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2 JOEL FRIEDMAN

1. Introduction to TDA (Topological Data Analysis) and Motivation
via Point Clouds

This section motivates everything that will follow in the course for roughly the
first month or two. However, it is not a course prerequisite that you have seen all
the mathematical terms in this section. For this reason, this section is independent
of the rest of this article, and we will draw some pictures in class (and “wave our
hands” a lot) when we discuss this section. [By the end of this course you should
understand everything in this section.] The definitions and details start in Section 2.

The point of this article is to introduce TDA as motivated by “point clouds,”
and then “review” the ideas from point-set topology that we will need. We begin
the course by studying “point clouds;” often it suffices to define a point cloud as a
finite subset P ⊂ Rn. Here we think of n as fixed, although we may have numerous
point clouds P1,P2, . . . ,Pm ⊂ Rn.

1.1. Point Clouds as Models. Assume that P ⊂ Rn is a finite set (or “point
cloud”) that represents a “sample” of points from a subset X ⊂ Rn (possibly a “noisy
sample,” meaning P is not necessarily a subset of X). Then one can try to use P
to infer the topological invariants of X (e.g., its homotopy groups, (co)homology
groups, compactly supported cohomology groups, etc.). This is one example of
what one calls topological data analysis (TDA).

For the first month or so of this course we study the following method:
(1) For each real δ > 0, we define what it means for a subset of points A ⊂ Rn

to be “δ-close (to one another).” One popular choice is that A must be
contained in a ball (likely a closed ball1) n Rn of radius δ; another is that
the diameter of A is at most δ (i.e., any two points of A are within a distance
δ).

(2) For each real δ > 0, one defines Ksmall(P, δ) ⊂ Rn to be the union of the
convex hulls2 of subsets A ⊂ P that are δ-close.

(3) One fixes a map f : P → RN such that f(P) are in “general position” (i.e.,
the vectors f(P1)− f(P2) for P1, P2 ranging over P span a subspace of RN

of dimension |P|−1). (Hence N ≥ |P|−1.) For each real δ > 0, one defines
Kbig(P, δ) ⊂ RN to be the union of the convex hulls of subsets f(A) ⊂ RN

of the subset A ⊂ P that are δ-close.
(4) Often P ⊂ Rn is fixed, and hence we will simply write Ksmall(δ) and Kbig(δ).

When we compute simplicial homology and related invariants we will focus
on Kbig(δ) alone (at times we may be hoping that Kbig(δ) is homotopy
equivalent to Ksmall(δ)).

1In Rn or a metric space there is a notion of an open ball and of closed ball. One often writes
just “ball,” since it is usually clear which one means; for example, when working with open sets,
the term “ball” is likely to mean an open ball;” by contrast, if you are finding the Laplacian
eigenvalues of an open, bounded subset of Rn, you are likely to consider a minimizing sequence
for the Dirichlet integral; you then need the fact that “the unit ball of a separable Hilbert space
is weakly compact;” here you are talking about the closed unit ball. If you are using a floating
point calculations on a computer, you likely can’t tell the difference between an open ball in Rn

and the corresponding closed ball...
2Recall that the convex hull of a set S ⊂ Rn is the intersection of all convex subsets of Rn

containing S; hence if A = {a1, . . . ,am} if finite, then the convex hull of A is the set of convex
linear combinations of the elements of A, i.e., all vectors of the form α1a1 + · · · + αmam where
the αi are non-negative real numbers (i.e., αi ∈ R≥0) whose sum is 1 (i.e., α1 + · · ·+ αm = 1).
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Remark 1.1. The set Kbig(δ) in (3) depends on the choice of N and the map
f : P → RN . However, the resulting topological space, Kbig(δ), doesn’t depend on f .
If we are considering more than one point cloud, e.g., we are given P1, . . . ,Pm ⊂ Rn,
then it can be convenient to have all the Kbig(Pi, δ) lie in the same space RN rather
than each Kbig(Pi, δ) lying in its own RNi . This is one reason to leave f as a general
map with f(P) in general position.

Remark 1.2. More generally, we can let the property of δ-closeness depend on δ
and P. Moreover, if we think that P models a space X ⊂ Rn be we are unsure what
X is, then we could let δ-closeness depend on X, i.e., Ksmall(P, δ) = Ksmall(X,P, δ)
and Kbig(P, δ) = Kbig(X,P, δ).

Remark 1.3. To define persistent homology, will need the condition that if A ⊂ Rn

is “δ-close,” then it is also “δ′-close for δ′ > δ. If so, then Ksmall(δ) ⊂ Ksmall(δ
′) and

Kbig(δ) ⊂ Kbig(δ
′).

Remark 1.4. Note that if A ⊂ Rn lies in some ball of radius δ, then so does A′

whenever A′ ⊂ A. Similarly if the diameter of A is at most δ. This property is
computationally convenient for our purposes: namely, whether or not the convex
hull of A′ lies in Ksmall(δ), or that of f(A′) lies in Kbig(δ), is instrinsic to A′ and
doesn’t depend on whether or not some A ⊂ P containing A′ is considered to be
δ-close.

In this way we have a collection {Ksmall(δ)}δ∈R>0 of subsets of Rn, and another
collection {Kbig(δ)}δ∈R>0

of subsets of RN and such that:
(1) for δ > 0 small, Ksmall(δ) and Kbig(δ) consist of |P| distinct points, which

is not per se (in of itselft) interesting;
(2) for δ > 0 large, Ksmall(δ) and Kbig(δ) are, respectively, the convex hulls of

P and of f(P), which is again not per se interesting;
(3) however, hopefully for δ of “moderate size,” Ksmall(δ), Kbig(δ), and X all

have the same values for a number of interesting “topological” invariants.

Remark 1.5. Before doing any topology we encounter a serious problem: X, P,
and Ksmall(δ) for δ > 0 are the subsets of Rn that are of most interest to us.
However, the topological invariants Kbig(δ) are easiest to compute, because they
can be reduced to the combinatorics of knowing which subsets A ⊂ P are δ-close.
The fact that f(P) ⊂ RN are in general position gives a simple (affine linear) map
RN → Rn, which restricts to a map Kbig(δ) → Ksmall(δ). However, there is no a
priori guarantee that this map can be paired with a map Ksmall(δ) → Kbig(δ) that
together form a homotopy equivalence.

1.2. Persistent Homology and Barcodes. The idea of persistent homology is
that it is more practical and effective to replace (3) above by: (3′) (again, hope-
fully...) there is a small δ1 and large δ2 such that the “topological invariants” of
interest to us (e.g., homotopy groups, homology groups) of X are, roughly speaking,
those of Kbig(δ1) that “persist” in Kbig(δ2). To understand what this means, recall
that homotopy groups and homology groups are invariants — actually groups —
associated any topological space such that if X → Y is a continuous map, then the
value of each homotopy group or homology group of X maps (as a group) to that of
Y . Since Kbig(δ1) ⊂ Kbig(δ2) in the definitions above for δ1 < δ2, this gives a sense
to “persistent homology,” i.e., a maximal subgroup of Hi(Kbig(δ1)) (not uniquely
determined) that maps bijectively onto the image of Hi(Kbig(δ1)) in Hi(Kbig(δ2)).
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More generally, there is a “barcode theorem” that implies that any sequence of
vector spaces, with linear maps from each vector space to the next one in sequence,
decomposes into direct sums of pieces, each of which “is created” or “begins to live”
somewhere in the sequence, and persists until it is mapped to 0 somewhere “later” in
the sequence. In this course we will formalize the “barcode theorem;” this is quite
an interesting theorem in its own right. Since the Kbig(δ) takes on only finitely
many values for all δ ∈ R>0, the i-th homology group, Hi(Kbig(δ)) can be viewed
as a finite sequence of groups with a map from each group to the next one. If we
compute the Hi with coefficients in a field F, then the Hi(Kbig(δ)) form a sequence
of F-vector spaces.

In any event, this allows us to replace (3) and (3′) above with: (3′′) for each
i ∈ Z≥0 = {0, 1, 2, . . .}, as δ varies over R>0, we compute the “bars” in Hi(Kbig(δ)),
i.e., the i-th homology group of Kbig(δ), and look for “bars” that persist over a wide
range of values of δ.

1.3. Learning Algebraic Topology. Most books in algebraic topology begin by
defining the fundamental group, π1(X), of a topological space, X, since it is simple
to define and has many applications. You do need to define what is meant by a
homotopy between two paths in a topological space; however, anyone working with
homology groups will eventually want to understand that homology groups are
the same for any two topological spaces that are homotopy equivalent. Hence the
notion of homotopy is fundamental to homology groups (as well as to the homotopy
groups, πi(X) of a space X).

From there, some textbooks will discuss higher homotopy groups, i.e., πi(X)
for i ≥ 2 (π0(X) just measures the number of connected components of X), and
discuss (or complain about...) how difficult these are to compute. Whether or not
one discusses higher homotopy groups, most textbooks then discuss the (singular)
homology groups, Hi(X), of a topological space. For example, H0(X) measures the
number of connected components of X, and H1(X) turns out to be the abelianiza-
tion of π1(X); however, homology groups are very different: for example, Hi(X) = 0
whenever i is larger than the “dimension” of X, and the homology groups Hi(X)
are typically much easier to compute than homotopy groups πi(X) (for general or
“large” i).

[Moreover, if a topological space X is endowed with the structure of a smooth
n-dimensional manifold, then one can define differential forms on X, and generally
Riemannian metrics on X; this field is generally called “differential geometry,” and
is a vast field with many examples to provide intuition, and famous applications
in physics. In particular, de Rham coholomogy is a (co)homology theory based
on differential forms which is easy to define and work with; the dual groups are
homology groups that agree with (the torsion-free part of) the singular homology
groups.]

If you are mainly interested in the homology groups, Hi(X), of a topological
space, and don’t want to bother with homotopy groups, then there are two options:
(1) some excellent textbooks on algebraic topology first discuss homology groups
from the get go, like Massey’s textbook [Mas80]; (2) many textbooks, such as
Hatcher’s [Hat02] are quite readible if you skip the earlier sections on homotopy
theory and start reading from the definitions of simplicial and singular homology
groups (e.g., Section 2.1 of Hatcher’s textbook).
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A less common option is that some books begin directly by describing the sim-
plicial homology groups of a simplicial complex or, more generally, a ∆-complex (in
the sense of Hatcher [Hat02], Section 2.1). One then develops some intuition for
what homology groups are measuring, and one takes things from there. A terrific
example of this is [Mun84], that has many pictures and examples, or — free for
UBC students — Armstrong’s textbook [Arm83] (see Chapter 8, although I’m not
sure how much Chapter 8 is independent of previous material).

Many papers in TDA currently seem to define simplicial homology groups of
simplicial complexes and seemingly imply that you are supposed to understand
what is going on from these bare-bones descriptions. This is much like reading a
research paper in some field that defines a derivative or a linear transformation. Of
course, there is nothing wrong with setting up your particular notation, whether
it’s for calculus, linear algebra, or algebraic topology. However, any research paper
making active use of calculus or linear algebra will likely seem magical and/or
mysterious (if not completely inaccessible) unless you’ve already seen the basics in
these fields. Similarly for algebraic topology.

1.4. The Setting of Algebraic Topology. The simplest way to understand
(co)homology is through differential forms in Rn, which gives rise to differential
form on smooth (or sufficiently differentiable) manifolds. It’s not clear we’ll have
much time to discuss this, although most intro courses in differential geometry will
devote some time to this topic and provide valuable intuition.

The usual setting of basic Algebraic Topology is topological spaces and continuous
maps. This is a simpler setting than that of, say, smooth manifolds; the tradeoff is
that it is more difficult to define (co)homology there.

Part of what we do in algebraic topology will be done for subsets of Rn (e.g.,
spaces like Ksmall(δ) and Kbig(δ)), and in this case it suffices to understand the
topology of Rn (which we cover in the next section).

However, ultimately we will work we work with topological spaces for a number
of reasons, such as: (1) some of our topological spaces do not arise as subsets
of Rn, and (2) even when they do, i.e., we work with a topological space that is
homeomorphic (i.e., isomorphic as a topological space) to a subset X ⊂ Rn (in its
induced topology), it can be tedious to keep track of an X ⊂ Rn isomorphic to the
topological space we have in mind when we perform certain operations in algebraic
topology.

Since subsets of Rn provide a lot of good intuition about topological spaces and
continuous maps, the next section discusses basic topology (often called “point-set”
topology) in Rn.

2. Topology in Rn

The notation Rn connotes that n ∈ Z≥0 = {0, 1, 2, . . .}. Some of the terminology
in this section will not be defined or explained here; at UBC you will have seen
these terms in Math 320.

2.1. Functions on Compact Subsets. One of the most important facts of ad-
vanced calculus (a.k.a., real variables) (see, for example, [Fri71]) is that any contin-
uous function on a closed and bounded subset of Rn attains a maximum value (and
a minimum value) somewhere. This is Theorem 2.2. Understanding this theorem
and related notions will motivate everything else we do.



6 JOEL FRIEDMAN

We use the notation and definitions.
(1) We use the notation x = (x1, . . . , xn) for elements of Rn, and the Euclidean

norm (a.k.a. the L2 or ℓ2 norm) on Rn:

|x| =
√
x2
1 + · · ·+ x2

n.

(2) If x ∈ Rn, and x1,x2, . . . is a sequence of points in Rn, we say that {xi}i∈N
(or just xi) converges to x if for any ϵ > 0 there is an i0 for which |xi−x| < ϵ
for i ≥ i0.

(3) A subset X ⊂ Rn is closed if for every sequence y1,y2, . . . in X that con-
verges to some y ∈ Rn we have that y ∈ X.

(4) Let X ⊂ Rn. A function f : X → Rm is continuous if either of the following
equivalent conditions hold:
(a) for every sequence x1,x2, . . . in X converging to an x ∈ X we have

that f(xi) → f(x);
(b) for every x0 ∈ X and real ϵ > 0 there is a δ > 0 such that if x ∈ X

and |x− x0| < δ we have |f(x)− f(x0)| < ϵ.
(EXERCISE: If you don’t know that these are equivalent, then prove this.)

(5) A subset X ⊂ Rn is bounded if for some real M we have x ∈ X implies that
|x| ≤ M .

Example 2.1. Let f : Rn → Rm be a continuous function. Then f−1(0) =
{x |f(x) = 0} is closed. Since the function x 7→ |x| is continuous, it follows
that for any n ∈ N = {1, 2, . . .},

Sn−1 = {x ∈ Rn | |x| = 1}

is closed. Clearly Sn−1 is also bounded.

The following theorems is fundamental to a vast amount of mathematics.

Theorem 2.2. Let X ⊂ Rn be a closed and bounded subset of Rn, and let f : X →
R be continuous. Then f has a maximum value, i.e., there exists an x∗ ∈ X such
that f(x∗) ≥ f(x) for all x ∈ X. (Similarly with minimum replacing maximum.)

Let us outline the proof.

Definition 2.3. A subset, X ⊂ Rn, is compact if every sequence in X has a
convergent subsequence.

Theorem 2.4 (Heine-Borel). A subset of Rn is compact iff it is closed and bounded.

Assuming the Heine-Borel theorem, to prove Theorem 2.2 we, roughly speak-
ing, take a “maximizing sequence,” x1,x2, . . . for f in X and choose a convergent
subsequence.

Example 2.5. In particular, any function on Sn−1 has a maximum. It follows that
any Rayleigh quotient of a symmetric n × n matrix has a maximum value, which
turns out to be its largest eigenvalue. If you had to prove the spectral theorem
for symmetric matrices from scratch, Theorem 2.2 is really the most technically
difficult step; however, Theorem 2.2 is often used that it becomes second nature
most mathematicians.

Example 2.6. Similarly any two norms on Rn are equivalent.
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Many fundamental ideas in mathematics amount to maximizing functions over
a set in some context, such as continuous functions on a closed and bounded subset
of Rn.

2.2. Open Subsets of Rn. The notion of a topological space is motivated by the
fact that the δ, ϵ definition of continuity above (i.e., 4(b)) can be expressed more
elegantly for maps f : X → Y in the special case where X = Rn and Y = Rm.

Definition 2.7. A subset U ⊂ Rn is open if its complement, i.e., Rn \U , is closed;
equivalently, for every x0 ∈ U there exists an ϵ > 0 such that U contains every
x ∈ Rn such that ∥x− x0∥ < ϵ.

Theorem 2.8. A function f : Rn → Rm is continuous iff for every open subset
U ⊂ Rm,

f−1(U)
def
= {x ∈ Rn | f(x) ∈ U}

is an open subset of Rn.

Hence, although (4a) of Subsection 2.1 is the usual “intuitive” notion of continu-
ity, Theorem 2.8 (which is a rewording of (4b)) is an (perhaps the) essential origin
of the notion of topological spaces.

2.3. Topological Spaces and the Induced Topology on X ⊂ Rn. We already
know what is meant by a continuous map X → Rm when X ⊂ Rn. However, if
if n ≥ 2 and X = Sn−1 ⊂ Rn, then the only subset of X = Sn−1 that is an open
subset of Rn is the empty set.

However, the following generalization of Theorem 2.8 is true for maps X → Rm

with X ⊂ Rn.

Theorem 2.9. Let X ⊂ Rn. A function f : X → Rm is continuous iff for every
open subset U ⊂ Rm,

f−1(U)
def
= {x ∈ X | f(x) ∈ U}

can be written as X ∩W , where W is an open subset of Rn.

This follows from the equivalence of (4a) and (4b) in Subsection 2.1; the main
point is that if S ⊂ X is a subset such that for all x ∈ S there is an ϵx > 0 such
that ∥y − x∥ < ϵx implies that y ∈ S, then the set

W =
⋃
x∈S

{
y ∈ Rn

∣∣ |y − x| < ϵx
}

is an open subset of Rn (and it is easy to check that X ∩ W = S). In the next
section we will formally prove this, where we conceptualize the above argument by
speaking of the open ball of radius ϵ about x ∈ Rn,

B<ϵ(x)
def
=

{
y ∈ Rn

∣∣ |y − x| < ϵ
}

and we use the fact that an arbitrary union of open balls — or, more generally, of
open sets (Definition 2.7) — in Rn is again an open set. If you’ve never seen any
point-set topology, this theorem and style of proof may take some “getting used
to,” and so you may want to move on and wait for a fuller discussion in the next
section.

Before proving this theorem, let us restate it more simply.
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Definition 2.10. A topological space is a pair (X,U) consisting of a set X and
a family, U , of subsets of X (i.e., the elements of U are subsets of X), that is
closed under taking finite intersections and arbitrary unions. Hence ∅, X (which
are, respectively, the “empty union” and the “empty intersection”) must lie in U .3

We refer to (1) any element of X as a point (of the space (X,U)) (2) any element
of U as an open set (of (X,U)), and (3) any set Z = X \ U (the complement of Z
in X) with U ∈ U as a closed subset.

Example 2.11. The pair (Rn,U) where U is the subset of open subsets of Rn (in
Definition 2.7) is easily seen to be a topological space. (This is an EXERCISE if
you’ve never verified this.) When we speak of Rn as a topological space, we always
mean this topology, i.e., this notion of an open set, unless we specify otherwise.

Example 2.12 (The induced topology). If (X,U) is a topological space and X ′ ⊂
X, then the induced topology of (X,U) on X ′ refers to the topological space (X ′,U ′)
where U ′ = {X ′ ∩ U | U ∈ U}; we often call this the induced topology on X ′ by X
if U is understood. Hence, if X ⊂ Rn, then X has its induced topology from Rn.

Theorem 2.9 can be generalized to maps X → Rm with X ⊂ Rn, or even to
maps X → Y with Rm as follows.

Theorem 2.13. Let X ⊂ Rn, Y ⊂ Rm, and consider the topologies induced on X
and on Y . For any f : X → Y , the following are equivalent:

(1) for all sequences x1,x2, . . . in X that converge to an x ∈ X, we have that
f(x1), f(x2), . . . converges f(x); and

(2) for any open subset, U of Y , f−1(U) is an open subset of X.

Remark 2.14. There are many ways of getting interesting topological spaces. If
(X,U) and (X ′,U ′) then the product X × X ′ becomes a topological space where
an open set is the topology generated by sets of the form U × U ′ with U ∈ U and
U ′ ∈ U ′ (where “generated by” is left to the reader (and discussed in the the next
section and possibly in class). If f : X ′ → X is a map of sets and (X,U) is a
topological space, then

f−1(U) = {f−1(U) | U ∈ U}

generates a topology on X ′. If (X,U) is a space and ∼ is an equivalence relation on
X, then X/ ∼ has a topology generated by U/ ∼ (this is useful for “gluing” spaces
together). Etc.

EXERCISE: Show that the topology on R×R above is the same as that on R2.
EXERCISE: In the above remark we specify that a collection F of subsets must

be open, and then we get then we pass to the topology generated by F . Which of
these families F are already a topology?

EXERCISE: Etc.

3. Topological Spaces Arising From Metric Spaces

Many of our topological spaces (X,U) arise when X is endowed with a metric;
these spaces have a lot of nice properties; they also provide valuable examples and

3If you don’t like thinking about “empty unions” and “empty intersections,” then you can add
the condition that ∅, X ∈ U .
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intuition in topology (provided that you know of a few topological spaces that aren’t
metrizable so that misconceptions don’t arise...).

Notice that the notion of a convergent sequence i.e., xn → x as n → ∞, (i.e., (2)
at the beginning of Subsection 2.1) makes sense for points in any set X whenever
we know what |xn − x| means.

For this reason we can define convergent sequences in the wide context of metric
space. In brief, a metric space (X, ρ) is a set, X, and a metric or “distance function”
ρ : X×X → R≥0 that is symmetric, satisfies the triangle inequality, and ρ(x, y) = 0
iff x = y. We often write X for (X, ρ) when ρ is understood.

[Example 1: (Rn, ρp) where where ρp is based on the Lp-norm (a.k.a. ℓp-norm)
on Rn. Example 2: if X ′ ⊂ X, then (X ′, ρ|X′×X′) is a metric space. Example
3: the cartesian product of two metric spaces can be defined in a number of ways,
most simply by adding the metrics, more complicatedly by taking applying a norm
on R2 to the pair of metrics.]

Definition 3.1. We say that a sequence x1, x2, . . . in a metric space X = (X, ρ)
converges to an x ∈ X if as i → ∞, ρ(xi, x) → 0.

Definition 3.2. To any metric space (X, ρ) we associate a topological space (X,Uρ)
where U ∈ Uρ iff

∀x ∈ U,∃ϵ > 0, s.t. ρ(y, x) < ϵ ⇒ y ∈ U.

We say that a topological space (X,U) is metrizable if there is a metric on X such
that U = Uρ.

Definition 3.3. Let (X, ρ), (X ′, ρ′) be metric spaces be sets and f : X → X ′. We
say that:

(1) X is compact (sometimes sequentially compact) if every sequence in X has
a convergent subsequence;

(2) f is continuous if for every convergence sequence xn → x in X, we have
that f(xn) → f(x).

Definition 3.4. Let (X,U), (X ′,U ′) be topological spaces be sets and f : X → X ′.
We say that:

(1) X is compact (sometimes topologically compact for emphasis) if every open
covering of X has a finite subcovering;

(2) f is continuous if for every open U ′ in X ′, f−1(U ′) is open in X.

[In French, our notion of compact is usually called quasi-compact, and the term
compact further assumes that the space is separated, i.e., for any distinct points
x, y ∈ X, there are disjoint open sets Ux, Uy that respectively contain x, y.]

EXERCISE (If you don’t know this): Let (X, ρ), (X ′, ρ′) be metric spaces be sets
and f : X → X ′. Let (X,Uρ) and (X ′,Uρ′) be the associated topological spaces.
Then (X, ρ) is (sequentially) compact iff (X,Uρ) is; and f is continuous as a map
of metric spaces iff f is continuous as a map of topological spaces.

Definition 3.5. For any x ∈ X and real ϵ > 0 we define the open ball of radius ϵ
about x to be

B<ϵ(x) = {y ∈ X | ρ(y, x) < ϵ},
and the closed ball of radius ϵ about x to be

B≤ϵ(x) = {y ∈ X | ρ(y, x) ≤ ϵ}
(for closed balls we might allow ϵ = 0).
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The term “ball” is used to mean an open ball or closed ball depending on the
context. Here, in discussing open sets, we will generally mean open balls.4

Definition 3.6. If X is a set, and F is a set of subsets of X, then the topology
(on X) generated by F is topological space (X,U) where U consists of all finite
intersections and arbitrary unions of sets in F ; equivalently it is the “smallest”
topological space on X whose open sets include F .

Here are a bunch of possible additional definitions and EXERCISES. [Some of
these would need to be stated more precisely.]

(1) Prove the equivalence of the notions of compactness on a metric space and
on its associated topological space.

(2) Prove the equivalence of the notions of a continuous function from a metric
space to another, and of continuous as a function of associated topological
spaces.

(3) Prove that if ∥ · ∥ is any norm on Rn and we define ρ(x, y) = ∥x− y∥, then
the topology on Rn induced by ρ is the same as the usual topology.

(4) Let (X, ρ) is a metric space, and for a y ∈ X, let ρy : X → R be the function
ρy(x) = ρ(x, y). Show that ρy is a continuous function.

(5) Let (X,U) be a topological space, and A ⊂ X. The interior of a A is the
union of all open sets in X that are contained in A. The closure of A, often
denoted A, is the intersection of all closed subsets of X containing A. Show
that the closure of X/A is the complement in X of the interior of A.

(6) A metric space is complete if every Cauchy sequence in the space has a limit
(such a limit would necessarily be unique). Completeness is an important
property, but perhaps not to us this term.

(7) If (X, ρ) is a metric space, and X ′ ⊂ X, then X ′ becomes a metric space
under the metric ρ′ that is ρ restricted to X ′×X ′. Show that the topology
induced on X ′ from (X,Uρ) is the same as the topology induced on X ′ by
ρ′.

(8) Prove Theorem 2.13 using some of the facts above.
(9) For any metric space (X, ρ), and any x ∈ X and ϵ > 0, show that the closure

B<ϵ(x) lies in B≤ϵ(x). Show that the two are equal if X is path connected,
i.e., for every x0, x1 ∈ X, there is a continuous function c : [0, 1] → X such
that c(0) = x0 and c(1) = x1. Show that the two are not necessarily equal,
even if X consists of only two points.

(10) ADD SOMETHING MORE.
(11) ADD SOMETHING MORE.
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