of people. For p, p′ ∈ P , say that we take p ∼ p′

to mean that p, p′ have the same (Gregorian calendar) birthday (more formally,
we take R ⊂ P × P to be the set of pairs (p, p′) such that p and p′ have the same
birthday). In this way P is partitioned into 366 equivalence classes, P/ ∼. Knowing
in which equivalence class p lies tells you p’s birthday, but does not (generally) tell
you if p is currently drinking coffee or not (without additional knowledge).

Example D.6. Say that for n, n′ ∈ Z we write n ∼3 n
′ to mean that n − n′ is

divisible by three, or equivalently

n− n′ ∈ 3Z = {. . . ,−6,−3, 0, 3, 6, . . .}.

Then ∼3 is an equivalence relation; we commonly use

Z/3Z to denote Z/ ∼3,

whose elements are

0 + 3Z = {. . . ,−6,−3, 0, 3, 6, . . .},
1 + 3Z = {. . . ,−5,−2, 1, 4, 7, . . .},
2 + 3Z = {. . . ,−4,−1, 2, 5, 8, . . .},

and we use the notation

n+ 3Z def
= {n+m | m ∈ 3Z}.

So the entire set Z is partitioned into these three sets. The reason that the equiv-
alence classes can be Z/3Z makes sense is that Z is a group under +, and 3Z is a
subgroup; in this case the equivalence classes “modulo 3” will always be of the form
n+ 3Z for some n; note also that the following are all equivalent:

n ∼3 n
′, [n]∼3

= [n′]∼3
, n− n′ ∈ 3Z, n+ 3Z = n′ + 3Z.

and
n ≡ n′ (mod 3),

and the reason that n−n′ ∈ 3Z is equivalent to n+3Z = n′+3Z is that 3Z+3Z = 3Z.
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Example D.7. For the same reason, if U1 ⊂ U is a subspace, then relation u ∼U1
u′

(or u ∼ u′ when U1 is understood) given by u ∼ u′ iff u− u′ ∈ U1 is an equivalence
relation, and the following are all synonymous:

u ∼U1 u
′, [u]∼U1

= [u′]∼U1
, u− u′ ∈ U1, u+ U1 = u′ + U1.

and
u ≡ u′ (mod U1),

Then the usual definition of U/U1 (see Subsection 4.7.3) is the set of U1-cosets, i.e.,
sets of the form [u]U1

= u+ U1. For example, let U1 ⊂ U = R2 be the subspace

U1 = {(x, x) | x ∈ R}.
Then the elements of U/U1 are the set of U1-cosets, which includes

U1 = (0, 0)+U1 = (−2,−2)+U1, (1, 0)+U1 = (2, 1)+U1, (0, 3)+U1, (0, 4)+U1,

each of which is a line in R2 with slope 1 (DRAW PICTURE). We equivalently
write (x, y) ∼ (x′, y′) if (x′ − x, y′ − y) ∈ U1, which is equivalent to x′ − x = y′ − y.

D.8.3. Morphisms of Quotient Spaces. Now we claim that if L : U →W is a linear
map, then there is a natural way to “extend” L to quotient spaces U/U1 →W/W1

(where U1,W1 are subspaces of U,W ) iff L(U1) ⊂W1.

Example D.8. Let’s work again in modular arithmetic. So let U = W = Z, and
L = idZ be the identity map. Since

L(6Z) = 6Z ⊂ 3Z,
there is a map Z/6Z → Z/3Z: to determine this map on 5 + 6Z ∈ Z/6Z, we see
that

u ∈ 5 + 6Z ⇒ L(u) ∈ 2 + 3Z;
another way to understand this is that

∀u, u′ ∈ 5 + 6Z, L(u)− L(u′) ∈ 3Z,
which implies that L(u),L(u′) are in the same equivalence class in Z/3Z.

Let us give some more examples along these lines.

Example D.9. Say that U =W = Z, and L : U →W is the identity map L = idZ
(i.e., L(u) = u). If U1 = 6Z and W1 = {0}, note that L(U1) is not contained in W1

(since L(U1) = 6Z is not a subset of W1 = {0}); note also that L doesn’t extend to
map

U/U1 = Z/6Z → Z =W/W1,

since, for example, the element 1 + 6Z of U/U1 has

L(1 + 6Z) = L
(
{. . . ,−5, 1, 7, 13, . . .}

)
= {. . . ,−5, 1, 7, 13, . . .},

which is not a single element of W/W1 = Z. However, if we do the same but instead
take W1 = 3Z, then L does extend to a map

U/U1 = Z/6Z → Z/3Z =W/W1,

since L(U1) = 6Z ⊂ 3Z =W1, or, by example

L(1+6Z) = L
(
{. . . ,−5, 1, 7, 13, . . .}

)
= {. . . ,−5, 1, 7, 13, . . .} ⊂ 1+3Z = {. . . ,−5,−2, 1, 4, 7, 10, . . .}.

Similarly:
(1) the identity map L : Z → Z does not extend to a map Z/3Z → Z/6Z; but
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(2) the map L : Z → Z given by L(u) = 2u does extend to a map Z/3Z → Z/6Z,
since L(3Z) ⊂ 6Z, or, by example

L(1 + 3Z) = 2 + 6Z ⊂ Z/6Z.

Example D.10. We can model the previous example in the setting of vector spaces.
(1) The identity map L : F2 → F2 does not extend to a map F2/U1 → F2/W1

where U1 = {(x, x)|x ∈ R} and W1 = {0}, since L(U1) is not a subset of
W1; by example,

(0, 3) + U1 = {(x, 3 + x)|x ∈ R},

and L maps this set to itself, which is not an element of F2/W1 ≃ F2.
(2) However, the linear map L(x, y) = (2x−2y, y−x) does take U1 to L(U1) =

W1 = {0}, and hence gives a map F2/U1 → F2/W1; by example,

L
(
(0, 3) + U1) = (−6, 3) + L(U1) = (−6, 3) + {0} = {(−6, 3)} = (−6, 3) +W1.

Example D.11. Give a similar example (or put one in the exercises) with U =
W = R2,

U1 = {(x, x)|x ∈ R}, W1 = {(x,−2x)|x ∈ R}.
A map L : R2 → R does not generally give a map R2/U1 → R2/W1, but a map
with L(U1) ⊂W1, such as the map L(x, y) = (x+ y,−5x+ y).

———————————————————–

MORE MATERIAL MAY BE ADDED HERE, IF NEEDED.

D.9. Exercises.

Exercise D.1. Let C∞(R) denote the set of functions f : R → R that are infinitely
differentiable.
D.1(a) Explain briefly why the usual meaning of “addition of functions” and “mul-

tiplying a function by a real number” turn C∞(R) into a R-vector space.
(Verify a few of the vector space axioms without writing and verifying every
single axiom — the choice is yours.)

D.1(b) Let Trans1 be the map from C∞(R) to itself taking f = f(x) to the function
g = Trans1(f) given by g(x) = f(x+ 1). Show that Trans1 (translation by
+1) is a linear map.

D.1(c) Let D be the map from C∞(R) to itself taking f = f(x) to (Df)(x) = f ′(x)
(i.e., the derivative) is a linear map.

D.1(d) Let Mx be the map from C∞(R) to itself taking f = f(x) to (Mxf)(x) =
xf(x) (i.e., multiplication by x) is a linear map.

D.1(e) A linear operator on an F-vector space, V , is any linear transformation
V → V . If A,B are any two linear operators on V , show that AB = A ◦B
is another linear transformation on V , and that so is [A,B]

def
= AB −BA.

D.1(f) What is the operator on C∞(R) given by [Trans, D] equals the zero tranfor-
mation (taking f to 0, the zero function). Explain this in intuitive terms.

D.1(g) Show that the operator on C∞(R) given by [D,Mx] equals the identity op-
erator, i.e., id, taking f to f . This is one form of the Heisenberg uncertainty
principle.
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Exercise D.2. For each i ∈ {0, 1, . . .}, we speak of f(x) = xi as the function taking
x to xi; hence this is an element of C∞(R) as above. Say that d ∈ {0, 1, . . .}. A
function f : R → R is a called polynomial of degree at most d if for some α0, . . . , αd ∈
R we have

f(x) = α0 + α1x+ · · ·+ αdx
d

as functions; we use Pd to denote the set of all polynomials of degree d; we easily
see that Pd is a subspace of C∞(R). Rolle’s Theorem implies that if p(x) is a
polynomial of degree d, and p(x) = 0 for d+1 distinct values of x ∈ R, then p = 0,
i.e., p is the zero polynomial. It is also a standard fact that if f ∈ C∞(R) has
f (d+1), the (d+ 1)-st derivative of f , equals the 0 function, then f ∈ Pd.
D.2(a) Show that the functions 1, x, . . . , xd are linearly independent in C∞(R),

i.e., if α0, . . . , αd ∈ R and

f(x) = α0 + α1x+ · · ·+ αdx
d

equals 0 (the zero function), then α0 = . . . = αd = 0.
D.2(b) Conclude that dim(Pd) = d+ 1.
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