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Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 531F: use this material
at your own risk. . .

1. Introduction

The main goal of this course is to use spectral information, i.e., information on
the eigenvalues and eigenvectors of a matrix, to infer information about a “large”
or “complex” system. Typical applications are:

(1) You are given a graph on a large number of vertices; at times the graph is
“sparse” in the sense that each vertex has a “small” number of neighbours.
You want to infer something about certain “global” properties of the graph
than are not easy to infer, neither by a feasible computation nor by “local”
considerations. However, you do know something about the largest few
eigenvalues and corresponding eigenvalues of the adjacency matrix, and
you’d like to use this “spectral information” to get some information about
these global properties.

(2) You are given a (discrete) Markov chain on a large number of states. Same
type of global questions. One typical global property is the “mixing time”
of the chain.

(3) In some cases, you want to build a graph or network for the sake of running
an algorithm, and you get to choose whichever graph or network you like.

(4) There are many special cases and related problems to the above (e.g., reg-
ular graphs, weighted graphs, directed graphs, reversible Markov chains).

(5) You are given a question that has no a priori connection to any particu-
lar matrix; at times you can use the spectral decomposition of a cleverly
chosen matrix to answer the question. A typical example concerns certain
questions about Boolean functions, where the eigenvalues/eigenvectors of
the Boolean n-cube (often called “Fourier analysis” of the n-cube) is a pow-
erful tool. Another situation is when you can think of a large data set as
a matrix, where you’d like to compress the information using a low rank
approximation via its SVD (singular-value decomposition).

1.1. References. For Spring 2021, the main references are:

(1) Matrix Analysis, by Horn and Johnson; the first edition [HJ85] is currently
available online at the UBC Library; the second edition [HJ13], which is
significantly expanded in some sections, is currently available in print; there
is also a corrected printing of the first edition [HJ90]. When we refer to
this textbook, we will make sure to note any difference in section numbers
between [HJ85, HJ13].

(2) Markov Chains and Mixing Times, by Levin and Peres, with contributions
from Wilmer et al., [LP17], especially Chapter 4 on Markov chain mixing;
at present there is a version of this available at https://pages.uoregon.

edu/dlevin/MARKOV/markovmixing.pdf, and this is the version to which
I will refer.

(3) “Expander Graphs and Their Applications,” by Hoory, Linial, and Wigder-
son [HLW06], (this article received the 2008 AMS Conant Prize); at present
there is a version of this available at https://www.cs.huji.ac.il/~nati/
PAPERS/expander_survey.pdf.

https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
https://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf
https://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf
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(4) Other references?

Here are some other notable references for applications:

(1) “Graph spectra in Computer Science,” by Cvetković and Simić, https://
www.sciencedirect.com/science/article/pii/S0024379510006117?

via%3Dihub, “Selected Topics in Applications of Graph Spectra,” Editors
Cvetkovic and Gutman, 2009, http://www.mi.sanu.ac.rs/novi_sajt/

research/projects/ZbR14-22.pdf and many other articles and books of
Cvetković and co-authors, including

(2) Others?
(3)

1.2. Calculus Motivation and Main Theorems. In this subsection we intro-
duce way symmetric matrices arise in calculus, namely to determine when a function
f : R2 → R has a local minimum, local maximum, or a saddle. When then state
the fundamental theorem about symmetric matrices, as well as Sylvester’s “Law of
Inertia” to show how these theorems generalize to function f : Rn → R. matrices.

In Spring 2021 we use the textbook Matrix Analysis by Horn and Johnson for
results on linear algebra and matrices. You should look over Sections 0.0–0.6 to
review the ideas we need.

1.2.1. Local Maxima, Minima, Saddles, Etc. Taylor’s theorem says that if f : R→
R is twice differentiable, then for any x0 ∈ R we have

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x0) + o(x− x0)2.

It follows that if f ′(x0) = 0, then f has a local min at x0 if f ′′(x0) > 0, and a local
min there if f ′′(x0) < 0. The analog for f : Rn → R and x0 ∈ Rn is that

f(x) = f(x0)+(x−x0) ·
(
(∇f)(x0)

)
+

1

2
(x−x0)T

(
(D2f)(x0)

)
(x−x0)+o|x−x0|2,

where D2f , sometimes called the Hessian of f is the matrix of second partial
derivatives: for n = 2 this is

D2f
def
=

[
fx1x1 fx1x2

fx2x1
fx2x2

]
The fact that this matrix is symmetric, i.e., that fx2x1

= fx1x2
and hence D2f

equals its transpose, gives a remarkable way to understand the local behaviour of
f when ∇f(x0) = 0. For simplicity, we state these results in the case where x0 = 0
and f(x0) = 0.

Theorem 1.1. Consider a 2× 2 real symmetric matrix, i.e., a matrix of the form[
a b
b c

]
.

If ac− b2 6= 0, then the function

f(x) = f(x1, x2) = xT

[
a b
b c

]
x =

[
x1 x2

] [a b
b c

] [
x1

x2

]
= ax2

1 + 2bx1x2 + cx2
2

has (1) a local minimum at x = 0 if ac− b2 > 0 and a > 0 (which implies c > 0),
(2) a local maximum at x = 0 if ac− b2 > 0 and a < 0 (which implies c < 0), (3)
a saddle at x = 0 if ac− b2 < 0.

https://www.sciencedirect.com/science/article/pii/S0024379510006117?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0024379510006117?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0024379510006117?via%3Dihub
http://www.mi.sanu.ac.rs/novi_sajt/research/projects/ZbR14-22.pdf
http://www.mi.sanu.ac.rs/novi_sajt/research/projects/ZbR14-22.pdf
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The case where ac − b2 = 0, i.e., the determinant of the above 2 × 2 matrix
is zero, i.e., the above matrix is not invertible, is a degenerate case (where higher
derivatives may determine the local behaviour of f).

A stronger theorem says that regardless of the value of ac − b2, there is an
“orthonormal change of basis,” which here means a rotation of coordinates in R2,
which turns the above matrix into a diagonal 2× 2 matrix, i.e., of the form[

d1 0
0 d2

]
.

We now describe that generalize the above theorems from two variables to any
number of variables.

1.2.2. The Main Theorem on Symmetric Matrices. This subsection can be skipped
for now. However, I encourage the reader to have a look and see how much of it
makes sense now—some students may have already seen this theorem in a second
term course on linear algebra. After the next few sections this should make complete
sense.

The main goal of the next few sections is to give several proofs of the following
fundamental theorem on symmetric matrices, and to explain its applications to
graphs, Markov chains, and a host of applications that arise in the SVD (singular-
value decomposition). In the sections that follow we will review what these terms
mean.

This comes from the theorem below. At this point we will use the notation in
Matrix Analysis by Horn and Johnson (either edition): e.g., Mm,n(R) denotes the
space of m × n matrices with real entries and Mn(R) = Mn,n(R); the notation
Rm×n is also very common in the literature. In this notation we generally assume
that m,n ∈ Z = {1, 2, . . .}, although at times it is convenient to all m,n = 01

Theorem 1.2. Let A ∈ Mn(R) = Mn,n(R) (also commonly written A ∈ Rn×n)
with AT = A, i.e., A is an n × n, real symmetric matrix A (hence n ∈ N =
{1, 2, . . .}). Then the following hold (these are all equivalent):

(1) A can be written as a real, diagonal matrix after an orthonormal change of
basis; this basis is unique (up to ±) when the diagonal entries are distinct.

(2) There are real numbers λ1(A) ≥ · · · ≥ λn(A) and orthonormal vectors
v1, . . . , vn such that Avi = λivi; the sequence λ1, . . . , λn is uniquely deter-
mined.

(3) A can be written as MDM−1, where M is an orthogonal matrix (i.e.,
M−1 = MT, or equivalently the rows of M are orthonormal, or equiva-
lently, the columns of M are orthonormal), where D is a diagonal matrix
with real entries:

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .
1 One of my first college teachers, George Mackey, used to say that in every classroom there

is always an expert on the empty set. At times it can be useful to be an expert on the empty set
(i.e., the empty union, the empty sieve, etc.). We leave it to the reader to verify that R0 = {0}
and to interpret the meaning of Mm,n(R) in case m = 0 and/or n = 0.
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If we order λ1, . . . , λn as λ1 ≥ · · · ≥ λn, then the sequence λ1, . . . , λn is
uniquely determined, and ui is uniquely determined (up to ±) if λi occurs
“with multiplicity one.”

Here is a sample application; it is extremely important to understand this in an
intuitive way.

Corollary 1.3. Let Q : Rn → R be a quadratic form, i.e., a function of the form
Q(x) = xTBx for a matrix B ∈Mn(R). Let A = (B +BT)/2, so that A is a (and
the only) symmetric matrix with Q(x) = xTBx = xTAx. Let λ1, . . . , λn be the
eigenvalues of A, and u1, . . . ,un a corresponding orthonormal basis of eigenvectors
(corresponding means Aui = λiui for all i), then

Q(c1u1 + · · ·+ cnun) = λ1c
2
1 + λ2c

2
2 + · · ·+ λnc

2
n.

Intuitively this corollary says that there is a change of coordinates with respect
to which Q is of the form

λ1c
2
1 + λ2c

2
2 + · · ·+ λnc

2
n.

One can also make this precise: if we define

Q̃(c1, . . . , cn)
def
= Q(c1u1 + · · ·+ cnun),

Then Q̃ is also a quadratic form, and represents Q in the “coordinate system
u1, . . . ,un,” and this “coordinate system” is comprised of orthonormal vectors (this
orthonormality is extremely important in applications). The above corollary then
states that

Q̃(c1, . . . , cn) = λ1c
2
1 + λ2c

2
2 + · · ·+ λnc

2
n,

which makes it easy to see if Q̃ has a local maximum or minimum (or something

“in between”) at 0; but we easily see that Q̃ has a local maximum or minimum iff
Q does.

1.2.3. The LDU-Factorization and Sylvester’s “Law of Inertia”. Another set of re-
sults, which are less important to these notes, allows one to quickly check how many
of the eigenvalues of a symmetric matrix of moderate size are positive, negative,
and zero. These results also imply that if a twice continuously differentiable func-
tion f : R3 → R has a critical point at x0 ∈ R3, i.e., ∇f(x0) = 0, then f has a local
maximum (respectively minimum) if the three matrices

(1)
[
fx1x1

]
,

[
fx1x1

fx1x2

fx2x1
fx2x2

]
,

fx1x1 fx1x2 fx1x3

fx2x1 fx2x2 fx2x3

fx3x1
fx3x2

fx3x3

 ,
each have negative (respectively, positive) determinant at x0. This is the analog of
the two variable criterion.

Let us briefly describe the main theorems.
The basic result is called Sylvester’s “Law of Inertia,” which says that if A is a

symmetric matrix, and for some invertible matrix, S, we set B = SAST, then (B is
also symmetric) and A,B have the same number of positive eigenvalues, negative
eignevalue, and zero eigenvalues.

Definition 1.4. We say that a symmetric A ∈Mn(R), is positive definite if f(x) =
xTAx satisfies f(x) ≥ 0 with equality iff x = 0. One similarly defines negative
definite.
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Hence a twice continuously differentiable function f : Rn → R with a critical
point at x0 ∈ R, i.e., ∇f(x0) = 0, has a local maximum at x0 iff D2f(x0) is
negative definite, and a local minimum iff D2f(x0) is positive definite. Also A is
positive definite iff −A is negative definite.

This gives a quick way to check if A is positive definite, at least when A’s dime-
sion is of small enough size to allow for a reasonable quick and accurate Gaussian
elimination. Here are the details.

Gaussian elimination on an invertible square matrix A ∈ Mn(R) essentially
writes A as a product PLDU , where P is a permutation matrix (indicating when
we need to exchange rows to get a non-zero pivot element for the elimination), L is
lower triangular with 1’s on the diagonal, D is diagonal, and U is upper triangular
with 1’s on the diagonal. If A is symmetric and positive definite, then by induction
on n one seems that one doesn’t need the permutation matrix, and that U = LT;
hence Guassian elimination essentially factors A as A = LDLT. Sylverster’s law
of inertia then implies that D must have positive entries; conversely, if D is any
diagonal matrix with positive entries, then A = LDLT for any lower triangular L
with 1’s on the diagonal—or any invertible L—is positive definite.

Moreover, A has an LDU decomposition as above, and if D’s diagonal entries
are d1, . . . , dn, then for any k ∈ [n], the product d1 . . . dk is just the determinant of
the upper left k × k minor of A. This explains the condition regarding (1).

2. Basic Notation, Graphs, and Markov Chains

In this section we give some basic notation about matrices, graphs, Markov
chains, give some examples explaining our interest in symmetric matrices. One of
the surprising facts is that any m×n real matrix—not necessarily a square matrix–is
best approximated by low rank matrices using the theory of symmetric matrices.

In Spring 2021 we use the textbook Matrix Analysis by Horn and Johnson for
results on linear algebra and matrices. You should look over Sections 0.0–0.6 to
review the ideas we need.

2.1. Basic Notation for Vectors and Matrices. We typically work with the
vector spaces Rn (over the reals, R) and Cn (over the complex numbers C). We
use the notation v = (v1, . . . , vn) for the elements of Rn or Cn, i.e., boldface
for the vector (e.g., v) and regular typeface for its components (e.g., v1, . . . , vn).
[([HJ85, HJ13]uses regular typeface for both.] We will also use (v1, . . . , vn) to denote
the n × 1 column vector whose entries are vi, and at times the 1 × n row vector
when the meaning is clear.

Our notation for an m× n matrix is usually (see [HJ], Section 0.3)

A = [aij ] =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


for A ∈Mm,n(R) = Rm×n, which gives rise to a linear map Rn → Rm via the map
v 7→ Av. We will also write aij as (A)ij at times. With these conventions the usual
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convention to multiply A ∈Mm,n(R) by B ∈Mn,p is given by the formula

(AB)ik =

n∑
j=1

aijbjk

(for all i ∈ [m] = {1, . . . ,m} and all k ∈ [p]).
We warn the reader that one uses the MAP ON ROW VECTORS

for directed graphs and Markov chains. (This can cause no end of confusion,
especially for reversible Markov chains...) More precisely, an A ∈Mm,n(R) = Rm×n
can be viewed as the map Rm → Rn given by uT 7→ uTA as a map of row vectors,
which is the same thing as the map u 7→ ATu as column vectors. We shall now see
examples of this in directed graphs and Markov chains.

2.2. The Standard Basis and Indicator (or Characteristic) Vectors. When
Rn or Cn is understood, for i ∈ [n] we use ei to denote the i-th standard basis vector,
i.e., the vector that is everywhere 0 except 1 in the i-th component ([HJ85, HJ13],
Section 0.1.7). Notice that for A ∈ Mm,n(R) = Rm×n, eTi AeTj equals ai (here ei
lies in Rm or Cm). If I ⊂ [n], we use

eI =
∑
i∈I

ei

which lies in Rn or Cn; hence eI is 1 in coordinates of I and 0 elsewhere, which
is sometimes called the indicator (or characteristic) vector of I. It follows that for
I ⊂ [m], J ⊂ [n]

eT
I AeJ =

∑
i∈I,j∈J

aij .

2.3. Directed Graphs.

Definition 2.1. A directed graph is a 4-tuple G = (VG, EG, tG, hG) where VG and
EG are sets—the vertex set and edge set—and tG, hG are maps EG → VG—the tails
and heads map. One (usually) defines the adjacency matrix of G to be the matrix
A = AG indexed on the vertex set, i.e., A ∈ Mn(R) = Mn,n(R) = Rn×n where
n = |VG|, whose entry aij are given as the number of edges from vertex i to vertex
j (i.e., whose tail is vertex i and head is vertex j). A walk in G is an alternating
sequence of vertices and edges,

(2) w = (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk)

for some integer k ≥ 0—called the length of w—such that for all i ∈ [k] = {1, . . . , k}
we have tG(ei) = vi−1 and hG(ei) = vi; w is closed if v0 = vk.

We will use common graph theoretic terminology (without rigorously defining
each term in these notes): for example, the walk w above originates in v0 and
terminates in vk; also, if tG(e) = v and hG(e) = w, then we say that e is an edge
from v to w; most of the terminology should be intuitive.

It is easy to see that for any integer k ≥ 2, the ij-th entry of AkG (the product of
AG k times) is the number of walks from i to j. It is immediate that if I, J ⊂ [n],
then eT

I AGeJ is the number of edges from a vertex in I to a vertex in J (where we
identify [n] with V ).
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v1 v2

Figure 1. The Fibonacci (Directed) Graph

Example 2.2. The Fibonacci graph (see Figure 1) has adjacency matrix

AFib =

[
1 1
1 0

]
;

it has two vertices, v1, v2, and (1) a “self-loop” from v1 to itself, (2) one edge from
v1 to v2, and (3) one from v2 to v1. It turns out that (see Exercise ??) for any
k ∈ Z we have

(3) AkFib =

[
Fk+1 Fk
Fk Fk−1

]
where F0, F1, F2, . . . are the Fibonacci numbers, i.e., F0 = 0, F1 = 1, and Fk+2 =
Fk+1 + Fk for all k (hence Fk = Fk+2 − Fk−1 defines this sequence inductively for
k negative); hence

. . . , F−7 = 13, F−6 = −8, F−5 = 5, F−4 = −3, F−3 = 2, F−2 = −1, F−1 = 1,

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, F10 = 55, . . .

v1

v3

v2v4

Figure 2. The (Directed) Cycle of Length 4

Example 2.3. The cycle graph of length 4 (see Figure 2) has adjacency matrix

C4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
Notice that the graph indicates motion from v1 to v2 to v3 etc., and indeed

(C4)ij = 1 iff j = i+ 1 (modulo 4). And notice that

[
α β γ δ

] 
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 =
[
δ α β γ

]
,


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



a
b
c
d

 =


b
c
d
a

 .
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Hence, if you think of this directed graph as indicating motion from v1 to v2 to v3

etc., then you need C4 to act ROW VECTORS, NOT COLUMN VECTORS.

0 0 0 0 0 01

0

v1

Figure 3. The (2, 7)-Constrained Binary Data Graph

Example 2.4. The (2, 7)-constrained binary data graph (see Figure 3) has adja-
cency matrix that is an 8 × 8 matrix (that we won’t bother to write down). The
set of walks of any length k beginning at v1 corresponds to words over {0, 1} that
begin in 1 and have between 2 and 7 0’s between an two occurrences of 1’s; the
labels above the edges indicate this correspondence between walks and words over
{0, 1}. We will motivate and study similarly “(d, k) run-length constrained data”
(here d = 2 and k = 7) in Subsection ??.

v0start

v1

v2

0,3,6,9

1,4,7

2,5,8

0,3,6,9

1,4,7

2,5,8

0,3,6,9
1,4,7

2,5,8

Figure 4. The DFA Describing Strings “Divisible By 3.”

Example 2.5. Any DFA, i.e., (deterministic) finite automaton, can be viewed as
a directed graph with some extra information: (1) one vertex is called the initial
state, (2) there is a subset of vertices called the set of final states or accepting
states, and (3) each edge comes with a label from a finite alphabet, Σ, such that
each vertex has exactly one outgoing edge (i.e., whose tail is this vertex) labelled
with each letter in Σ. The set of walks of length k in the DFA that begin with the
initial vertex corresponding to the words of length k in Σ.

In Figure 4 we give a DFA for the strings over Σ = {0, 1, . . . , 9} that represent
integers divisible by 3 (v0 is the initial state and the unique accepting state). [This
DFA accepts the empty string and allows for leading 0’s.]
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2.4. (Undirected) Graphs. An undirected graph, or simply a graph, is essentially
a graph when each directed edge is paired with another edge in the opposite direc-
tion.

Definition 2.6. A graph (or undirected graph for emphasis) is a tuple G =
(VG, E

dir
G , tG, hG, ιG) where (VG, E

dir
G , tG, hG) is a directed graph—called the un-

derlying directed graph of G—and ιG is an orientation reversing involution of Edir
G ,

i.e., ιG : EG → EG is a bijection with ιG = ι−1
G and tGιG = hG (and therefore also

hGιG = tG).

The notion of a walk in a graph, G, and its adjacency matrix, AG, is simply
that notion in the underlying directed graph. Therefore if G is a graph, AG is a
symmetric matrix (and does not depend on the choice of ιG).

Notice that if G has multiple edges, i.e., edges with the same heads and tails,
or two self-loops about a vertex v ∈ VG, i.e., two e ∈ Edir

G with tG(e) = hG(e) = v,
then there is more than one choice of ιG. Indeed, if e is a self-loop, we may have
ιGe = e, in which case we say that e is a half-loop, and otherwise a whole-loop.

Definition 2.7. If G = (VG, E
dir
G , tG, hG, ιG) is a graph, we define its edge set,

denoted EG, to be the set of “orbits of ιG,” i.e., consisting of two-element sets
{e, ιGe} for e ∈ Edir

G with ιGe 6= e, and one-element sets {e} for each half-loop e.

It follows that for v ∈ VG, the diagonal entry (AG)vv equals twice the number of
whole-loops plus one times the number of half-loops about v. Similarly, |Edir

G | equals
the number of half-loops plus twice the number of edges that are not half-loops.

v1 v2

Figure 5. The Undirected Fibonacci Graph

Example 2.8. The Fibonacci (directed graph) of Example 2.2 is a graph whose
edge set consists of one half-loop at v1 and one edge joining v1 and v2. We depict
it as a graph by replacing the two directed edges between v1 and v2 with a line
joining v1 and v2 without an arrow; we leave the half-loop with an arrow.

Example 2.9. The (directed) cycle of length 4 in Example 2.3 is not a graph, but
one can turn it into a graph by adding an oppositely oriented directed edge. We
depict it as in Figure 6; its adjacency matrix is

A = C4 + C−1
4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
2.5. Sample Problems about Digraphs and Graphs where Eigenval-
ues/vectors are Sometimes Useful. In some of the examples above, especially
Figure 3 of Example 2.4 (I’ll explain in class, or see [ACH83] or later papers
[AFKM86, HMS91, BBM+10]), one wants to know for A ∈ Mn(R) what is the
rough value of f(k) = fij(k) = (Ak)ij for some fixed values of i, j ∈ [n] and k →∞.
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v1

v3

v2v4

Figure 6. The (Undirected) Cycle of Length 4

Question 2.10. Given a graph and its adjacency matrix A = AG ∈ Mn(R),
for fixed i, j ∈ [n], describe f = fij : N → R given by fij(k) = (AkG)ij , i.e., the
number of walks of length k from i to j. Either describe f(k) exactly or a good
approximation to f .

If A has all positive entries, then for each i, j there is a cij > 0 such that
fij(k) = cijλ

k
1(1 + o(1)) as k → ∞, where λ1 is the largest, real eigenvalue of A,

known as the Perron-Frobenius eigenvalue of A.

Question 2.11. Given a graph and its adjacency matrix AG ∈Mn(R), and given
I, J ⊂ [n] (we identify [n] with VG), describe (either exactly or approximately)

|E(I, J)| = eT
I AGeJ .

For a given a, b ∈ [n], bound (from above and below) the value of |E(I, J)| for all
I, J with |I| = a and |J | = b.

For example, a graph with a “cluster” is a vertex set I ⊂ [n] such that if Icomp =
[n] \ I (identifying VG with [n]), then |E(I, Icomp)| is “unusually small.” A graph
has good expansion (in one sense of this term) if |E(I, Icomp)| is “roughly what we
would expect from a random graph.”

[If there are no edges whose head and tail lie in I, then I is called an independent
set (of vertices of the graph). One expects some independent set, I, for graph with
many vertices and, say, each vertex having a fixed, small degree; however one does
not expect to have a large independent set. A bipartite graph is one where for some
I, all edges have one endpoint in I and one in Icomp; in this case I and Icomp are
both independent sets and |E(I, Icomp)| is, roughly speaking, “unusually large.”]

It turns out that eigenvalues/vectors can give both the exact and approximate
values of f(k) and |E(I, J)| above. In practical applications with n large, often
the exact values are too costly to compute; in theoretical applications, at times it
is too difficult to prove theorems about all the eigenvalues/vectors of a graph. At
times the approximate values we get from eigenvalues/vectors solves our problem
satisfactorily, at times not.

2.6. Markov Chains. At this point we introduce some basic notation for Markov
chains, following [LP17], which is very standard notation.

We say that p = (p1, . . . , pn) ∈ Rn is stochastic if pi ≥ 0 for all i ∈ [n], and
p1 + · · · + pn = 1; intuitively such a p can represent the probability in being in
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one of n “states of a system.” Again, we caution the reader that in the theory
of Markov chain, we typically use this when referring to ROW VECTORS, not
COLUMN VECTORS.

By a (row) stochastic matrix ([HJ85, HJ13], Section 8.2) or sometimes Markov
matrix we mean a P ∈Mn(R) each of whose rows is stochastic.

One can define a (finite, discrete time) Markov chain to be a pair (X , P )
consisting of a finite set of states, X = {s1, . . . , sn}, and a stochastic matrix,
P = [pij ] ∈ Mn(R), where n = |X |. The interpretation is that pij represents
the probability of transitioning from state si to state sj . Again, P acts TO THE
RIGHT OF ROW VECTORS, unless you define pij as the probability of transi-
tioning from state j to state i...

Example 2.12. Say that everyone’s favourite TV show (in a certain fixed popu-
lation of people) is either The Expanse (s1) or The Mandalorian (s2). Each month
you determine that 1% of the people who prefer The Expanse change their mind,
and prefer The Mandalorian, and each month 2% change their mind and prefer The
Expanse. The matrix

P =

[
p11 p12

p21 p22

]
=

[
.99 .01
.02 .98

]
is a way of organizing the constants pij represents the probability moving from
state i to state j. If, at month 0, 90% of the population prefer The Expanse, and
10% The Mandalorian, then at time t ∈ N the number of people in either state
equals [

0.9 0.1
] [.99 .01
.02 .98

]t
.

Remark 2.13. Here is the “fine print.” The textbook [LP17] has a similar 2 state Markov

chain example, with a frog jumping between two lilly pads in Chapter 1. However, the notation in
Chapter 1 there is more elaborate: a Markov chain is a sequence of random variables X0, X1, . . .

that take values in X = {s1, . . . , sn} (with n = 2 for a frog jumping between two lilly pads or

people preferring The Expanse to The Mandalorian at various itmes); the Markov condition is that
for all t = 0, 1, . . ., P[Xt+1 = sj ] = P[Xt = si] pij (where P stands for “probability,” and where

P = [pij ] is a Markov matrix, i.e., a row stochastic matrix). Working with a sequence of random
variables X0, X1, . . . is extremely useful—e.g., to give a formula for the stationary distribution

in terms of the expected return time—and crucial for discussing “stopping times” and related
notations; “coupling methods” use another sequence Y0, Y1, . . . on the same space, and again it is
crucial to work with the Xt and Yt rather than the row vectors of probabilities of the events at a

given time.

To rigorously explain what you mean by a “sequence of random variables X0, X1, . . .” you
want an underlying probability space, (Ω,P), where Ω is a set, and P is a probability measure;

then X0, X1, . . . are (measurable) random variables Xt : Ω→ X = {s1, . . . , sn}. Once you’ve take
a course that discusses measure theory—or not—you can ignore the underlying foundations and
think of the (measurable) random variables X0, X1, . . .. Often you can even ignore the X0, X1, . . .,

and just consider the stochastic row vectors of probabilities; for example, in the above example,[
P(Xt = s1) P(Xt = s2)

]
=

[
0.9 0.1

] [.99 .01

.02 .98

]t
.

If you are interested in only finite time t = 0, 1, . . . , T for some fixed T and finite Markov chain,

then you avoid measure theory and build (Ω,P) as a finite probability space; e.g., Ω can be taken

to be the set of functions X from {0, . . . , T} to {s1, s2}, where X(t) = s1 represents the people

who prefer The Expanse at time t. Otherwise Ω need to be at least as large (generally speaking)

as the set of functions X from {0, 1, . . .} to {s1, s2}; the probability measure P is only defined on

certain “measurable” subsets of Ω; if you have another set of random variables Y0, Y1, . . . defined
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on Ω, then Ω has to be larger. In this subsection we view Markov chains as Markov matrices,

and—at least for now—ignore the Xt.

Remark 2.14. If G is a graph, i.e., an undirected graph, then AG is symmetric and
so the difference between the meaning of aij (versus aji) can be ignored. However,
if P is a reversible Markov chain—which is an analog of an undirected graph—then
pij 6= pji and the difference cannot be ignored. (Of course, if pij = pji—a condition
that occurs more rarely—then P is symmetric.)

2.7. Sample Problems about Markov Chains where Eigenvalues/vectors
are Sometimes Useful. As in digraphs and graphs, if P ∈ Mn(R) is a Markov
matrix, many questions about Markov chains concern the exact or, more likely,
approximate value of P t for t ∈ Z and t large.

A specific example is the notion of the mixing time of a Markov chain.

Definition 2.15. We say that a Markov matrix, P ∈ Mn(R) (or an associated
Markov chain) is irreducible if for any i, j ∈ [n], for some t ∈ N we have (P t)ij > 0.
A stationary distribution for P (e.g., [LP17], Section 1.5) is a stochastic vector,
π ∈ Rn, such that πTP = πT.

It is useful to associate to each Markov matrix, P ∈ Mn(R), its underlying
directed graph, which is the graph with vertex set [n] and an edge from i to j iff
pij > 0. Then (P t)ij > 0 iff there is a walk from i to j of length t in the underlying
directed graph. Furthermore P is irreducible iff the underlying digraph is strongly
connected, meaning that for any i, j there is some path from i to j (in a digraph,
weakly connected means that there is either a path from i to j or a path from j to
i).

Theorem 2.16. If P ∈ Mn(R) is an irreducible Markov matrix, then it has a
unique stationary distribution.

This follows from the Perron-Frobenius theorem. Alternatively, one easily shows
that a stationary distribution, π, can be described by fixing any j ∈ [n] and setting

(4) π̃(i)
def
= Esj [number of visits to si before the first return to sj ],

where Esj is the expected value of the Markov chain under the condition P[X0 =
sj ] = 1, i.e., p0 = ej , the j-th standard basis vector. One then scales π̃ to get a sto-
chastic vector π. (One then proves that π is unique; see [LP17], Subsection 1.5.4.)
For this reason you really want to the probability distributions:

P[X0 = i0, . . . , Xt = it]

and you will want to take t→∞; to define what (4) really means, morally you are
defining a “stopping time” τsj , of a process that begins at sj at time 0 (i.e., where
P[X0 = sj ] = 1, i.e., p0 = ej , the j-th standard basis vector).

Definition 2.17. The mixing time of a Markov matrix, P ∈Mn(R), etc. ([LP17]).

Question 2.18. Given a Markov matrix, P ∈Mn(R), find its mixing time.

Here is a question of a “hidden Markov chain.”

Question 2.19. Say that P ∈ Mn(R) is unknown, but we can observe the ap-
proximate (or exact) values of (P t)ij . How well can we find P approximately or
exactly?
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2.8. Reversible Markov Chains. See [LP17], Section 1.6.

Definition 2.20. Let P ∈Mn(R) = Mn,n(R) = Rn×n be the transition matrix of
an irreducible Markov chain, and π its unique stationary distribution. Then P (or
the Markov chain) is reversible if any of the following equivalent conditions hold:

(1) For all i, j ∈ [n], πipij = πjpji.
(2) For all i, j ∈ [n] and k ∈ N, πi(P

k)ij = πj(P
k)ji.

To understand why such a P is called reversible, we need to view the Markov
chain as a sequence of random variables X0, X1, . . . on some probability space,
where each Xt takes its values in the n states of the Markov chain; when we write
P ∈ Mn(R), we are identifying [n] with the states of the Markov chain. (This is
discussed in [LP17] and will be explained in class.)

The condition that {Xt}t=0,1,... is a Markov chain is that

Prob[Xt+1 = j] = Prob[Xt = i] pij

for all t = 0, 1, . . . and i, j ∈ [n]. Under this condition, setting

pT
t = [Prob(Xt) = 1 · · · Prob(Xt) = n],

we have

pT
t = pT

0 P
t

for any t ≥ 0. It follows that for any t and i0, . . . , it ∈ [n],

Prob[X0 = i0, . . . , Xt = it]

depends only on p0. If µ ∈ Rn is any stochastic vector, we use Probµ to denote
these probabilities when p0 = µ.

It then follows that a Markov chain is reversible iff for any t ≥ 0 and i0, . . . , it ∈
[n], we have

Probπ[X0 = i0, X1 = i1, . . . Xt = it] = Probπ[X0 = it, X1 = it−1, . . . Xt = i0].

It turns out that any reversible Markov matrix P has real eigenvalue, and that
P can be viewed as a symmetric matrix in two different senses. To understand this
most simply, we should understand the theory of self-adjoint matrices; we’ll do this
later.

2.9. The Higman-Sims Technique. Let A ∈Mn(R) be symmetric and written
in block form as

A =


A11 A12 · · · A1k

A21 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 · · · Akk

 ,
and let B ∈ Mk(R) be the matrix B = [bij ] where bij is the average row sum of
Aij . Then—like reversible Markov chains—the eigenvalues of B are real, but B is
not generally symmetric. And like reversible Markov chains, the point is that B is
“symmetric with respect to the inner product weighted by the dimensions of the
blocks.” Again, this is easier to understand in terms of self-adjoint operators with
respect to an inner product.
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It will turn out that the eigenvalues of B interlace with those of A, in a certain
sense, exploited by [HH71]2, which has been known as the “Higman-Sims tech-
nique.” For example, if A = AG is the adjacency matrix of a graph, and U ⊂ VG
is a subset of vertices of G, then writing AG in the 2× 2 blocks indexed by U and
its complement, one has b11 = 0 iff U is an independent set (called a coclique, see
[Hae78], [Hae80]3).

The above theorem also works when A ∈Mn(C) is Hermitian, i.e., AH = A.

2.10. Other Places Where Symmetric Matrices Arise.

2.10.1. Least Squares and Symmetric Matrices. Given n data points,

(x1, y1), . . . , (xn, yn) ∈ R2,

there are a, b, c such that

E(a, b, c)
def
=

n∑
i=1

(
yi − a− bxi − cx2

i

)2
is minimized, given by the “normal equations” n

∑
i xi

∑
i x

2
i∑

i xi
∑
i x

2
i

∑
i x

3
i∑

i x
2
i

∑
i x

3
i

∑
i x

4
i

ab
c

 =

 ∑i yi∑
i xiyi∑
i x

2
i yi


More generally, to project y onto the space spanned by u1, . . . ,un, the projection
is given by a1u1 + · · ·+ anun whereu1 · u1 · · · u1 · un

...
. . .

...
un · un · · · un · un


a1

...
an

 =

u1 · y
...

un · y


2.10.2. Other Symmetric Matrices: Variance-Covariance, Discrete Approximation
of Laplacian, Etc. See Section 7.0 of Horn and Johnson.

2.10.3. Data Compression and SVD (Singular-Value Decomposition): Every Ma-
trix can be “Approximated” using Symmetric Matrices. The SVD (Singular-Value
Decomposition) gives you the best low rank approximations to any real m× n ma-
trix, where we measure approximation, i.e., distance between two matrices, with
the Frobenius norm, i.e., sum of squares of entries.

We will discuss this type of approximation in more detail later. For now we may
look at low rank approximations to:

(1) a two-dimensional picture, such as the classic clown picture (whose underly-
ing data can be found in MATLAB) whose pixel values are a matrix which
one seeks to approximate (see, e.g., Ascher-Greif, page 232), (or https:

//sites.math.washington.edu/~morrow/498_13/demmelsvd.pdf, pages
115, 116),

2As of January 2021, this article did not seem available on the internet or through the UBC
Library; however, anyone with a UBC CWL can access its Mathematical Reviews summary (e.g.,
via searching on ”Hestenes and Higman”), or, if you are connected to the UBC VPN or on the

UBC network, via this link, and more specifically this Math. Reviews summary.
3 Currently available at https://pure.tue.nl/ws/files/1721530/41103.pdf

https://sites.math.washington.edu/~morrow/498_13/demmelsvd.pdf
https://sites.math.washington.edu/~morrow/498_13/demmelsvd.pdf
https://gw2jh3xr2c.search.serialssolutions.com/?sid=sersol&SS_jc=MATHREV&title=Mathematical%20reviews
https://mathscinet.ams.org/mathscinet/index.html
https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=INDI&s1=85330&sort=Newest&vfpref=html&r=2&mx-pid=340088
https://pure.tue.nl/ws/files/1721530/41103.pdf
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(2) The “eigenfaces” example (the current Wikipedia page is reasonable), where
the pixels values of a each of large number of face pics become the rows of
the matrix.

(3) More generally, one wants to compress any m-points of Rn into a low rank
approximation.

Cases (2),(3) create a matrix that you want to approximate by a low rank approx-
imation, whereas (1) is done assuming that a 2-dim array of pixel values can be
well-approximated by low rank approximations.

Theorem 2.21. Let A ∈ Mm,n(R) = Rm×n, and q = min(m,n). There are
σ1(A) ≥ · · ·σq(A) ≥ 0 and orthonormal u1, . . . , uq and v1, . . . , vq such that for any
k,

k∑
i=1

uT
i σivi

is the best rank-k approximation to A in the Frobenius norm (i.e., square root of
sum of squares of all entries). In more detail, σi(A) is the square root of the i-th
eigenvalue in decreasing order (i.e., σ1(A) is the largest) of both AAT and ATA,
and ui, vi are corresponding right eigenvectors of these matrices. (And σi, ui, vi are
unique, the latter two up to ±, whenever σi has multiplicity one of AAT and/or
ATA.)

Remark 2.22. If A = AT is symmetric, then AAT = ATA = A2, and hence σi(A)
is just the i-th largest absolute value of all eigenvalues of A.

Remark 2.23. There are algorithms to determine the top k top singular values of a
matrix, which work especially well when the σ1, . . . , σk are “reasonably seperated”
and there is large gap between σk and σk+1. This idea occurs in many applications,
especially in expanding graphs.

Remark 2.24. In the case of m-points, x1, . . . ,xm ∈ Rn, the SVD determines, for
any k, the minimum x′1, . . . ,x

′
m ∈ Rk and linear function L : Rk → Rn such that

E = E(L,x′1, . . . ,x
′
n) =

n∑
i=1

‖xi − Lx′i‖22

is as small as possible. However, you may be more interested in minimizing

E = Ep(L,x
′
1, . . . ,x

′
n) = max

i∈[n]
‖xi − Lx′i‖p,

i.e., the “worst-case Lp-norm” error; this can be solved for p = 1,∞ by (more
laboriously) solving a linear program. The advantage of the SVD is that it is easier
to solve, especially when k is small and you are interested in only the first k terms
of the SVD.

2.10.4. Closing Remarks: Positive Semidefinite, Graph Laplacians, Inertia, Com-
plex Matrices.

(1) Many of the above matrices are postive semidefinite. (Give examples on
homework?)

(2) Define graph Laplacian: ∆ = D − A given by incidence matrix equation
∆ = MT

v→eMv→e, which is therefore positive semidefinite.
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(3) The reason why computing the signs of fx1x1
and fx1x1

fx2x2
− f2

x1x2
is suf-

ficient to determine positive definite versus negative definite versus neither
is due to “Sylver’s Law of Inertia,” which says that for any square A,B,M
with A,B symmetric, A = MBMT, and M invertible, A,B have the same
number of positive, negative, and zero eigenvectors. (This is related to the
importance of an “A = LDU decomposition” of matrices, where if A is
symmetric, then U = LT.)

(4) Much of this theory holds over the complex numbers. Here AT is replaced
with AH, the conjugate transpose, and the dot product is replaced with

〈u,v〉 def
= vHu =

∑
i

uivi

(which is linear in u but conjugate linear in v, i.e., 〈u, αv〉 = α (for a scalar
α, i.e., α ∈ C). For example, A ∈Mn(C) = Cn×n is Hermitian if AH = A,
in which case A has real eigenvalues and a corresponding orthonormal basis
(where orthonrmality is defined wrt 〈·, ·〉).

(5) Warning: Just as often in the literature one defines

〈u, v〉 def
=
∑
i

uivi = vHu = uHv.

This difference can be confusing.
(6) Warning: Usually a matrix operates on a column vector, so A ∈Mm,n(F) =

Fm×n is a map Fn → Fn. However, in Markov chains, one typically sets
P = {pij} to be the matrix where pij is the probability of transitioning
from state i to state j. In this case P acts (to the right of) row vectors.
This can be confusing.

3. Eigenvalues and the Perron-Frobenius Eigenvalue

In this section we review the ideas behind eigenvalues and prove the Perron-
Frobenius theorem regarding non-negative matrices that is behind almost every-
thing we do with the adjacency matrices and Markov matrices. (See [HJ85, HJ13],
Chapters 1 and 8.)

The motivation from the previous section is that A ∈ Mn(R) and we want to
approximate Ak for k large; however, the of eigenvalues/vectors of A can tell us
a lot more about A. For applications to graphs and Markov chains A will have
non-negative entries, which will make things easier to understand in terms of the

3.1. Similarity. We say that A,B ∈ Mn(R) are similar if A = S−1BS for some
invertible S ∈Mn(R). In this case we have

A2 = (S−1BS)(S−1BS) = S−1BSS−1BS = S−1B2S,

A3 = (S−1BS)(S−1BS)(S−1BS) = S−1B3S,

and similarly Ak = S−1BkS for any k ∈ N.
It is helpful to think of these kinds of formulas as “stories.” For example, the

formula (AB)−1 = B−1A−1 can be viewed as “putting on socks first, and then
shoes” but “taking off shoes first, then socks.” (Notice that if A is “putting on
socks,” then A is acting on row vectors, whereas if B is “putting on socks,” then B
is acting on column vectors.) Similarly the formula

(S−1BkS) . . . (S−1B2S)(S−1B1S) = S−1Bk . . . B2B1S
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for any Bi and invertible S of the same dimension can be thought of as saying—
acting on column vectors—S is “go to the coffee shop (or office),” B1 is “solve first
math problem,” B2 is “solve second math problem,” etc.

3.2. Diagonalization. To diagonalize A is to write it as S−1DS, where D is a
diagonal matrix, i.e.,

(5) D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


(in our usual convention we would write dii instead of di, but we usually omit
the second i for matrix understood to be diagonal). The advantange of diagonal
matrices is that we easily see that for any k ∈ N,

Dk


dk1 0 . . . 0
0 dk2 . . . 0
...

...
. . .

...
0 0 . . . dkn


and so

Ak = S−1


dk1 0 . . . 0
0 dk2 . . . 0
...

...
. . .

...
0 0 . . . dkn

S,
which allows us to more easy “understand” Ak. (Diagonalization is viewed is a way
of “decoupling” an n×n matrix, an n×n system of equations, an n×n ODE, etc.)

Similarly, if p(x) = c0 + c1x+ . . .+ csx
s is any polynomial (with real or complex

ci), we define

p(A) = c0I + c1A+ . . .+ csA
s

for any A ∈ Mn(R), where I = In is the n × n identity matrix. If A = S−1BS,
then we similarly see that

p(A) = S−1p(B)S,

and if B = D is diagonal as above, then

p(D) =


p(d1) 0 . . . 0

0 p(d2) . . . 0
...

...
. . .

...
0 0 . . . p(dn).


You may likely have also seen the matrix power series

eAt = I +At+
(At)2

2
+

(At)3

3!
+ · · ·

in a previous class. The point is that typical ODE’s with constant coefficients can
be written in vector/matrix form as (d/dt)y(t) = Ay(t), whose solution is given by
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y(t) = eAty(0). In this case if A = S−1DS, then

eAt = S−1


ed1t 0 . . . 0

0 ednt . . . 0
...

...
. . .

...
0 0 . . . ednt.

S
Returning to the problem of “understanding” Ak for large k, if A = S−1DS with

D = diag(d1, . . . , dn)—this is shorthand for (5)—if |d1| is larger than all |di| with
i ≥ 2, then we can write

Ak = dkS−1


1 0 . . . 0
0 (d2/d1)k . . . 0
...

...
. . .

...
0 0 . . . (dn/d1)k

S,
which means that for large k

Ak = dkS−1


1 0 . . . 0
0 o(1) . . . 0
...

...
. . .

...
0 0 . . . o(1)

S,
where o(1) is shorthand for any function of k that tends to 0 as k → ∞. One can
equivalently write

lim
k→∞

Ak/dk1 = S−1


1 0 . . . 0
0 o(1) . . . 0
...

...
. . .

...
0 0 . . . o(1)

S,
where the limit—i.e., convergence—means entry-by-entry.

3.3. Diagonalization: Eigenvalues and Eigenvectors. Say we can write A =
SDS−1 for matrices A,S,D ∈ Mn(R) with S invertible and D diagonal, D =
diag(d1, . . . , dn). In this case AS = DS, and it follows that if vi is the i-th column
of S, then Avi = divi.

Definition 3.1. Say that A ∈Mn(C). By an eigenvalue of A we mean a λ ∈ C such
that Av = λv for some non-zero v ∈ Cn; we call v a eigenvector of A (corresponding
to the eigenvalue λ); we also call v and λ an eigenvector/value pair or simply an
eigenpair of A.

Definition 3.2. We say that A ∈ Mn(C) is diagonalizable if there is a basis
v1, . . . ,vn of Rn such that for each i, there is a λi ∈ C such that Avi = λivi.
We call v1, . . . ,vn an eigenbasis of A.

We will now give a number of examples.

3.4. The Characteristic Polynomial. For any A ∈Mn(R) orMn(C), we define
the characteristic polynomial of A (Section 1.2 [HJ85, HJ13])

pA(t) = det(tI −A),

which is a polynomial of degree n (sometimes one defines this as det(A − tI) =
(−1)n det(tI −A)).
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Theorem 3.3. An A ∈ Mn(C) has λ as an eigenvalue iff pA(λ) = 0. Moreover
Av = λv iff v belongs to the nullspace (in the usual sense, i.e., the right nullspace)
of λI −A or of A− λI.

We similarly define v 6= 0 to be a left eigenvector of A if vTA = λvT for
some λ ∈ C which we call the corresponding eigenvalue; one can equivalently write
ATv = λv. Since

det(tI −A) = det
(
(tI −A)T

)
= det

(
tI −AT

)
,

we have that the eigenvalues of A are exactly those (with multiplicity) of AT.

3.5. The Trace and Determinant in the Characteristic Polynomial. We
have

pA(t) = tn + r1t
n−1 + . . .+ rn−1t+ rn,

so that pA(t) has n roots, λ1, . . . , λn; since

(t− λ1) · · · (t− λn) = pA(t) = tn + r1t
n−1 + . . .+ rn−1t+ rn,

we have

−r1 =

n∑
i=1

λi, r2 =
∑
i<j

λiλj , . . . (−1)nrn = λ1λ2 . . . λn.

Since pA(0) = det(−A), we see that

(6) λ1λ2 . . . λn = det(A).

One easily sees that

r1 = Trace(A)
def
= a11 + a22 + · · ·+ ann,

and hence

(7) λ1 + · · ·+ λn = Trace(A).

More generally, each r` = r`(aij) is a polynomial in the aij which is a sum of the
determinants of the `× ` principal minors of A.

The formulas (6) and (7) can be useful for a number of reasons, including so-
called trace methods for computing exactly or approximating large eigenvalues,
which are based on the formula

(8) λk1 + · · ·+ λkn = Trace(Ak)

for all k ∈ N.

3.6. Examples of Eigenpairs of Matrices. Recall that a matrix A ∈Mn(R) or
Mn(C) is diagonalizable if there is a basis v1, . . .vn of Cn such that Mvi = λivi
for some λi ∈ C. We say A is orthonormally diagonalizable if A has an eigenbasis
v1, . . . ,vn that is orthonormal, i.e., vi · vj = 0 for i 6= j.

Example 3.4. [
a b
b a

]
,

We have det(A − λI) = (λ − a)2 − b2. Setting this equal to zero gives λ = a ± b.
We can check that [1 ± 1]T given a corresponding eigenbasis.
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Example 3.5. [
a −b
b a

]
,

(λ− a)2 = −b2; λi = a± ib. Eigenvectors [1 ± i]. Note that these eigenvectors
are not orthogonal if you just naively extend the real “dot product” to
the complex numbers. For this reason the complex analog of the dot product
involved complex conjugation.

Example 3.6. 90 degree rotation: e1 → e2, e2 → −e1.[
0 −1
1 0

]
λ1,2 = ±i.

Example 3.7. Rotation by θ radians:[
cos θ − sin θ
sin θ cos θ

]
;

λ1,2 = cos θ ± i sin θ = e±θi.

Example 3.8. Fibonacci directed graph:[
1 1
1 0

]
.

λ1,2 = (1±
√

5)/2, i.e., the “golden ratio” and its “conjugate.”

Example 3.9. Constant matrix: a = b = 1 above, and1 1 1
1 1 1
1 1 1

 ,
Since the row sums are all equal, m.e.1 is an eigenvector with eigenvalue 1. Since
all rows are equal and non-zero, we see that the kernel of this matrix—and therefore
the multiplicity of 0 as an eigenvalue—is one less than the number of columns in
this matrix (i.e., 3− 1 = 2). See Exercise ??.

Example 3.10. Cyclic shift:

C3 =

0 1 0
0 0 1
1 0 0

 ,
and similarly Cn for any n ∈ N. Note that C3 acts on row vectors if you think
of a digraph where vertex 1 moves to vertex 2, etc.; otherwise C3 acts on column
vectors moving vertex 2 to vertex 1, vertex 3 to vertex 2. For any n ∈ Z, we easily
see that Cn has an eigenvalue for each the n-th roots of unity, i.e., the ζn = 1, with
eigenvector χζ = [1 ζ . . . ζn−1]T (see Exercise 3.14 for more on this). As of January
2021 we have all seen the following matrix too often:(

Cn + C2
n + · · ·+ C7

n

)
/7,

i.e., the 7-day moving average—thinking of n as large—acting on row vectors, or(
C−1
n + C−2

n + · · ·+ C−7
n

)
/7
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acting on column vectors. Note that sometimes one wishes to work with a shift
that is not cyclic, where the last vertex “maps to 0” (i.e., disappears); in this case
one works with

C̃3 =

0 1 0
0 0 1
0 0 0

 ,
which is a “Jordan matrix” denotes J3(0) (see the next subsection), all of whose

eigenvalues are 0, so that C̃3
3 = 0.

3.7. Examples of Non-Diagonlizable Matrices. We shall see that “most” (in
a sense made precise below) square matrices ove R or C are diagonalizable, so it is
good to keep in mind some cases of non-diagonalizable matrices.

Example 3.11. If

A =

[
b 1
0 b

]
,

then pt(A) = (t − b)2, so λ1 = λ2 = b are the eigenvalues of A. But we easily see
that Ib−A is only one dimensional. Hence this A is not diagonalizable.

Example 3.12. For generally (see [HJ85, HJ13], Section 3.1), a k × k matrix of
the form

Jk(λ)
def
=


λ 1

λ 1
. . .

. . .

λ 1
λ


(where a blank space implies a 0) for some λ ∈ R (or C) is called the k × k
Jordan block with eigenvalues λ. We easily see that Jk(λ) has the eigenvalue λ with
multiplicity k, but has only a one dimensional space of eigenvalues. We also see
that for any m ∈ N

(9)
(
J3(λ)

)m
=

λm mλm−1
(
m
2

)
λm−2

λm mλm−1

λm


and similarly for Jk(λ) for any k ∈ N (see Exercise 3.12); see also Exercise 3.21 for
λ 6= 0 and m ∈ Z with m < 0.

Example 3.13. We shall see that “most” (in a sense made precise below) square
matrices ove R or C are diagonalizable, but there are applications where non-
diagonalizable matrices do occur in practice. For example, if G0, G1 ∈ R and Gn
for n ≥ 2 is given by

Gn + a1Gn−1 + a2Gn−2 = 0,

then the general formula for Gn is c1r
n
1 + c2r

n
2 provided that the equation x2 +

a1x+ a2 = 0 has distinct roots r1, r2. (E.g., consider the Fibonacci numbers.) On
the other hand, for a recurrence like

Gn − 2Gn−1 +Gn−2 = 0,
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in which case x2 − 2x + 1 = 0 has roots x = 1, 1, the general solution for Gn is
Gn = c1 + nc2. However, we easily see that for n ≥ 2 we have[

Gn+1

Gn

]
=

[
2 −1
1 0

]n [
G1

G0

]
for this recurrence equation, and it turns out that this is precisely why the have
matrix has eigenvalues λ1 = λ2 = 1 and is not diagonalizable.

Example 3.14. More generally, if G0, G1, . . . is a sequence of integers satisfying
the recurrence equation Gn = b1Gn−1 + · · · + bkGn−k for all n ≥ k and fixed (k
and) b1, . . . , bk, then for any n ≥ 0 we have

(10)


Gn+k−1

Gn+k−2

...
Gn

 = An


Gk−1

Gk−2

...
G0

 , where A =


b1 b2 · · · bk−1 bk
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


The above recurrence equation has general solution c1r

n
1 + · · ·+ckr

n
k , provided that

A has distinct eigenvalues r1, . . . , rk, and is a bit more complicated when there are
multiple roots (see Exercise 3.11).

3.8. Generalized Eigenspaces. When a matrix is not diagonalizable, it can be
useful to work with generalizaed eigenspaces: if λ is an eigenvalue of A ∈ Mn(R),
we define the eigenspace of λ (in A) to be

EigA(λ) = ker(A− λI)

(which is the set of eigenvectors with eigenvalue λ plus 0), and the generalized
eigenspace of λ (in A) to be

GenEigA(λ) =
⋃
k∈Z

ker
(
(A− λI)k

)
.

One can show that if the multiplicity of λ is m, then the genearlized eigenspace
equals

GenEigA(λ) = ker
(
(A− λI)m

)
.

In fact, the Jordan canonical form theorem is proven by the observation that the
nested sequences of subspaces

V1 = EigA(λ) = ker(A− λI) ⊂ V2 = ker
(
(A− λI)2

)
⊂ V3 = ker

(
(A− λI)3

)
⊂ . . .

has to stop growing at some point, since the dimension of any subspace of Rn is at
most n. If we take the largest k such that

Vk−1 = ker
(
(A− λI)k−1

)
6= ker

(
(A− λI)k

)
= Vk,

then we choose a vector v in Vk \ Vk−1, we have (A − λI)kv = 0, but one easily
shows that the “Jordan chain”

(11) v, (A− λI)v, (A− λI)2v . . . , (A− λ)k−1v,

are all linearly independent (see Exercise 3.13). Now consider W , the span of
the above vectors of the Jordan chain; if W = GenEigA(λ), then we are done.
Otherwise we consider the largest k′ such that

W + Vk′−1 6= W + Vk′ ,
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choose a v′ ∈ (W + Vk′) \ (W + Vk′−1), and extract a second chain

v′, (A− λI)v′, (A− λI)2v′ . . . , (A− λ)k−1v′,

set W ′ to be the span of these vectors and W , and continue similarly to extract
chains until the span of all chains exhaust GenEigA(λ).

Definition 3.15. The geometric multiplicity of an eigenvalue, λ, of A ∈Mn(R,C)
is the dimension of ker(A − λI), i.e., of EigA(λ) (the set of eigenvectors where we
include 0). The algebraic multiplicity, of λ is its multiplicity as a root of pA(t), which
equals the dimension of GenEigA(λ). We usually are interested in the algebraic
multiplicity, so we refer to this as, more simply, the multiplicity.

The following proposition is very useful.

Proposition 3.16. Let A ∈Mn(R,C) have eigenvalues λ1, . . . , λn listed with their
multiplicities (i.e., as roots of pA(t)). Then for any m ∈ N the eigenvalues of Am

are λm1 , . . . , λ
m
n .

Proof. The main idea is evident in the case m = 2. The eigenvalues of −A are
the roots of p−A(t) = det(tI + A) = det((−t)I − A)(−1)n, which are therefore
−λ1, . . . ,−λn. Since determinants factor through matrix multiplication,

det(It2 −A2) = det
(
(It+A)(It−A)

)
= det(I +At) det(I −At),

and the right-hand-side has roots ±λ1, . . . ,±λn counted with multiplicity (for each
occurrence as roots of det(It − A)). It follows that the roots of det(Iu − A2) are
λ2

1, . . . , λ
2
n, each with multiplicity two.

The general case can be proven by considering the roots of det(Iu−Am); since

det(Itm −Am) =
∏
ζm=1

det(It− ζA)

has roots ζλi for each i and each ζm = 1, det(Iu−Am) has roots λm1 , . . . , λ
m
n . �

One can give another proof by approximating A by a matrix A′ with distinct
eigenvalues and taking limits, although one needs to take care that A′ has eigen-
values that are not only distinct, but that also have their m-th powers distinct.

3.9. Similar Matrices have the Same Characteristic Polynomial, Eigen-
values, and Similar Eigenvectors. If A,B, S ∈ Mn(C) with A = SBS−1 and
Av = λv for some v ∈ Cn and λ ∈ C, then setting v′ = S−1v we have Bv′ = λv′.
Hence there is a one-to-one correspondence (namely v 7→ S−1v) between the eigen-
vectors of A with those of B, with the same underlying eigenvalue. Hence the
geometric multiplicity of A and B are the same.

Moreover,

pt(A) = det(tI−A) = det(tI−SBS−1) = det(S(tI−B)S−1) = det(S)pt(B) det(S−1) = pt(B).

Hence when we count the multiplicity of an eigenvalue according to its characteristic
polynomial, the multiplicities of each eigenvalue of A is the same as that of B.

3.10. A Matrix with Distinct Eigenvalues is Diagonalizable. See Exer-
cise 3.5
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3.11. An Upper Triangular Matrix with Distinct Diagonal Entries is Di-
agonalizable. If A ∈Mn(R,C) is an upper triangular, i.e., aij = 0 for i > j, then
det(A) = a11 . . . ann (since for any permutation, σ, of [n] we have i > σ(i) for some
i ∈ [n] unless σ is the identity permutation).

It follows (EXERCISE) that the eigenvalues of A are a11, . . . , ann, and the i-
th eigenvector can be taken to be ei plus some linear combination of e1, . . . , ei−1.
Hence the eigenvectors form a basis of Rn,Cn (EXERCISE).

It also follows that the Jordan matrix Jk(λ) has the eigenvalue λ occuring with
geometric multiplicity k. The fact that every matrix can be brought into Jordan
canonical form (the argument was sketched above), shows that the algebraic mul-
tiplicity of an eigenvalue, λ, is precisely the sum of the dimensions of the Jordan
blocks Jk(λ) of the canonical form. This is one way to show that the algebraic
multiplicity of an eigenvector, λ, in A ∈Mn(R,C) is precisely the dimension of the
associated generalized eigenspace of λ, GenEigA(λ).

3.12. Application to the Stationary Distribution.

Example 3.17. If P ∈ Mn(R) is a Markov matrix, i.e., a row stochastic matrix,
then Pei = 1 for all i ∈ [n], since Pei is just the i-th row sum of P (i.e., the sum
of the entries of the i-th row of P ). Hence P1 = 1, where 1 is the vector whose
components are 1. Hence 1 is an eigenvalue of P (it turns out to be one of the
largest in absolute value, and the largest when P is not periodic). Hence for some
π ∈ Rn we have πTP = π. When P has all positive entries, then there is a unique
such π if we normalize π to have its sum of entries equal 1 and we call this π the
stationary distribution of P ; it turns out that π ≥ 0 (i.e., πi ≥ 0 for all i). A similar
theorem holds if P represents an irreducible Markov chain (see below).

See also Section 1.5 of [LP17] for an introduction to the stationary distribution
of a Markov chain.

3.13. Examples: The Boolean Cube, Cartesian Product of Graphs, and
Tensor Product (of Graphs and Matrices).

Remark 3.18. In CPSC 531F, Spring 2021, we discussed Section 4.1 simulta-
neously with examples in this subsection, in order to get used to the formula
A =

∑
i λiviv

T
i for these examples.

In this section we give more examples of graphs and their eigenpairs. Many
interesting examples arise from the cartesian product and tensor product of graphs;
these can be understood in terms of the tensor product of matrices. Let us explain.

The Boolean n-cube, Bn is the graph whose vertex set is VBn = {0, 1}n, such that
for each i and x1, . . . , xn ∈ {0, 1}, there is one edge from

(x1, . . . , xi−1, xi, xi+1, . . . , xn) to (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn)

(this describes a directed graph that we view as a graph by identifying pairs of
directed edges in the only way possible). Hence

AB1 =

[
0 1
1 0

]
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(which equals C2) and has eigenpairs 1, (1, 1) and −1, (1,−1). Also notice that

AB2 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 = C4 + C−1
4

which therefore has eigenpairs ζ + ζ−1, (1, ζ, ζ2, ζ3) ranging over all 4-th roots of
unity ζ (i.e., ζ4 = 1, i.e., ζ = ±1,±i); hence AB2 has eigenvalues 2 (ζ = 1), 0 with
multiplicity 2 (ζ = ±i), −2 (ζ = −1). [For n ≥ 3, AB2 is no longer a circulant
matrix, and hence is unrelated to sums of powers of C2n .] Some properties of
Boolean functions on n variables can be studied by looking at the eigenpairs of
ABn ; this is also called the “Fourier analysis” of the Boolean cube. Let us explain.

To find the eigenpairs of ABn we define the cartesian product, G×H, of any two
directed graphs, G,H: this is the following graph on the vertex set VG×H = VG×VH :
informally, G×H has directed edges of two kinds: (1) for each e ∈ Edir

G and each
v ∈ VH , G×H has a directed edge from (tG(e), w) to (hG(e), w), and (2) similarly
for each v ∈ VG and e ∈ VH . More formally,

Edir
G×H = Edir

G × VH q VG × Edir
H ,

(where q is the disjoint union4) where t, h map (e, w) ∈ Edir
G × VH to

(t(e), w), (h(e), w), respectively, and similarly for directed edges in VG × Edir
H .

The cartisian product is quite common. For example, the product of two 1-
dimensional “grid graphs” (EXPLAIN) is a 2-dimensional “grid graph.” Similarly,
the product of two “cycle graphs” is a 2-dimensional “torus graph,” a grid graph
with “wrap around.” The Boolean n-cube is the n-fold product of the Boolean
1-cube.

It turns out that if |VG| = n and |VH | = m, and AG, AH respectively have
eigenpair bases λi,ui (so i ∈ [n]) and νj ,wj , then AG×H has a basis of eigenpairs

(12) λi(G) + λj(H),ui ⊗wj , i ∈ [n], j ∈ [m].

where for any u ∈ CVG and w ∈ CVH we define

(u⊗w)(v1, v2) = u(v1)w(v2)

(see Exercise 3.15).
It follows that AB2 has eigenvalues 2, 0, 0,−2 with eigenvectors (1,±1)⊗ (1,±1)

(draw this). Furthermore, the normalized eigenvectors of B1, arranged as an or-
thogonal matrix is

H1
def
=

1√
2

[
1 1
1 −1

]
,

and the eigenpairs of Bn are (H1)⊗n = H1 ⊗ · · · ⊗H1, where we define the tensor
product of two matrices, A ∈Mm1,n1

and B ∈Mm2,n2
to be A⊗B ∈Mm1m2,n1n2

as having its rows indexed on pairs in [m1]× [m2] and its columns indexed on pairs
[n1]× [n2], whose (i1, i2), (j1, j2) entry is ai1j1bi2j2 .

Here are some other useful ways to look at the cartesian product of graphs, in
terms of tensor products of matrices and tensor products of graphs. The following
statements are left as exercises.

4 The disjoint union, A q B, of two sets is, informally, their union when we regard them as
not intersecting, and is therefore of size |A|+ |B|; more formally, it is a limit that is defined only

up to unique isomorphism, which can be taken to be A× {0} ∪B × {1}.
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(1) If G,H are directed graphs, then

(13) AG×H = AG ⊗ IH + IG ⊗AH ,
where IG, IH are identity matrices (Exercise 3.16).

(2) If A,B are diagonalizable matrices, with eigenpair bases λi,ui and νj ,wj ,
then

(14) λiνj ,ui ⊗wj

is an eigenpair basis for A⊗B (Exercise 3.17).
(3) For G,H directed graphs, there is a natural way to define a graph G ⊗H

with the property that AG⊗H = AG ⊗AH (Exercise 3.18).
(4) If G,H have the same vertex set VG = VH , there is a natural way to define

the superposition of G and H, GqH, as a graph where AGqH = AG +AH
(Exercise 3.19).

(5) One can view G × H as a “superposition” of (1) G times a (very simple)
graph with vertex set H, and (2) a (very simple) graph with vertex set G
times H. How? (Exercise 3.20.)

3.14. EXERCISES.

Exercise 3.1. Verify the eigenvalue/vector computations in Examples 3.4 and 3.5.

Exercise 3.2. Let n be the undirected cycle of length n, i.e., whose adjacency
matrix is Cn + C−1

n with Cn as in Example 3.10.

3.2(a) Give an expression for the eigenvalues of Cn + C−1
n .

3.2(b) Show that if we arrange the eigenvalues as

λn ≤ · · · ≤ λ2 ≤ λ1

then λ1 = 2 and λ2 = 2 +C/n2 +O(1/n4) for n large and some (negative)
constant C; what is C?

3.2(c) Show that λn = −2 iff n is even, and that if n is odd then λn = λn−1 =
−2 + C ′/n2 +O(1/n4) for n large and some constant C ′; what is C ′?

Exercise 3.3. Show that the eigenvalues of E ∈Mn(R) given by

E =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


are n—with multiplicity 1, and 0 with multiplicity n− 1. Do this by giving a basis
for EigE(0) (the space of eigenvectors of E with eigenvalue 0) of n−1 vectors; make
sure to prove that your n− 1 vectors are really a basis.

Exercise 3.4. Let A ∈Mn(R) be any matrix of the form:

A = uwT

where u,w are nonzero vectors in Rn. (Such an A is a matrix of rank 1, i.e., the
dimension of its image is 1; the matrix E of Exercise 3.3.) Show that A has an
eigenvalue u ·w with multiplicity 1, and eigenvalue 0 with multiplicity n− 1. [You
may quote any theorems you like regarding rank, kernel (nullspace), etc.]

Exercise 3.5. Let A ∈ Mn(R,C), and v1, . . . ,vk be non-zero eigenvectors of A
with distinct corresponding eigenvalues (i.e., Avj = λjvj with λj distinct).
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3.5(a) Show that v1, . . . ,vk are linearly independent. [Hint: use induction on k;
for k ≥ 2, we may assume that

α1v1 + · · ·+ αkvk = 0

and that αj 6= 0 for all j ∈ [k]; multiply the above equation by A, and use
the new equation and original one to eliminate vk.]

3.5(b) If A has n distinct eigenvalues, show that any set of (non-zero) correspond-
ing eigenvectors is a basis of Rn. Show that in this case A is diagonalizable.

Exercise 3.6. Prove the two statements labelled (EXERCISE) in the second para-
graph of Subsection 3.11.

Exercise 3.7. Let notation be as in Example 2.2.

3.7(a) Show that for any k we have[
Fk+1 Fk
Fk Fk−1

]
= AFib

[
Fk Fk−1

Fk−1 Fk−2

]
3.7(b) Show that

AkFib =

[
Fk+1 Fk
Fk Fk−1

]
for all integers k ≥ 2.

3.7(c) Show that AFib is invertible, and that the above formula for AkFib holds for
all integers k.

3.7(d) Let {Gk}k∈Z be any doubly infinite sequence of reals such that Gk+2 =
Gk+1 +Gk for all k. What is

AnFib

[
G1

G0

]
?

Exercise 3.8. Let x1, . . . , xn be distinct real or complex numbers. Show that

det


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

 =
∏
i<j

(xj − xi).

The above matrix is called a Vandermonde matrix, and its determinant a Vander-
monde determinant. [Hint: Use induction on n; for the inductive step view xn as a
variable t = xn, and show that

p(t) = det


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 t t2 · · · tn−1


is a polynomial of degree n− 1; what are the roots of this polynomial, and what is
its leading coefficient?]

Exercise 3.9. 3.9(a) Show that the recurrence equation xn − 3xn−1 + 3xn−2 −
xn−3 = 0 is satisfied by xn = c0 + c1n+ c2n

2 for any c0, c1, c2 ∈ R.
3.9(b) Show that for distinct i, j, k, and any given values of xi, xj , xk, there is a

unique solution to the above recurrence equation. (You can use the result
of Exercise 3.8.)
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3.9(c) What is the connection between the above recurrence equation and the
matrix

A =

3 −3 1
1 0 0
0 1 0

?

3.9(d) What are the values for all k ∈ Z of

Ak

1
1
1

 , Ak

3
2
1

 , Ak

9
4
1

?

3.9(e) Show that for v = [9 4 1]T,

v, (A− I)v, (A− I)2v

is a basis for R3. Show that A with respect to this basis equals J3(1).
3.9(f) Show the same for v = [1 0 0]T.
3.9(g) Would the same hold for v = [3 2 1]T?
3.9(h) Give an expression for

Ak

1
0
0


[Hint: Explain (with little or no calculation, ideally) why we have

A

 (n2)(
n−1

2

)(
n−2

2

)
 =

(n+1
2

)(
n
2

)(
n−1

2

)


for any n ∈ Z (or, for that matter, n ∈ R).]

Exercise 3.10. Consider the recurrence equation xn − 4xn−1 + 6xn−2 − 4xn−3 +
xn−4 = 0, or equivalently the equation

(σ − 1)4xn = 0,

where σ is the “upward shift operator,” i.e., σxn = xn+1. [One can view this is a
formal way of manipulating subscripts; however, σ can be viewed more precisely as
a map on sequences x = {xn}n∈Z taking X to the sequence σx given by (σx)n =
xn+1.] Consider the associated (via (10))

A =


4 −6 4 −1
1 0 0 0
0 1 0 0
0 0 1 0


3.10(a) For any k ∈ N, find a simple expression for (σ − 1)

(
n
k

)
.

3.10(b) Characterize the solutions to the above recurrence equation.
3.10(c) For which vectors v ∈ R4 is

v, (A− I)v, (A− I)2v, (A− I)3v

a Jordan chain for A, and for which v is not?
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Exercise 3.11. Consider a general recurrence equation with constant coefficients
in R,C (or really any field) p(σ)xn = 0, where σ is the shift operator in the previous
exercise (i.e., σxn = xn+1), and p is a polynomial of degree k with leading coefficient
1; i.e., if

p(t) = tk + c1t
k−1 + c2t

k−2 + · · ·+ ck,

then the recurrence equation is

xn+k + c1xn+k−1 + · · ·+ ckxn = 0,

or equivalently
xn + c1xn−1 + · · ·+ ckxn−k = 0.

3.11(a) Show that if ck = p(0) 6= 0, and p(t) has roots r1, . . . , rs with rj occurring
with multiplicity mj , then a general solution to this recurrence is given by

xn =

s∑
j=1

rnj pj(n)

where pj is any polynomial of degree at most mj − 1.
3.11(b) Describe the Jordan form of the matrix (10) with bi = −ci.

Exercise 3.12. Fix a k ∈ N and let J = Jk(0).

3.12(a) Draw a directed graph whose adjacency matrix is J . [Hint: you might try
k = 2, 3 if you don’t see the general construction.]

3.12(b) Using the above directed graph, describe how J2, . . . , Jk acts on row vec-
tors; use this to describe the matrices J2, . . . , Jk.

3.12(c) Explain why A,B ∈ Mn(R,C) commute, i.e., AB = BA, then for any
m ∈ N,

(A+B)m = Am +

(
m

1

)
Am−1B + · · ·+Bm.

3.12(d) Use the fact that Jk(λ) = λI + Jk(0) to show that (9) holds.

Exercise 3.13. Let A ∈ Mn(R,C) such that for some λ ∈ R,C and nonzero
v ∈ Rn,Cn, (A− λI)kv = 0 and (A− λI)k−1v 6= 0. Show that

v, (A− λI)v, . . . , (A− λI)k−1v

are linearly independent. [Hint: Consider the greatest common factor of the set of
polynomials p(x) such that p(A)v = 0.]

Exercise 3.14. Let n ∈ N. For each n-th root of unity, ζ, i.e., ζn = 1, we
eigenvector of Cn (as in Example 3.10), χζ = [1 ζ . . . ζn−1]T, with eigenvalue ζ.
Since the n values of ζ are distinct, we know that the χζ are linearly independent.

3.14(a) Use Exercise 3.8 to give an alternate proof that the χζ are linearly inde-
pendent.

3.14(b) Show that if 〈u,v〉 = vHu is the standard complex inner (or “dot”) prod-
uct, then any two distinct χζ are orthogonal. [Hint: Since ζn − 1 can be
factored as (ζ − 1)(ζn−1 + · · ·+ 1), we have ζn−1 + · · ·+ 1 = 0 for ζn = 1
with ζ 6= 1.]

Exercise 3.15. Show that (12) gives a basis of eigenpairs of G×H, in the notation
of that paragraph.
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Exercise 3.16. Show that (13) holds.

Exercise 3.17. Show that (14) gives a basis of eigenpairs with the notation and
assumptions of that paragraph.

Exercise 3.18. Give a general definition of a digraph G ⊗ H for G,H digraphs
with the property that AG⊗H = AG ⊗ AH ; we call G⊗H the tensor product of G
and H or G tensored with H.

Exercise 3.19. If G,H have the same vertex set VG = VH , define the superposition
of G and H, GqH, in a way that makes AGqH = AG +AH .

Exercise 3.20. Explain how G × H can be viewed as a superposition of (1) G
tensored with with a (very simple) graph with vertex set VH , and (2) a (very
simple) graph with vertex set VG tensored with H.

Exercise 3.21. Show that (9) holds for any λ 6= 0 and m ∈ Z. Then prove the
analogous result for Jk(λ) any k ∈ N. [Hint: obtain a formula for (I − N)−m for
N nilpotent (i.e., N t = 0 for some t ∈ N) based on a power series for (1 − x)−m,
which you can obtain by differentiating m − 1 times the power series (1 − x)−1 =
1 + x+ x2 + · · · .]

4. Orthonormal Eigenbases, Expanders, Reversible Markov Chains,
Rayleigh Quotients, and the SVD (Singular-Value Decomposition)

4.1. Orthnormal Eigenbases, Orthogonal and Unitary Matrices. Recall
that a matrix Q ∈ Mn(R) is called orthogonal if QQT = I (where I is the n × n
identity matrix). Here is how these matrices arise.

Proposition 4.1. Let v1, . . . ,vn ∈ Rn. Then the following are equivalent:

(1) v1, . . . ,vn are orthonormal;
(2) the matrix, Q, whose columns are v1, . . . ,vn satisfies QQT = I;

if so, then

(1) v1, . . . ,vn form a basis for Rn;
(2) for any u ∈ Rn we have

u =

n∑
i=1

(u · v)v;

(3) Q−1 = QT, QTQ = I;
(4) QT is also an orthogonal matrix;
(5) the rows of Q also form an orthonormal eigenbasis;
(6) for any u,w ∈ R, (Qu) · (Qw) = u ·w;
(7) the map u 7→ Qu preserves the lengths of vectors and the angle between

vectors.

Here are some examples:

(1) e1, . . . , en, the standard basis; Q = I;
(2) some permutation of e1, . . . , en; Q is a permutation matrix;

(3) (1, 1)/
√

2, (1,−1)/
√

2 in R2;

(4) (1, 1, 1)/
√

3, (1,−1, 0)/
√

2, (1, 1,−2)/
√

6 in R3.
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Remark 4.2. If you are teaching in linear algebra at some point in your career,
when you teach the diagonalization of matrices you are likely to use matrices such
as

E3 =

1 1 1
1 1 1
1 1 1

 , E3 − I =

0 1 1
1 0 1
1 1 0

 , E3 + 2I

as an example where you have a repeated eigenvalue. In this case mechanical
Gaussian elimination on the eigenspace of dimension two will produce (up to ±)

the eigenbasis (1, 1, 1)/
√

3, (1,−1, 0)/
√

2, (1, 1,−2)/
√

6, yielding the orthogonal
matrix

Q =

1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6


which looks rather awkward compared to the eigenvectors for C3 (or any circulant
3× 3 matrix) yielding the unitary matrix

U =

1/
√

3 1/
√

3 1/
√

3

1/
√

3 ω/
√

3 ω2/
√

3

1/
√

3 ω2/
√

3 ω/
√

3


where ω is a primitive third root of unity (a primitive n-th root of unity is a ζ such
that ζn = 1 but ζm 6= 1 for integers 1 ≤ m < n).

Comparing Q,U above should convince you that it is sometimes nicer to work
with a complex set of eigenvectors. Hence you should note the following proposition.

A matrix U ∈Mn(C) with UUH = I is called unitary.

Proposition 4.3. Proposition 4.1 holds if everywhere you replace R with C, T with
H, the word “orthogonal” with “unitary,” and the complex dot product u ·v = vHu.

Note that some authors use u · v = uHv, which makes the dot product linear
(under scalar multiplication, i.e., multiplication by C) in v and “skew linear” in the
first variable; in these notes will (try to) follow the conventions in [HJ85, HJ13],
that take u ·v = vHu. [A bilinear form Cm×Cn → C that is linear in one variable
and skew-linear in the other variable is typically called sesquilinear.]

Of course, an orthogonal matrix is just a unitary matrix with purely real en-
tries. So Proposition 4.1 is a special case of Proposition 4.3. Also, note that the
orthonormal basis: 1/

√
3

1/
√

3

1/
√

3

 ,
 1/
√

3

ω/
√

3

ω2/
√

3

 ,
 1/
√

3

ω2/
√

3

ω
√

3


fails to be orthonormal (in its last two vectors) if you use the real dot product
instead of the complex one.

Proposition 4.4. Let A ∈ Mn(R), and v1, . . . ,vn ∈ Rn be orthnormal, and
λ1, . . . , λn ∈ R Then the following are equivalent:

(1) Avi = λi for all i ∈ [n];
(2) A =

∑n
i=1 λiviv

T
i .

More generally, the above hold with R replaced by C and T replaced with H.

Note that this last proposition applies to:
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(1) circulant matrices (i.e., a sum of powers of Cn);
(2) AG for the graphs we have seen in Subsection 3.13;
(3) the matrix

E3 = I + C3 + C2
3 =

1 1 1
1 1 1
1 1 1

 =

1
1
1

 [1 1 1
]
.

Notice that it is a bit awkward to find explicit, real v2,v3 that are or-
thonormal and are in the kernel of E3, i.e., are eigenvectors with eigenvalue
0; since v1 = (1, 1, 1)/

√
3 has eigenvalue 3, one is naturally lead to the

example above of an orthonormal eigenbasis in R3. The complex eigenbasis
with v2 = (1, ω, ω2)/

√
3 and v3 = (1, ω2, ω)/

√
3 is a bit better.

4.2. Symmetric Matrices and the L2-Operator Norm. At this point we need
the following theorem.

Theorem 4.5. Let A ∈Mn(R) be a symmetric matrix. Then A has real eigenval-
ues and an orthonormal eigenbasis in Rn. Similarly Hermitian A ∈ Mn(C) (i.e.,
AH = A), (real eigenvalues, but an orthonormal eigenvalues in Cn).

There are a number of different proofs in these notes.

(1) Verify this for A with distinct eigenvalues: the general fact that (Au) ·
w = u · (A∗w) shows that if Av1 = λ1v1 and Av2 = λ2v2, then
(λ1 − λ2)(v1 · v2) = 0. This easily implies the theorem when A has dis-
tict eigenvalues. When A does not have distinct eigenvalues, one takes
a sequence A1, A2, . . . of symmetric (or Hermitian) matrices with distinct
eigenvalues whose limit is A, and passes to a subsequence where an or-
thonormal eigenbasis converges.

(2) Use the Rayleigh quotient

RA(u) =
(Au) · u

u · u
=

(Au) · u
|u|22

to prove many properties of the eigenpairs of A, including a number of
theorems regarding the “interlacing of eigenvalues (between two matrices).”
This will be extremely important to us.

(3) Prove that any matrix N ∈Mn(C) with NNH = NHN has an orthonormal
eigenbasis in Cn. Then view symmetric and Hermitian matrices as special
cases.

All of these proofs are important.
The upshot of the above theorem is that if A is symmetric (or, more generally,

Hermitian), then there is an orthonormal basis with respect to which A is given
by D = diag(λ1, . . . , λn); since the basis is orthonormal, i.e., A = QDQ−1 where
Q is orthogonal (or A = UDU−1 where U is unitary in the complex case), the
transformations Q,Q−1 (or U,U−1) preserve the dot product, and therefore lengths
of vectors and angles between them. Hence we easily see from the diagonal matrix
D that

‖A‖L2
def
= max

v 6=0

|Av|2
|v|2

= max
i
|λi|.

In terms of the Rayleigh quotient, etc.
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4.3. The Rayleigh Quotient and Related Inequalities. [See also Section 4.2
[HJ85, HJ13].]

At this point we are assuming that every (real) symmetric matrix, A, can be
written as QDQ−1 where D is a real, diagonal matrix and Q is orthogonal (i.e.,
QQ∗ = I), or, equivalently, A has an orthonormal eigenbasis with real eigenvalues
(more generally, any Hermitian matrix, A, can be written as UDU−1 with D real,
diagonal and U unitary, or, equivalently A has an orthonormal eigenbasis with real
eigenvalues).

Theorem 4.6. Let A ∈Mn(R) be symmetric (or A ∈Mn(C) be Hermitian), i.e.,
A∗ = A, and let

λn ≤ · · · ≤ λ2 ≤ λ1

be its eigenvalues. Then

(1) for any w ∈ Rn (or Cn in the Hermitian case),

(15) λn(w ·w) ≤ w · (Aw) ≤ λ1(w ·w);

(2) for any w ∈ Rn (or Cn),

(16) ‖Aw‖2 ≤ (max
i
|λi|)‖w‖2;

(3) for any u,w ∈ Rn (or Cn),

(17) |u ·Aw| ≤
(
max
i
|λi|
)
‖u‖2 ‖w‖2.

Proof. First consider the case when A is a diagonal matrix A = diag(d1, . . . , dn)
(hence the di ∈ R in either the symmetric or Hermitian case). In this case A’s
eigenvalues are the di. Also

w ·Aw = d1w
2
1 + · · ·+ dnw

2
n,

so
w · (Aw) ≤ (max

i
di)(w

2
1 + . . .+ w2

n) = λ1w ·w,

and equality holds iff for all j with wj 6= 0 we have dj = λ1, and in this case
Aw = λ1w. Similarly for the ineqality λn(w ·w) ≤ w ·Aw. Also

‖Aw‖2 = ‖d1w1 + · · ·+ dnwn‖2

= (d1w1 + · · ·+ dnwn) · (d1w1 + · · ·+ dnwn) = d2
1w

2
1 + · · ·+ dnw

2
n,

which implies (16). The last inequality follow from Cauchy-Schwartz:

|u ·Aw| ≤ ‖u‖2 ‖Aw‖2.
Next consider the case where A = QDQ−1 with D real diagonal and Q orthogo-

nal (respectively, A = UDU−1, U unitary). Since Q (respectively U) preserves the
dot product, and D and A have the same eigenvalues, (15)–(17) hold—this is an
important general principle. For example, since D = Q−1AQ = Q∗AQ, we have

w · (Q∗AQ)w ≤ λ1w ·w
and hence

(Qw) ·A(Qw) ≤ λ1w ·w = λ1(Qw) · (Qw).

But since Q is an isomorphism of Rn, we have that the above equation is equivalent
to saying that for all w′,

w′ ·Aw′ ≤ λ1w
′ ·w′.

�
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Let us derive two corollaries of Theorem 4.6.
Recall that if A ∈Mm,n(R,C), then we define the L2-operator norm of A to be

(18) ‖A‖L2 = max
w 6=0

‖Aw‖2
‖w‖2

,

Corollary 4.7. If A is real symmetric (more generally, Hermitian), then

‖A‖L2 = max
i

(|λi|).

Definition 4.8. Let A ∈ Mn(R) be symmetric and w ∈ Rn be nonzero (or A ∈
Mn(C) be Hermitian and w ∈ Cn). We define the Rayleigh quotient of A at w to
be

RA(w) =
w ·Aw

w ·w
.

Corollary 4.9. Let A ∈ Mn(R) be symmetric (or Hermitian) with eigenvalues
λn ≤ . . . ≤ λ1. Then the maximum value of RA is λ1, and attained on eigenvec-
tors corresponding to eigenvalue λ1. Similarly with “minimum” and λn replacing
“maximum” and λ1.

To connect “clustering” with eignevalues we will need a generalization of the
above corollary, which follows from the proof of Theorem 4.6.

Theorem 4.10 (The Max-Min Principle). Let A ∈Mn(R) be symmetric (or Her-
mitian) with eigenvalues λn ≤ . . . ≤ λ1. Then for i ∈ [n],

(19) λi = max
W⊂Rn, dim(W )=i

(
min

w∈W,w 6=0
RA(w)

)
.

Similarly

λn−i = min
W⊂Rn, dim(W )=i

(
max

w∈W,w 6=0
RA(w)

)
.

Note that the statement about λn−i about A is equivalent to the statement about
λi for −A; hence it suffices to verify the first.

Proof. First we verify this for A real diagonal: if A = diag(λ1, . . . , λn), then for
each W ⊂ Rn of dimension i, we claim there is an w 6= 0 with w ∈ W and
w1, . . . , wi−1 = 0: indeed, if u1, . . . ,ui is a basis for W , then for any a1, . . . , ai we
have that

w = a1u1 + · · ·+ aiui

has its first i− 1-coordinates equal to 0 iff for j ∈ [i− 1] we have

0 = ej ·w = a1(ej · u1) + · · ·+ ai(ej · ui),
which gives i− 1 equations linear for a1, . . . , ai, and therefore ther is a non-trivial
solution.

But for w ∈W with w 6= 0 and w1, . . . , wi−1, we have

w ·Aw = λnw
2
n + · · ·+ λiw

2
i ≤ λi(w ·w).

Hence
λi ≤ min

w∈W,w 6=0
RA(w).

If W = Span(e1, . . . , ei), then for all w ∈W we have

w ·Aw = λ1w
2
1 + · · ·+ λiw

2
i ≥ λi(w2

1 + · · ·+ w2
i ) = λiw ·w.
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Hence we have

λi = min
w∈W,w 6=0

RA(w)

for this particular choice of W , and (19) follows.
The theorem follows for A = QDQ−1, since Q and Q−1 act on Rn in a way

that preserves dot products and the dimension of subspaces (or U and U−1 on
Cn). [Alternatively, we can repeat the same argument, replacing all occurrences
of e1, . . . , ei−1, ei with v1, . . . ,vi−1,vi which are orthonormal eigenvectors of A
with respect to the eigenvalues λ1, . . . , λi (the role of the components wi of w is
played by vi ·w, which are the component of w wrt the v1, . . . ,vn in the sense that
w =

∑
j∈[n](vj ·w)vj . �

4.4. Regular Graphs, Expanders, and the L2-Operator Norm. Some of the
examples of matrices we have seen at this point have been symmetric with entries
that are non-negative integers. Such matrices are adjacency matrices of graphs. In
order to get some intuition regarding what their eigenvalues mean, it is simplest to
look at the case of regular graphs.

Definition 4.11. A graph, G, is d-regular for a d ∈ N if each vertex is incident
upon d edges, counted with multiplicity, i.e., if each row sum (and therefore column
sum) of AG is d.

Theorem 4.12. Let G be a d-regular graph, and let the eigenvalues of AG be
arranged

λn(G) ≤ . . . ≤ λ2(G) ≤ λ1(G).

Then:

(1) We have λ1(G) = d with the constant vector 1 being a corresponding eigen-
vector; the multiplicity of d is the number of connected components of G;

(2) G is bipartite (see below) iff λn(G) = −d, and if so then (n is even and)
for every i we have λi(G) = −λn+1−i(G);

(3) setting v1 = 1/
√
n, and letting v2, . . . ,vn be any orthonormal eigenbasis

for AG (with Avi = λivi),

(20) AG =
d

n

1 . . . 1
...

. . .
...

1 . . . 1

+ E , where E =
∑
i≥2

λiviv
T
i

(4) hence (i) E1 = 0, (ii) the image of E lies in 1⊥ (the orthogonal complement
of 1), and (iii) for any v ∈ Rn we have

Ev = E
(
Proj1⊥(v)

)
;

and (iv) ‖E‖L2 = maxi≥2 |λi|;
(5) for any U,W ⊂ VG we have

(21) |E(U,W )| = d

n
|U | |W |+ eT

UEeW

(where eU , eW ) are the indicator functions of U,W , and hence

(22) |eT
UEeW | ≤

(
max
i≥2
|λi|
)√ |U | (n− |U |)

n

√
|W | (n− |W |)

n
,
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(6) for any U ⊂ VG we have

(23) λn
|U | (n− |U |)

n
≤ eT

UEeU ≤ λ2
|U | (n− |U |)

n

and, with U c = [n] \ U (i.e., the complement of U),

(24) λn
|U | |U c|

n
≤
(
−eT

UEeUc

)
≤ λ2

|U | |U c|
n

.

In (20), the all 1’s matrix arises from noting that A1 = d(1), so setting v1 =
1/
√
n we have

λ1v1v
T
1 =

d

n

1 . . . 1
...

. . .
...

1 . . . 1

 .
One way to understand some global properties of “expanders” and graphs with
“bad clustering” is in terms of (20): any d-regular graph is d/n times the all 1’s
matrix plus an error term, E . This may seem bizarre, since if d is fixed and n large,
then most of the entries of E are −d/n, and a small number are 1− d/n. And yet,
all the formulas obtained in the above theorem result from this point of view, and
the fact that this “error term” E lives on 1⊥ and has eigenvalues λ2, . . . , λn there.

Studying graphs by exploiting the eigenvalues of their adjacency matrices is often
called “algebraic graph theory” or “spectral graph theory” and has a rich literature.
The bounds (24), (23), and (21) imply

λn
|U | |U c|

n
≤
(
|E(U,U)| − d

n
|U | |U |

)
≤ λ2

|U | |U c|
n

,

λn
|U | |U c|

n
≤
(
d

n
|U | |U c| − |E(U,U c)|

)
≤ λ2

|U | |U c|
n

,

which can be viewed as a 2 × 2-block case of the “Higman-Sims technique” (see
Subsection 2.9 and Exercise ??) of [HH71] (see also [Hae78], [Hae80], Section 2.1)),
although bounds based on (21)–(24) likely are implicit elsewhere. The bounds (22)
and (21) imply∣∣∣∣|E(U,W )| − d

n
|U | |W |

∣∣∣∣ ≤ (max
i≥2
|λi|
)√ |U | (n− |U |)

n

√
|W | (n− |W |)

n
,

which began appearing more prominently and explicitly in the 1980’s literature on
expanders and generalized polygons [Tan84, AM85, AM84, Buc86, AC88]. These
days the simpler implication∣∣∣∣|E(U,W )| − d

n
|U | |W |

∣∣∣∣ ≤ (max
i≥2
|λi|
)√
|U | |W |,

is known as the Expander Mixing Lemma; see Section 2.4 of [HLW06] for a discussion
and a converse of Bilu and Linial [BL06].

4.5. Mixing Times, Refinement, and Reversibility in Markov Chains.
Consider Example 2.12 regarding the Markov matrix

P =

[
p11 p12

p21 p22

]
=

[
.99 .01
.02 .98

]
Recall that P represents people in state s1, meaning that the prefer The Expanse
to The Mandalorian, and s2 the reverse. Let us estimate the mixing times of this
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Markov chain; we briefly recall the definition; see Sections 4.4 and 4.5 of [LP17] for
details. The rough idea is as follows: P above has distinct eigenvalues 1, 0.97, and
using this a computation shows that as integer t→∞[

.99 .01

.02 .98

]t
→
[
2/3 1/3
2/3 1/3

]
= 1πT

where πT is the stationary distibution [2/3 1/3]. The mixing time tells us how fast
Pm converges to 1πT.

4.5.1. The Stationary Distribution. Let P ∈ Mn(R) be a Markov matrix (i.e., a
row stochastic matrices). The fact that P1 = 1 and the Perron-Frobenius theorem
(see Section 6) implies that if P is irreducible (i.e., the associated digraph of positive
probability transitions is strongly connected) then P has a unique eigenvector π
such that πTP = πT up to scalar multiple, i.e., of eigenvalue 1, and that all
components of π are strictly positive or strictly negative (depending on which
scalar multiple we choose). When π is chosen to be stochastic, then π is unique
and called the stationary distribution of P (or of the Markov chain).

The convergence theorem states that as t ∈ Z tends to infinity, then Pm → 1πT,
i.e., for all i ∈ [n], eiP

t → π, provided that P is aperiodic; let us define this term.

Definition 4.13. If G is a digraph, then the period of G is the GCD (greatest
common divisor) if the lengths of all closed walks in G. If P ∈ Mn(R), then the
period of P is the period of the graph on vertex set [n] where there is an edge from
i to j when pij > 0. In other words, the period of P is the GCD of all k such that
P k has a nonzero diagonal element. We say that an irreducible Markov matrix—or
a strongly connected graph—is aperiodic if its period is 1.

When working with Markov matrices or directed graphs that are not irreducible,
then the period should be defined on the irreducible or strongly connected compo-
nents (and the GCD over all states or all vertices is not usually of interest). If P is
irreducible, we say that P is aperiodic

4.6. The Convergence Theorem. The convergence theorem states that if P is an
aperiodic, irreducible Markov matrix, then the Perron-Frobenius theorem implies
that if λ is the second largest eigenvalue of P in absolute value, then |λ| < 1; from
this it will follow that

(25) max
i
‖eT
i P

t − πT‖ ≤ Ctk|λ|t

for some constant C, where k is the largest multiplicity of an eigenvalue of P of
absolute value. (See also Theorem 4.9 of [LP17], which is slightly weaker.) In other
words, P t → 1πT as t → ∞. However, C can be arbitrarily large, as the example
below shows, and getting concrete bounds on C requires some extra information on
P . Such information is provided by π when the Markov chain is reversible.

Example 4.14. Let P ∈ Mn(R) be given by 1 = p12 = p23 = · · · = pn−1,n =
pnn = 1. (It suffices to think of n as fixed and at least 3, but n varying is also
worthwhile to consider.) Then, as a block matrix,

P =

[
Jn−1(0)

1

]
,
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and so P has eigenvalues 0 with (geometric) multiplicity n−1 and 1 with multiplicity
1, and e1P

k = ek+1 for k ≤ n− 1. If for ε > 0—think of ε as very small—we set

Pε = P (1− ε) +Qε

where Q is any irreducible Markov matrix with distinct eigenvlues, then for suffi-
ciently small ε, the eigenvalues of Pε, except for 1, are distinct and arbitrarily near
0. Also, by continuity, as ε → 0, any limit point of the stationary distributions of
Pε tends to the unique left (i.e., row) eigenvector of P with eigenvalue 1, which is
en. Hence, taking any t < n− 1 in (25), for fixed n ≥ 2, C = C(n, ε) in (25) tends
to infinity.

4.6.1. Mixing Time. For any ε > 0, we define ε-mixing time of an irreducible
Markov matrix P ∈ Mn(R) with stationary distribution π as follows: in keep-
ing with the notation of [LP17], Section 4.5, let P = Pn denote the set of stochastic
(row) vectors in Rn. The ε-mixing time of P is the smallest t = tmix(ε) ∈ N such
that

(26) max
µ∈P
‖µP t − π‖1 ≤ 2ε,

where ‖ · ‖1 is the L1-norm, i.e., ‖u‖1 = |u1|+ · · ·+ |un|. Let us explain where the
2 in the 2ε of (26) comes from.

In Markov chains, it is more convenient to work with the total variation distance
between two stochastic vectors, µ, ν ∈ P, given by

(27) ‖µ− ν‖TV = max
A⊂[n]

|Pµ(A)−Pν(A)|,

where Pµ(A) =
∑
a∈A µa (i.e., we view µ as giving a “probability measure” on

subsets of [n]). Setting

d(t) = max
µ,ν∈P

‖µP t − νP t‖TV,

we have d(t) is nonincreasing in t and for any s, t ∈ N we have

(28) d(t+ s) ≤ d(t)d(s);

this is Lemma 4.11 of [LP17], and the proof makes use of (27). It is not hard to
see that

max
µ,ν∈P

‖µP t − νP t‖TV = max
i,j∈[n]

‖eiP t − ejP
t‖TV,

which gives an alternate way to express d(t).
The relation between the total variation distance and the L1-distance is simply

that

(29) ‖µ− ν‖TV = (1/2)‖µ− ν‖1.
Of course, (28) can be stated in terms of the L1 norm, but the factor of 1/2 in (29)
would make things more awkward to state. Moreover, the simplicity of (28) and
(29) explains the factor of 2 in (26).

The usual definition of mixing time is obtained by setting

d(t) = max
µ∈Pn

‖µP t − π‖TV

(which similarly equals maxi ‖eiP t − π‖TV), which is of more direct interest than
d(t), since we are interested in how part P t converges to 1πT. However d(t) does
not generally satisfy d(t + s) ≤ d(t)d(s), which makes d(t) more awkward to work
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with than d(t). However one can easily show that d(t) ≤ d(t) ≤ 2d(t); it follows
from (28) that d(t+ s) ≤ 2d(t)d(s).

Definition 4.15. The mixing time, tmix = tmix(P ) of an irreducible, aperiodic
Markov matrix, P , is the ε-mixing time of P with ε = 1/4.

(This is the usual definition of mixing time, but taking any ε < 1/2 would work.)
In this way we have d(tmix) ≤ 1/2, and hence

d(`tmix) ≤ d(`tmix) ≤ 1/2`

for any ` ∈ N. Hence the mixing time gives us an upper bound, for any stochastic
µ, of how quickly µTP t converges to π.

4.6.2. A Discerning Dolphin. Let us return to the Markov matrix

P =

[
p11 p12

p21 p22

]
=

[
.99 .01
.02 .98

]
Consider the following though experiment: imagine that although P is observed

by TV content providers, there is a more highly attuned being, say a dolphin, that
can observe more information about people in these two states: namely, the dolphin
observes that the people in state s1 fall into two groups, s′1 and s′′1 , which are,
respectively, those people who prefer Star Trek to Star Wars (in some well-defined
sense). Furthermore, the dolphin observes that each month 1% of the people in
state s′1 switch to state s′′1 , and vice versa. Hence the dolphin observes the Markov
chain

P ′ =

p1′1′ p1′1′′ p1′2

p1′′1′ p1′′1′′ p1′′2

p21′ p21′′ p22

 =

.98 .01 .01
.01 .98 .01
.01 .01 .98


We know that P ′ is orthonormally diagonalizable, and in fact

P ′ = (.97)I + (.01)E3,

where E3 is the all 1’s matrix; the dolphin knows that P ′ is orthonormally diago-
nalizable, with eigenvalues 1, .97, .97, and that

(P ′)m = (1/3)E3 + (.97)mE ,

where E is the identity on 1T. It follows that for any i ∈ [3] we have

eT
i (P ′)m = [1/3 1/3 1/3] + (.97)mvi,

where vi is the projection of ei into [1 1 1], and therefore ‖vi‖2 =
√

2/3.
The dolphin now seeks to compare the information on this 3-state Markov chain

with the 2-state chain observed by TV content providers. Note that the later
observe the eigenvalues 1, 0.97 in their 2-state chain, and the dolphin observes
these and one more eigenvalue (the fact that it happens to be a repeat of 0.97 is a
coincidence). Put some EXERCISES here regarding refinement of Markov chains
and pulling back eigenfuctions; perhaps add in covering maps of graphs.
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4.6.3. Reversible Markov Chains. There is a simpler way to express what the dol-
phin of the last subsection is observing, in a way that allows to work with no extra
states of the Markov chain.

Let P be an irreducible Markov matrix P ∈Mn(R) with stationary distribution

π; we define the time reversal of P to be the Markov matrix P̃ given by p̂ij =

pjiπj/πi; we easily see that P̃ is a Markov matrix; the justification for calling P̂
the time reversal of P is given in Proposition 1.23 of [LP17]. We say that P is

reversible if P̂ = P , or, equivalently it satisfies

(30) πipij = πjpji for all i, j ∈ [n]

(these equations are called the detailed balance equations).
For example, the stationary distribution of

P =

[
p11 p12

p21 p22

]
=

[
.99 .01
.02 .98

]
is easily seen to be π = [2/3 1/3], so π1P12 = π2P21.

Proposition 4.16. Let P ∈ Mn(R) be an irreducible Markov matrix. Then if
ν ∈ Rn is any vector with positive entries such that νipij = νjpji for all i, j ∈ [n].
Then P is a reversible Markov matrix, and the stationary distribution of P is π
given by

πi = νi/(ν · 1).

For a proof, see Exercise 4.4.

Example 4.17. Let G be a digraph on n vertices; associate to G the Markov
matrix, P , such that for each i, pij = 0 if there is no edge from i to j, and otherwise
pij = eij/di, where di is the degree of G and eij is the number of edges from i to
j. If we further assume that G is a connected graph, then P is irreducible, and if
i, j are adjacent then dipij = eij = eji = djpji, and otherwise dipij = 0 = djpji.
Proposition 4.16 implies that in this case P is reversible with stationary distribution
π given by πi = di/D, where D =

∑
i di.

Note that for some G that are digraphs but not graphs, i.e., eij is not always
equal to eji, the Markov matrix associated to G can still be a reversible Markov
chain; e.g., if n = 2 and G is 100-regular with 1 edge from state 1 to state 2, and 2
edges from state 2 to state 1, then P above is the matrix[

.99 .01

.02 .98

]
,

which is a reversible Markov matrix.
Below we adopt the notation in Section 3.2 of [LP17].

Example 4.18. Let Ψ ∈ Mn(R) be an arbitrary irreducible Markov matrix, and
π an arbitrary stochastic vector with all positive components. Then the Metropolis
(et al.5) matrix based on π and Ψ (or associated Markov chain) is the Markov
matrix P given by

(31) pij = ψij min
(

1, πjψji/
(
πiψij

))
5 In the literature, people often append other names to Metropolis to refer to this or some

special case of this construction.
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for i 6= j; since ψij ≤ ψij for j 6= i, there is a unique pii ≥ ψii making the i-th row
of P stochastic. It is easy to check (Exercise 4.9) using Proposition 4.16 that P is
an irreducible Markov chain with stationary distribution π.

Remark 4.19. If P = I ∈Mn(R) (which is a Markov matrix that is not irreducible
for n ≥ 2), then (1) any stochastic π is a left eigenvector, i.e., πTP = πT, and
(2) for any such πT we have πipij = πjpji for all i, j (simply becauase pij = 0 for
i 6= j). In particular, we do need to check that a Markov matrix is irreducible before
applying, say, the Metropolis algorithm. See also Exercise ??, to see that even if P
is irreducible, the Metropolis algorithm can yield slowly converging Markov chains,
i.e., chains with large mixing times, especially when P has large mixing times.

Example 4.20. Consider the Metropolis Markov matrix, P , based on the Markov
matrix, Φ, associated to a graph, G. Then we have ψij = eij/di where eij is the
number of edges from i to j and di is the degree of i. Hence

pij = (eij/di) min(1, πjdi/(πidj)
)
.

If G is a d-regular graph for some d, then also

pij = (eij/di) min(1, πj/πi).

When minimizing a function f : [n] → R, where n is very large and [n] typically
represents a type of “configuration space” (e.g., all subsets of a given set, all sub-
graphs of a graph, all k-colourings of a graph, all matchings of a graph), one often
takes πi proportional to λf(i); in this case πi = λf(i)/Zλ where Zλ =

∑
i λ

f(i).
While Zλ can be impractical to compute, the Metropolis matrix only cares about
the ratio of πj/πi = λf(j)−f(i) (and di/dj if the graph isn’t regular), which makes
it easy to determine pij = pij(λ) for a given λ, i, j.

The term simulated annealing is used when one considers pij(λ) for various values
of λ; this is the case of trying to minimize f : [n] → R by taking various values of
λ: the extreme values are λ = 1 (so that f plays no role, and one has a random
walk on G), and λ = +∞, so that one always follows a random descent direction.

In actual annealing one heats and then cools a metal object to obtain a structure
with lower “potential energy” (measured in some sense), i.e., that is “stronger;” this
is analogous to tempering chocolate, so that a thin layer of chocolate can cover a
pastry, making it crisp, shiny, and more resistant to melting by the temperature of
your fingers. With metals, one often heats and cool a number of times; here the
idea is that each cycle you should reach a lower potential energy upon cooling, in
which case the same amount of heat at the next cycle will not move you as far.
These days one often speaks of stochastic gradient descent as a way of similarly
minimizing a function by a gradient descent that is blended with some random
movement (depending on a parameter analogous to λ).

Section 3.3 of [LP17] discusses of Glauber dynamics.

4.7. Symmetric Matrices and Linear Maps on Inner Product Spaces. One
important aspect of reversible Markov matrices, P , is that they are symmetric with
respect to a generalized notion of dot product. Let us summarize the main points.

By an inner product over V = Rn for some n ∈ N, or, more generally over any
finite dimensional real vector space, V (see [HJ85, HJ13], Section 0.1, and maybe
write some EXERCISES), we mean a map V ×V → R, denoting (u,v) by the inner
product applied to u,v ∈ V , that is
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(1) bilinear, i.e., for u1,u2, v ∈ V and α, β ∈ R,

(αu1 + βu2,v) = α(u1,v) + β(u2,v),

(2) symmetric, i.e., (u,v) = (v,u) for all u,v ∈ V ; and
(3) positive definite, i.e., (v,v) ≥ 0 with equality iff v = 0.

For V = Cn, or more generally any vector space, V , over C, we give the same
definition, except that we use 〈u,v〉 instead of (u,v) and we replace the symmetric
condition with skew-symmetry condition

〈v,u〉 = 〈u,v〉.
Hence the usual dot product over Rn and over Cn 6 are, respectively, a real and a
complex inner product.

Remark 4.21. In some applications, notably relativity, one replaces the posi-
tive semidefinite condition above with the more general non-degeneracy condition,
meaning that (1) for each u ∈ V there is some w ∈ V such that (u,w) 6= 0,
or, equivalently, (2) any linear functional on V , i.e., any map L : V → R, can be
represented uniquely as the map v 7→ (v,w) for some w ∈ V . For example, the
non-degeneracy holds for the bilinear form(

(x1, y1, z1, t1), (x2, y2, z2, t2)
)

= x1x2 + y1y2 + z1z2 − c2t1t2,
where c is the speed of light (and the ti represents time, and xi, yi, zi represent
3-dimensional space coordinates).

Remark 4.22. If W is a vector space, then its dual space, denoted W ∗, is the set
of linear functionals on W , i.e., maps W → R. If W is an inner product space,
then each w ∈W gives rise to the linear functional u 7→ (u,w), and conversely any
element of W ∗ is of this form (this is also true if (·, ·) is non-degenerate rather than
positive definite). See Exercise 4.16 for details.

The above remark—in the much wider context of Hilbert spaces (which are
typically infinite dimensional)—is called the Riesz representation theorem.

Remark 4.23. For any linear map L : V →W for real inner product spaces V,W ,
of a real vector space, V , and any w ∈ W , the map v 7→ (Lv,w)W (we use
the subscript W to emphasize we are using the inner product on W ) is a linear
functional on V ; from Remark 4.22, there is a unique vector L∗v such that

(32) (Lv,w)W = (v, L∗w)V ;

we easily see that L∗ is a linear map W → V , and we call L∗ the adjoint of L. (See
Exercise 4.14 for an alternate proof that L∗ exists.) For example, for the standard
inner product on Rm and Rn, if L is given by the matrix A ∈ Mm,n(R) acting on
column vectors, i.e., v 7→ Av, then L∗ is given by the matrix AT. Similarly for
A ∈Mn(C) and AH.

Remark 4.24. If V is a real vector space endowed with an inner product, then V ∗

is generally much larger than the set of functionals of the form v→ (v,w). For this
reason we insist that V be finiite dimensional. By constrast, if V is a Hilbert space,
i.e., a real vector space endowed with an inner product such that V is complete with
respect with inner product distance, and V ∗ is the set of bounded linear functionals,

6 Here we view Cn as a vector space over C; one can view Cn as 2n-dimensional vector space
over R.
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then V ∗ is the same as the set of functionals of the forma v → (v,w) (the Ritz
representation theorem). This is the usual setting of infinite dimensional inner
product spaces. (The notion of span of a set has to be modified to mean the closure
of the set of finite linear combinations of elements of the set.)

Definition 4.25. If V is a real inner product space, we say that a linear map
L : V → V is self-adjoint (with respect to the given inner product) if L∗ = L.
Similarly for complex inner product spaces.

Example 4.26. Let P ∈Mn(R) be a reversible (hence irreducible) Markov matrix,
with stationary distribution π ∈ Rn. Define the inner product

(33) (u,v)π =

n∑
i=1

uiviπi,

and define the inner product on row vectors

(34) (uT,vT)1/π =

n∑
i=1

uivi(1/πi)

(NB: we will use the inner product (34) exclusively on row vectors). Then (see
Exercise 4.10) P as an operator on column vectors (i.e., v 7→ Pv) is self-adjoint
with respect to (·, ·)π, and as an operator on row vectors is self-adjoint with respect
to (·, ·)1/π. Conversely (see Exercise 4.11) if P as an operator on column vectors
is self-adjoint with respect to some inner product, or the same as an operator on
row vectors, then P is reversible (and so the unique inner product with respect to
which P is self-adjoint is (·, ·)π above.

Remark 4.27. As in [HJ85, HJ13], one can regard any real inner product over a
real vector space, V , as a special case of the complex inner product

〈u1 + iu2,v1 + ivj〉
def
= (u1,v1) + i(u2,v1)− i(u1,v2) + (u2,v2)

defined on V ×R C, which is the natural way to extend V to produce a complex
vector space. From this point of view, one can mostly just work with the complex
inner product.

4.8. The Rayleigh Quotient and a “Variational” Proof of Orthonormal
Eigenbases for Self-Adjoint Operators. We now prove that a symmetric ma-
trix has an orthonormal eigenbasis. In fact, the proof works for any self-adjoint
operator on an inner product space.

Definition 4.28. Let V be a real inner product space, and L : V → V a linear
operator. We define the Rayleigh quotient of L to be the real-valued function of
nonzero vectors of V given by

RL(v)
def
=

(Lv,v)

(v,v)
.

It is immediate that RL(v) is invariant when we multiply v by a nonzero scalar.
If V is a real inner product space, then unit vectors are vectors v ∈ V with

(v,v), and, similarly, v,u ∈ V are orthogonal if (v,u) = 0; similarly we speak of
orthonormal vectors, orthonormal bases, orthonormal eigenbases, etc.
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Theorem 4.29. Let L be a self-adjoint operator V → V on a real inner product
space V . Then L has an eigenbasis that is orthonormal with respect to the inner
product on V .

To prove this theorem rigorously, we need to know the following fact; the reader
is free to take this for granted, especially if they find this fact intuitively clear. If
V is any normed R-vector space, i.e., V is a R-vector space endowed with a norm,
‖ · ‖, the unit sphere is the subset of V given by

S1(0)
def
= {v ∈ V | ‖v‖ = 1}.

One similarly defines the unit sphere on any normed C-vector space.

Lemma 4.30. Let f be a continuous, real-valued function on the unit sphere of
any normed R-vector space, V , of finite dimension. Then f has a maximum value.
Similarly for real- or complex-valued functions, on any - or C-vector space of finite
dimension.

For a proof, see Exercise ??. In class (in 2021) we explained why this is true for
the usual Euclidean norm ‖·‖2 on Rn; at UBC, you would the necessary ingredients
for the proof in Math 320.

Proof of Theorem 4.29. Since RL is a continuous function on the vectors of unit
length (i.e., v ∈ V with (v,v) = 1), RL(v) attains its maximum on some vector
v (to prove this rigorously you need to know Lemma 4.30). We claim that if u is
orthogonal to v, then Lv is also orthogonal to u: to see this, for any ε ∈ R let
vε = v + εu; we have

(vε,vε) = (v,v) + 2ε(v,u) + ε2(u,u) = 1 +O(ε2)

while

(Lvε,vε) = (Lv,v) + ε(Lv,u) + (Lu,v) +O(ε2) = (Lv,v) + 2ε(Lv,u) +O(ε2).

It follows that

RL(vε) =

(
RL(v) + 2ε(Lv,u) +O(ε2)

)
1 +O(ε2)

= RL(v) + 2ε(Lv,u)

so the maximality of RL(v) implies that (Lv,u) = 0. Since Lv is orthogonal to
the orthogonal complement of v, it follows that Lv = λv for some λ ∈ R. (One
can also verify that λ = RL(v).)

Now let v1, λ1 be the v, λ of the previous paragraph. Let v2 be the unit vector
whereRL attains its maximum value over all vectors orthogonal to v1. We similarly
prove that Lv2 is orthogonal to any vector orthogonal to both v1 and v2. It follows
that Lv2 is a linear combination of v1 and v2; but since Lv1 is orthogonal to v2

we have that (Lv2,v1) = (v2, Lv1) = 0 , and so Lv2 is a combination of v2 alone,
i.e., Lv2 = λ2v2.

We similar find v3, . . . ,vn that are eigenvectors of L with (vi,vj) = 0 for all
i 6= j. �

4.9. Another Variational Argument: The Best Rank One Approximation
of A Matrix and the SVD (Singular Value Decomposition). One obtains a
singular value decomposition for any linear map L : V →W of real or complex inner
product spaces. For each of notation, let us describe this for matrices A ∈Mm,n(R).
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For A ∈Mm,n(R), we define its Frobenius norm to be

‖A‖Frob
def
=
∑
i,j

|aij |2

(where the sum is over all i ∈ [m] and j ∈ [n]. It is easy to see that

‖A‖Frob = Trace(AAT) = Trace(ATA),

and this turns out to be useful in simplifying many computations. More generally,
Mm,n(R) can be endowed with the Frobenius inner product

(A,B) = Trace(ATB) = Trace(ATB) = Trace(BTA) = Trace(BAT) =
∑
ij

aijbij ,

which is just the dot product of A and B when identified with elements of Rmn.
Similar norms and inner products hold for any R or C inner product spaces (see
Exercise ??).

Theorem 4.31. Let A ∈ Mm,n(R) be a matrix. Then there exist u ∈ Rm and
v ∈ Rn such that ‖A− uvT‖Frob is minimized. For any such u and v we have

(35) Av = αu, ATu = βv, where α = v · v, β = u · u.
Hence u is an eigenvector of AAT and v one of ATA, both corresponding to the
eigenvalue

λ = αβ = (v · v)(u · u).

Moreover, we have
‖A− uvT‖2Frob = Trace(AAT)− λ,

and λ is the largest eigenvalue of both ATA and AAT. If x is any eigenvector of
ATA with eigenvalue ν, then ν ≥ 0, and if ν > 0 then

(1) y = Ax is an eigenvector of AAT with eigenvalue ν;
(2)

min
γ∈R
‖A− γyxT‖2Frob = Trace(AAT)− ν,

and the above minimum is attained when γ = 1/‖x‖2.

Two prove this theorem we will apply a variational principle in two different (but
similar) ways.

Proof. First we claim that there exist u,v for which f(u,v) = ‖A − uvT‖Frob is
minimized: by scaling, it suffices to consider the case where u is a unit vector;
then we show that if u is a unit vector, there exists a B such that ‖v‖ ≥ B then
f(u,v) ≥ 1 + f(0,0) (see Exercise ?? for details). It follows that to find the
minimum of f(u,v) it suffices to consider vectors vectors u,v of some bounded
length, and then the same compactness argument of Lemma 4.30 shows that the
infimum of f is attained somewhere. For details, see Exercise ??.

So consider any u,v at which ‖A − uvT‖Frob is minimized. Let w ∈ Rn be an
arbitrary vector v and for εR let

g(ε) = ‖A− uvT
ε ‖2Frob, where vε = v + εw.

Since g(ε) has a maximum at ε = 0, we have g′(0) = 0. To compute g′(0) we note
that

g(ε) = Trace
((
A− u(v + εw)T

)(
AT − (v + εw)uT

))
= c0 + εc1 + ε2c2
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where

c1 = −Trace
(
(A− uvT)wuT

)
− Trace

(
uwT(AT − vuT)

)
,

and using Trace(C) = Trace(CT) we see that the two terms on the right are equal,
and hence

c1 = −2 Trace
(
(A− uvT)wuT

)
.

Hence c1 = 0 iff (for any w)

Trace(AwuT) = Trace(uvTwuT) = (v ·w) Trace(uuT)

The fact that Trace(BC) = Trace(CB) for any B ∈Mk,`(R) and C ∈M`,k(R) can
be applied to both the left- and right-hand-sides above, to write these equations as

Trace(uTAw) = (v ·w) Trace(uTu),

but these are both traces of 1× 1 matrices, so these are equivalent to

(36) (ATu) ·w = (v ·w)(u · u).

Since this equation must hold for all w ∈ Rn, we may

(1) apply (36) to all w orthogonal to v, and conclude that ATu is orthogonal
to all vectors orthogonal to v, and therefore ATu = αv for some α ∈ R,
and

(2) apply (36) to w = v to conclude α(v · v) = (v · v)(u · u);

hence (36) implies

ATu = αv, α = u · u.
Since

‖A− uvT‖Frob = ‖AT − vuT‖Frob,

the same variational argument shows that Av = βu for β = v · v. Hence we have
established (35).

In light of this, we have

AATu = A(αv) = αv = αβu,

and similarly ATAv = αβv. So λ = αβ is an eigenvalue of both ATA and AAT.
It remains to show that λ is the largest eigenvalue of ATA and to verify the claims

regarding any eigenvector, x of ATA. The claims regarding x are an EXERCISE.
It then follows that the minimum of ‖A − uvT‖2Frob is always at least as small as
Trace(AAT)−λ where λ is the largest eigenvalue of ATA, and hence u must be an
eigenvector corresponding to the largest eigenvalue. �

Theorem 4.32 (The SVD (Singular-Value Decomposition)). Let A ∈Mm,n(R) be
a matrix, and let s = min(m,n). Then there exist orthogonal vectors u1, . . . ,us ∈
Rm and orthogonal vectors v1, . . . ,vs ∈ Rn such that for any k ∈ [s], if

Bk = u1v
T
1 + · · ·+ ukv

T
k ,

then f(B) = ‖A−B‖Frob attains its minimum over all matrices, B of rank at most
k at B = Bk. Furthermore, v1, . . . ,vs may be taken to be eigenvectors of ATA
whose corresponding eigenvalues λ1, . . . , λs satisfy

λ1 ≥ λ2 ≥ · · ·λs ≥ 0

and this list includes all the nonzero eigenvalues of ATA; for each i with λi > 0,
each ui is given as (vi ·vi)Avi, and each ui is an eigenvector of AAT of eigenvalue
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λi as well. Furthermore, if i is such that λi > 0, and we normalize the vi to be a
unit vector, then we may take ui = Avi, and we have ‖ui‖2 =

√
λi.

The proof follows easily from Theorem 4.31 and the idea used in Theorem 4.29;
see Exercise 4.13.

Remark 4.33. One can “reverse engineer” the above approach: start with any
A ∈Mm,n(R); first we note that ATA is symmetric, and that if ATAv = λv, then

λ(v · v) = (ATAv) · v = (Av) · (Av) ≥ 0,

and hence λ ≥ 0. Let v̂1, . . . , v̂s be an orthornmal eigenbasis for ATA for the
nonzero eigenvalues λ1 ≥ · · · ≥ λs; let ui = Av̂i; we see that ui 6= 0 for all i ∈ [s]
(otherwise ATAvi = 0 and so λi = 0), and let ûi = ui/‖ui‖. Then we easily
see that u1, . . . ,us are mutually orthogonal, and hence û1, . . . , ûs are orthonormal,
and we easily see that

(37) A =

s∑
i=1

√
λiûiv̂

T
i ;

The values
√
λi are known as the singular-values of A, and the above expression

for A is known as the singular-value decomposition of A.

Remark 4.34. If A in (37) above is symmetric, then we easily see that its singular-

values are the absolute values of the eigenvalues of A, and ~̂ui = ±̂̂vi according to
the sign of the eigenvalue of A.

Remark 4.35. If A = I is the n × n identity matrix, then we may take any
orthonormal basis v1, . . . ,vn of Rn, and then ui = vi. Hence the SVD can be
non-unique; similarly, when ATA has multiple eigenvalues, the SVD is non-unique.
However, if ATA has all its non-zero eigenvalues distinct, then the vi,ui corre-
sponding to any nonzero eigenvalue λi of ATA (and therefore of AAT) are unique
up to scaling.

EXERCISE: Generalize Theorem 4.31 and Theorem 4.32 to matrices in
Mm,n(C).

EXERCISE (Harder): Generalize Theorem 4.31 and Theorem 4.32 to any linear
transformation L : V →W where V,W are any two inner product spaces.

4.10. Another Variational Argument: The Least Squares Fit. Let
(x1, y1), . . . , (xn, yn) ∈ R2 be n points that we wish to model by an equation
y = a1f1(x) + · · ·+ amfm(x); more precisely, we want to find the a = (a1, . . . , am)
at which

Error(a)
def
=
∑
i

|yi − a1f1(xi)− · · · − amfm(xi)|2

is minimized. It is not hard—although not immediate—that such a minimum occurs
at some a ∈ Rm (by contrast, a maximum of Error(a) does not exist). Assuming
we have a maximum, we can write

Error(a) = |y − Fa|22 = (y − Fa) · (y − Fa);

hence if the minimum of the above function is attained at a, then for any b ∈ Rm
we have

g(ε) = Error(a + εb)



50 JOEL FRIEDMAN

has a maximum at ε = 0. Furthermore we can write

g(ε) = c0 + c1ε+ c2ε
2

where
c1 = −2(y − Fa) · (Fb).

Hence c1 = 0 iff
0 = (y − Fa) · (Fb) =

(
FT(y − Fa)

)
b

for all b, i.e.,
FTFa = FTy.

The above equation for a is called the normal equations (viewed as an m×m system
of equations) for a.

4.11. More Variational Arguments in Calculus. The following is a loose de-
scription of the analog of variational equations in calculus. Our discussion makes
the assumption that minima exist and that all functions are as differentiable as we
like.

Consider the shortest path from a point (x1, y1) to another point (x2, y2) in R2,
and assume that x1 6= x2. Hence we want to find the function f such that f(xi) = yi
and among those minimizes

I(f) =

∫ x=x2

x=x1

(
f ′(x)

)2
dx.

Assuming that this function of f is attained at f(x), then for any h(x) with h(x1) =
h(x2) = 0, we have

g(ε) = I(f + εh)

has g′(0) = 0. A similar computation shows that

2

∫
h′(x)f ′(x) dx = 0

and integrating by parts we conclude∫
h(x)f ′′(x) dx = 0

for all such h, and hence f ′′(x) = 0 for any x ∈ (x1, x2), i.e., f(x) is a linear
function.

Similarly to minimize a more general integral

I(f) =

∫ x=x2

x=x1

L
(
x, f(x), f ′(x)

)
dx

for any function, L, of three variables, with the same conditions on f we have∫ (
L2

(
x, f(x), f ′(x)

)
h(x) + L3

(
x, f(x), f ′(x)

)
h′(x)

)
dx = 0,

where L2, L3 are the partial derivatives in the second and third variables, and
integrating the second integral by parts we deduce that∫ (

L2

(
x, f(x), f ′(x)

)
− d

dx
L3

(
x, f(x), f ′(x)

))
h(x) dx = 0

and hence for any x ∈ (x1, x2) we have

L2

(
x, f(x), f ′(x)

)
− d

dx
L3

(
x, f(x), f ′(x)

)
= 0,
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which are the so-called Euler-Lagrange equations.

4.12. Adjoints and Self-Adjoints. The term “self-adjoint” comes from a more
general (and extremely useful) notion of the adjoint of a linear transformation.
Recall that in Remark 4.23 we explained roughly why any map L : U → V of inner
product spaces has an adjoint, i.e., a map L∗ : V → U such that (32) holds, i.e.,

(Lv,w)W = (v, L∗w)V ;

for a proof, see Exercise 4.14 or Exercise 4.17. In the special case of L : U → U ,
i.e., where V = U and the inner products are the same, then L is self-adjoint iff
L = L∗.

A lot of what we have proven in this section regarding variational methods has
analogs for inner product spaces. For example, see Exercise 4.15.

4.13. EXERCISES.

Exercise 4.1. Let A,B ∈ Mn(R), and recall the definition of the L2-operator
norm of matrices (18).

4.1(a) Show that
‖AB‖L2 ≤ ‖A‖L2‖B‖L2 .

4.1(b) Show that for any k ∈ N,

(38) ‖Ak‖L2 ≤ ‖A‖kL2 .

4.1(c) Use Corollary 4.7 to show that (38) holds with equality if A is symmetric.
4.1(d) Show that (38) holds with strict inequality for the Jordan block Jn(λ) with

λ = 0 and all k ≥ n.
4.1(e) Show that if ‖A‖L2 < 1, then I + A + A2 + A3 + · · · is convergent in the

sense that partial sums

Sm = I +A+A2 + · · ·+Am

satisfy, for m′ > m,

‖Sm′ − Sm‖L2 = ‖Am+1 +Am+2 + · · ·+Am
′
‖L2

satisfies
lim

m′,m→∞
‖Sm′ − Sm‖L2 = 0.

4.1(f) Show that if ‖A‖L2 < 1, then as m → ∞, Sm(I − A) → I, and hence the
inverse of I −A exists and equals

(I −A)−1 = I +A+A2 +A3 + · · ·
4.1(g) Show that the same formula for (I − A)−1 holds provided that for some

r ∈ N, ‖Ar‖L2 < 1.

Exercise 4.2. Let n ∈ N and x ∈ Rn.

4.2(a) Show that

(39) ‖x‖1 ≤
√
n ‖x‖2

[Hint: use the Cauchy-Schwart inequality

|x · y| ≤ ‖x‖2 ‖y‖2
with a careful choice of y]. Find a stochastic x for which equality holds in
(39).
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4.2(b) Show that

(40) ‖x‖22 ≤ ‖x‖21,
and find a stochasic x for which equality holds in (40).

Exercise 4.3. Let G be a d-regular graph, whose eigenvalues are

λn ≤ · · · ≤ λ1 = d,

and let ρ = ρ(G) = maxi≥2 |λi|. In this exercise you may assume the results of
Exercise 4.2.

4.3(a) For any k ∈ N, let G[k] be the graph whose vertex set is VG, and that has
one edge from i to j for every walk from i to j of length k in G. Show that
AG[k] = AkG. Show that G[k] is a dk-regular graph, the eigenvalues of AG[k]

are just λki .
4.3(b) Show that if

AG =
d

n

1 . . . 1
...

. . .
...

1 . . . 1

+ E

(as in (20)), then for any k we have

AG[k] = AkG =
dk

n

1 . . . 1
...

. . .
...

1 . . . 1

+ Ek,

and that for any v we have

‖Ekv‖2 ≤ ρk‖v‖2.
4.3(c) For any i, j ∈ [n] with i 6= j, show that

‖AkGei − dkπ‖2 ≤ ρk

where π = (1/n)1 (you could slightly improve the bound ρk).
4.3(d) Let P = (1/d)AG, so that P is the Markov matrix associated to a graph,

G, and π = (1/n)1 is the stationary vector of G. Show that for any k ∈ N
we have

‖eT
i P

k − πT‖1 ≤ (ρ/d)k
√
n.

4.3(e) Show that if v ∈ Rn is a unit vector with v · 1 = 0, there exists an i ∈ [n]
such that |v · (ei − π)| ≥ 1/

√
n.

4.3(f) Conclude from part (e) that for some i ∈ [n] we have

‖eT
i P

k − πT‖2 ≥ (ρ/d)k/
√
n.

4.3(g) Conclude that for any k ∈ N we have

(ρ/d)k/
√
n ≤ max

i,j∈[n]
‖eT
i P

k − π‖1 ≤ (ρ/d)k
√
n.

4.3(h) Consider a real ε > 0; what inequalities can you conclude about tmix(ε),
the ε-mixing time of P , in terms of ε, ρ/d, n based on part (g)? Show that,
as a result, we have

(41) tmix(ε) = logd/ρ(1/ε)±O(logd/ρ(n)).

Exercise 4.4. Let P ∈Mn(R) be an irreducible Markov matrix, and ν ∈ Rn be a
vector with positive entries such that νipij = νjpji for all i, j ∈ [n].
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4.4(a) Show that νTP = νT.
4.4(b) Let π = ν/(ν · 1). Explain why π is the stationary distribution of P .

Exercise 4.5. Let Ψ ∈ Mn(R) be an arbitrary irreducible Markov matrix, and
π an arbitrary stochastic vector with all positive components. For i, j ∈ [n] with
i 6= j, let given by pij as in (31). Assume that for all i, j, ψij > 0 iff ψji > 0 (this
condition is missing in [LP17]).

4.5(a) Show that

pii = 1−
∑
j 6=i

pij

is non-negative. Conclude that if P has entries pij for i, j ∈ [n], then P is
a Markov matrix.

4.5(b) Explain why P is irreducible.
4.5(c) Apply Proposition 4.16 to show that P is reversible with stationary distri-

bution π. [Hint: for any i, j, we have πjψji ≥ πiψij or πjψji ≤ πiψij (or
both hold).]

Exercise 4.6. Let P be the irreducible Markov matrix:[
.99 .01
.04 .96

]
.

4.6(a) For each eigenvalue, λ1 = 1 and λ2 = 0.95, the a corresponding eigenvector
(i.e., Pv = λivi) and a corresponding left eigenvector uT

i P = λiu
T
i .

4.6(b) Find the stationary distribution, π, of P .
4.6(c) Verify that v1 is orthogonal to u2.
4.6(d) Verify that u1 is orthogonal to v2.
4.6(e) Verify that v1,v2 are orthogonal with respect to the weighted dot product

(x,y)π
def
= x1y1π1 + x2y2π2.

4.6(f) Verify that u1,u2 are orthogonal with respect to the weighted dot product

(x,y)1/π
def
= x1y1/π1 + x2y2/π2.

Exercise 4.7. Show that an arbitrary irreducible 2× 2 Markov matrix:

P =

[
1− α α
β 1− β

]
is reversible (since P is irreducible, 0 < α, β ≤ 1).

Exercise 4.8. Let Ψ be an irreducible Markov matrix, π an arbitrary stochastic
vector with positive components, and let P be the Metropolis chain for π and Ψ.
For any ε ∈ (0, 1), let

(42) Ψε = (1− ε)I + εΨ, Pε = (1− ε)I + εP

(these are lazy versions of Ψ, P ). Show that the Metropolis chain for π and Ψε

equals Pε.
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Exercise 4.9. [The point of the following exercise is to show that the Metropolis
algorithm can yield Markov chains that converge very slowly, i.e., with very large
mixing times.] Let

Ψ =

[
1/2 1/2
1/2 1/2

]
.

4.9(a) Find the stationary distribution, ν, of Ψ and explicitly compute d(t) =
dΨ(t) = maxi=1,2 ‖eiΨt − ν‖TV for t = 1, 2, . . .

4.9(b) Let π1 = 3/4 and π2 = 1/4. Find the Metropolis chain, P , for π and Ψ.
4.9(c) For any ε ∈ (0, 1), let Ψε, Pε be as in (42). Let N ∈ N be large, and let

ε = 1/N . Give a good approximation of dΨε(N`) for ` = 1, 2, 3.

Exercise 4.10. Let P ∈Mn(R) be a reversible (hence irreducible) Markov matrix,
with stationary distribution π. Recall the notation for the weighted dot products
(33) and (34). Show that the following are equivalent:

(1) P is reversible;
(2) for all k, ` ∈ [n], (Pek, e`)π = (ek, Pe`)π;
(3) for all u,v ∈ Rn, (Pu,v)π = (u, Pv)π;
(4) for all k, ` ∈ [n], (eT

k P, e
T
` )1/π = (eT

k , e
T
` P )1/π,

(5) for all u,v ∈ Rn, (uTP,vT)1/π = (uT,vTP )1/π.

Exercise 4.11. 4.11(a) Show that if P is an irreducible Markov matrix that is
self-adjoint with respect to some weighted inner product, i.e., (Px,y)w =
(x, Py)w for some w, then P is reversible.

4.11(b) Harder: if P is an irreducible Markov matrix that is self-adjoint with respect
to some inner product (not necessarily a weighted inner product), is it still
true that P is necessarily reversible?

Exercise 4.12. Let (, ) be an arbitrary inner product on Rn, and let ‖x‖ = (x,x)1/2

denote the length of a vector with respect to this inner product. The following
exercise is meant to show you that a lot of things that hold for the usual dot
product also hold for inner products.

4.12(a) Show that for all x,y ∈ Rn,

(x,y) ≤ ‖x‖ ‖y‖.

[Hint: Consider the fact that ‖x− ty‖2 ≥ 0 for all t ∈ R.]
4.12(b) Show that if u1, . . . ,un ∈ Rn are orthonormal with respect to (, ) (i.e.,

(ui,uj) equals 1 if i = j and 0 if i 6= j), then u1, . . . ,un ∈ Rn is a basis for
Rn, and for any w ∈ Rn we have

w =

n∑
i=1

(ui,w)ui.

4.12(c) Show that Pythagoras’ theorem holds for (, ), in the sense that if u1, . . . ,un
are orthonormal as in the previous part, then

(w,w) =

n∑
i=1

(ui,w)2.

4.12(d) Show that for any linearly independent v1, . . . ,vs ∈ Rn, one can find lin-
early independent u1, . . . ,us whose span equals that of v1, . . . ,vs and
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such that u1, . . . ,us are orthonormal with respect to (, ). [Hint: Set
u1 = v1/‖v1‖, and for successive values i = 2, . . . , s set

v′i = vi − (u1,vi)u1 − . . .− (ui−1,vi)ui−1

and ui = v′i/‖v′i‖; this is called the Gram-Schmidt process.]

Exercise 4.13. The point of this exercise is to prove Theorem 4.32 as a consequence
of the ideas of Theorem 4.31. Let A ∈ Mm,n(R). Let A ∈ Mm,n(R) with A 6= 0
(i.e., A is not the zero matrix). Let the minimum of f(u,v) = ‖A − uvT‖Frob be
attained at u = u1 and v = v1, and set

A1 = A− u1v
T
1 .

Assume that A1 6= 0.

4.13(a) Use Theorem 4.31 to show that A1v1 = 0 and that AT
1 A1v1 = 0; show

similar statements involving u1.
4.13(b) Let the minimum of f(u,v) = ‖A1 − uvT‖Frob at u = u2 and v = v2.

Show that v2 is orthogonal to v1. Then show that u2 is orthogonal to u1.
4.13(c) Show that ATAv2 = λ2v2, and AATu2 = λ2u2.
4.13(d) Show that

‖A− u1v
T
1 − u2v

T
2 ‖2Frob = Trace(ATA)− λ1 − λ2.

4.13(e) Show that continuing in this way, we have that for some r ≤ n

(43) A =

r∑
i=1

uiv
T
i ,

where u1, . . . ,ur are nonzero and mutually orthogonal and v1, . . . ,vr are
as well, and show that r is the rank of A (i.e., the dimension of the image
of A).

4.13(f) Show that for any k ≤ r we have

‖A− u1v
T
1 − · · · − ukv

T
k ‖2Frob = Trace(ATA)− λ1 − · · · − λk,

where λi is the i-th largest eigenvalue of ATA.
4.13(g) Show that if

f(w1, . . . ,wk, z1, . . . , zk) = ‖A−w1z
T
1 − · · · −wkz

T
k ‖2Frob

is attained at some particular values of w1, . . . ,wk and z1, . . . , zk, and if
z1, . . . , zk are nonzero and mutually orthogonal, as well as w1, . . . ,wk, then
f there equals Trace(ATA) minus some k eigenvalues of ATA (where each
eigenvalue appears no more times than its multiplicity as an eigenvalue of
ATA). [Hint: it suffices to show that for all i ∈ [k], (35) holds for u = wi

and v = zi, and then use the previous part. So fix an i ∈ [k] and consider f
above with a variation in zi alone: i.e., choose a u ∈ Rn, set zi(ε) = zi+εu,
let

g(ε) = f(w1, . . .wk, z1, . . . , zi−1, zi(ε), zi+1, . . . , zk),

and determine c1 where g(ε) = c0 + c1ε+ c2ε
2; it may be notationally easier

to write

g(ε) = ‖Ã−wizi(ε)
T‖2Frob, where Ã = A−

∑
j 6=i

wjz
T
j .
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Can you assert that c1 = c1(u) must equal zero assuming that u is or-
thogonal to z1, . . . , zk? Why? What about if u is a linear combination of
z1, . . . , zk? Why? You should be able to conclude that wT

i Ã = wT
i A must

equal zT
i (wi ·wi).]

4.13(h) Show the function f(A) = ‖A − B‖2Frob attains its minimum over all B of
rank at most k ≤ n at

B =

k∑
i=1

uiv
T
i .

[Hint: according to (43), if B is of rank k then

B =

k∑
i=1

xiy
T
i

where x1, . . . ,xr are nonzero and mutually orthogonal and y1, . . . ,yr are
as well.]

4.13(i) Show that if ûi = ui/|ui|2 and v̂i = vi/|vi|2, then (37) holds, i.e.,

A =

s∑
i=1

√
λiûiv̂

T
i .

Exercise 4.14. Show the existence of L∗ as in (32) in the setting there. [Hint: To
simiplify things, let v1, . . . ,vn be a basis for V , and w1, . . . ,wm one for W . Show
that (32) holds iff for all i ∈ [n] and j ∈ [m], (32) for v = vi and w = wj . This
allows you to describe L∗.]

Exercise 4.15. Let V,U be two R-inner product spaces; i.e., V is an n-dimensional
R-vector space for some n (there is no harm in assuming that V = Rn, but no need
to do so) endowed with an inner product (, )V , and similarly U is an m-dimensional
real inner product space. Prove that Theorem 4.31 can be generalized to this
context, for any linear map L : U → V . Your generalization should include the
following steps.

(1) If v ∈ V , explain why it makes sense to view v as a map R → V , and use
Exercise 4.14 to explain that v∗ should be the map from V → R given by
v′ ∈ V maps to u(v, v′)V .

(2) Your generalization should involve L∗ : V → U as in Exercise 4.14.
(3) The Frobenius norm of L : U → V with respect to the inner products on U

and V can be defined to be

‖L‖Frob = Trace(LL∗).

(4) From your proof it should follow that the largest eigenvalue of LL∗ is the
same as that of L∗L.

Exercise 4.16. Show that if W is an inner product space, then each element of
W ∗ is of the form u 7→ (u,w) for some w ∈ W . [Hint: there are a number of
ways of doing this: one way is to first find an orthonormal basis w1, . . . , wn of W ;
another way is to show that W ∗ is n-dimensional, and then to show that maps of
the form u 7→ (u,w) are a subspace of dimension n.]

Exercise 4.17. Exercise 4.14 shows that any map L : U → V of real inner product
spaces has an adjoint. Use Exercise 4.16 and the approach of Remark 4.22 to give
second proof of this fact.
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Exercise 4.18. Consider the matrices

D1 =

5 0 0
0 4 0
0 0 3

 , D2 =

5 0 0
0 5 0
0 0 3

 .
4.18(a) Determine the critical points of the Rayleigh quotient

RD1
(x, y, z) =

5x2 + 4y2 + 3z2

x2 + y2 + z2

by computing the gradient of this function and seeing where it equals
(0, 0, 0).

4.18(b) Do the same for RD2 .
4.18(c) Imagine that you take the Rayleigh quotient of a general n× n matrix and

compute its maximum (or minimum) by taking the gradient and setting it
to 0. How would this compare to the computation performed in our proof
of Theorem 4.29?

For the near future: add some exercises on the lazy Ehrenfest model and hyper-
cube, referring to Section 2.3 of [LP17].

5. Symmetric Matrices are Orthonormally Diagonalizable with Real
Eigenvalues: Two Short Proofs

In this section we prove that symmetric matrices have an orthonormal eigenbasis
and have real eigenvectors. Both proofs give a more general result, and indicate
much more general results.

5.1. Proof via Symmetric (and Hermitian) Matrices with Distinct Eigen-
value. This proof in this subsection also hints as to how we can get a pair of
biorthogonal bases of left and right eigenvectors for any matrix A ∈Mn(R).

Recall that 〈u,v〉 denotes—for now—the standard complex inner product vHu,
and hence for any A ∈Mm,n(C) and u ∈ Cn, v ∈ Cm we have

〈Au,v〉 = vHAu = (AHv)Hv = 〈u, AHv〉.

Lemma 5.1. Let A ∈ Mn(C) be arbitrary, with an eigenpair Au = λu and left
eigenpair vTA = νvT (or, equivalently AHv = νv). Then

(λ− ν)〈u,v〉 = 0.

In particular,

(1) λ 6= ν, then 〈u,v〉 = 0;
(2) if AH = A, i.e., A is Hermitian, in particular real symmetric, then its

eigenvalues are real;
(3) if AH = A, then eigenvectors of distinct eigenvales are orthogonal.

Proof. The first claim follows from

λ〈u,v〉 = 〈Au,v〉 = 〈u, AHv〉 = ν〈u,v〉.
The second claim follows when u = v (and hence λ = ν), since then 〈u,v〉 6= 0.
The third claim follows since λ, ν are purely real. �

Theorem 5.2. Let A ∈Mn(C) be Hermitian. Then A has an orthonormal eigen-
basis, which is unique up to scaling when A has distinct eigenvalues.
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Proof. Lemma 5.1 implies that if A has distinct eigenvalues, then any eigenbasis
normalized to have all unit vectors is an orthonormal eigenbasis. Conversely, in this
case any eigenbasis of A must arise from the n unique eigenvectors, and is therefore
unique up to scaling each vector (i.e., by a complex number of absolute value 1).

If A does not have distinct eigenvalues, we take a sequence, A1, A2, . . . of sym-
metric or Hermitian matrices tending to A with distict eigenvalues. Since the set
of (ordered) orthonormal eigenbases is compact, by passing to a subsequence the
eigenbases of the Ai converges to an eigenbasis, x1, . . . ,xn, which by continuity is
an orthonormal eigenbasis for A. �

Exercise 5.1. Let A ∈ M2(R) be all 0’s. Then A does not have distinct eigen-
values. What happens, as real ε → 0, to the eigenvalues/vectors of the following
approximations of A: [

ε 0
0 2ε

]
,

[
0 ε
ε 0

]
,

[
ε ε
ε ε

]
?

5.2. Schur Decomposition and Matrices that are Normal (Unitary, Her-
mitian, Skew-Hermitian, etc.) Recall that if u1, . . . ,un are an orthonormal
basis of Rn or Cn, then the matrix U whose columns are u1, . . . , un satisfies
UUH = UHU = I, or equivalently U−1 = UH; we call such a U a unitary ma-
trix in the complex case, and orthogonal matrix in the real (special) case.

Theorem 5.3 (Schur Decomposition). Let A ∈Mn(C). Then there exists unitary
matrix, U , such that A = UTUH, where T is an upper triangular matrix, T (i.e.,
tij = 0 for i > j). If, in addition, A ∈ Mn(R) has all real eigenvalues, then the U
is (real) orthogonal.

Writing A as UTUH as above is called a Schur decomposition (sometimes Schur
factorization) of A.

Proof. We use induction on n; for n = 1 this is clear. For n ≥ 2, let Tu = λu be
any eigenpair of T , and extend u to an orthonormal basis u = u1,u2, . . . ,un of Cn.
Let Ũ be the matrix whose columns are u1, . . . ,un. Then

AŨ = Ũ T̃ , where T̃ =


λ t̃12 · · · t̃1n
0 t̃22 · · · t̃2n
...

...
. . .

...
0 t̃n2 · · · t̃nn


Now we apply the inductive argument to the matrix, T1 whose entries are t̃ij with
2 ≤ i, j ≤ n.

If, in addition, A is real, and has all real eigenvalues, then in the inductive step
above λ and U1 can be taken to be real; since the first column of T̃ has 0’s after
the first entry λ, expanding determinants by columns shows that

pT̃ (t) = (t− λ)pT1
(t).

Hence T1 is real and has real eigenvalues, which gives the stronger inductive hy-
pothesis in case A ∈Mn(R) has all real eigenvalues. �

Definition 5.4. We say that N ∈Mn(R,C) is normal if NNH = NHN , i.e., if N
and NH commute.

Clearly, the following matrices A ∈Mn(R,C) are normal:
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(1) (1) real symmetric, and more generally, Hermitian matrices (AH = A);
(2) permutation matrices (A whose columns are a permutation of e1, . . . , en,

and whose rows are therefore the inverse permutation of eT
1 , . . . , e

T
n ), and

more generally, orthogonal, and more generally, unitary matrices (all satisfy
A−1 = AH);

(3) real, skew symmetric, and more generally, (complex) skew Hermitian ma-
trices (AH = −A);

(4) etc.

Lemma 5.5. Let T ∈ Mn(C) be upper triangular and satisfy TTH = THT . Then
T is a diagonal matrix.

Proof. TTH is the dot product of the rows of T , and THT that of the columns of T .
Since the first column of T has only one nonzero element, t11, and the dot product
of this column with itself, namely t11t11 equals the dot product of the first row with
itself, it follows that t1j = 0 for j ≥ 2. Given this, and in particular t12 = 0, we see
that the second colunm now only has t22 as a non-zero element, and so, similarly,
t2j = 0 for j 6= 2. Hence the second row of T is zero except in the diagonal place.
Proceeding similarly by induction on i, we see that tij = 0 for j 6= i. �

Theorem 5.6. Let N ∈ Mn(C) be a normal matrix. Then N is diagonalizable
with an orthonormal eigenbasis. If, in addition, N ∈ Mn(R), and N has only real
eigenvalues, then the eigenbasis can be taken to be all real.

Proof. Let N = UTUH be a Schur decomposition. Since UH = U−1, we have

NNH = UTTHUH, NHN = UTHTUH,

and hence TTH = THT . Now apply Lemma 5.5, and then apply the second part of
Theorem 5.3 for the statement regarding real matrices with real eigenvalues. �

6. The Perron-Frobenius Theorem

In this section we state and prove the Perron-Frobenius theorem.

6.1. Periodicity.

Definition 6.1. If G is a strongly connected digraph, then the period of G is
the GCD (greatest common divisor) of the lengths of all closed walks of G. If
A ∈ Mn(R,C), then the period of A is the period of the digraph associated to A
(i.e., whose vertices are [n], and with an edge from i to j if aij 6= 0). We say that
G and A above are aperiodic if their period equals one.

For example, if G is the directed cycle of length n, whose adjacency matrix is
the “cyclic shift” matrix Cn of Example 3.10, then the period of G and of AG = Cn
is n.

The following result is not difficult.

Proposition 6.2. If G is a strongly connected graph of period p, then we may
partition the vertices of G into sets V0, . . . , Vp−1 such that any edge whose tail lies
in Vi has its head in Vi+1, understanding Vp to refer to V0. Furthermore, for any
k ∈ N that is sufficient large and divisible by p, in v, v′ ∈ Vi then there is a walk
from v to v′ of length k.
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The proof of the prosition is an EXERCISE. The idea is that if v, v′ ∈ V , then

{k ∈ N | there is a walk of length k from v to v′}
are in a single class modulo p. So to define the Vi we fix some v ∈ V and declare
v′ ∈ Vi if the above lengths k modulo p equal i.

If A ∈ Mn(R,C) has period p, then partitioning [n] into V0, . . . , Vp−1 as above
we can view A as a “block cyclic matrix,”

A =


0 A0

0 A1

. . .
. . .

0 Ap−1

Ap 0

 .
We easily make the following conclusion.

Proposition 6.3. Let A ∈Mn(R,C) has non-negative entries and be of period p,
and let V0, . . . , Vp−1 be a partition of [n] such that aij = 1 and i ∈ Vk implies that
j ∈ Vk+1. Let ζ be a primitive p-th root of unity, i.e., ζp = 1 and ζm 6= 1 for m ∈ N
with m < p. Then if v, λ are an eigenpair for A, then so is v′, λ′, where λ′ = ζλ
and v′j = vjζ

m for j ∈ Vi.

The case p = 1 in the above propisition is worth noting separately.

Corollary 6.4. Let A ∈ Mn(R,C) have non-negative entries and be irreducible
and aperiodic. Then for all k ∈ N sufficiently large, Ak has all positive entries.

6.2. Definition of the Perron-Frobenius Eigenvalue.

Definition 6.5. Let A ∈Mn(R) have non-negative entries. We define the Perron-
Frobenius eigenvalue of A, denoted λPF(A) to be

λPF(A) = sup{λ ∈ R | Av ≥ λv for some nonzero v ≥ 0}.
Any nonzero v ≥ 0 such that Av ≥ λPFv is called a Perron Frobenius pseudo-
eigenvector of A.

As the names suggest, λPF turns out to be an eigenvalue of A, and a pseudo-
eigenvector is not necessarily an eigenvector. However, we are most interested in A
that are irreducible, i.e., whose associated directed graph is strongly connected. It
is useful to consider a case where A is not irreducible.

Notice that if each row of A has at least one positive entry, then A1 has positive
components, and hence λPF > 0.

6.3. The Fundamental Non-Example. The following “non-example” will illus-
trate how the proof we give of the Perron-Frobenius works.

It illustrates that if A is reducible, then the Perron-Frobenius pseudo-eigenvector
is not generally unique.

Example 6.6. Let

A =

[
3 1
0 3

]
,

which in previous sections we have denoted J2(3). In this case A is not irreducible,
since in the graph associated to A, which has underlying vertex set {1, 2}, there
is no edge from 2 to 1. In this case we easily see that λPF(A) = 3, although
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for any v1, v2 ≥ 0 with at least one of them non-zero, we have that v 6= 0 is a
pseudo-eigenvector, since

A

[
v1

v2

]
= A

[
3v1 + v2

3v2

]
≥ 3

[
v1

v2

]
.

Hence if v2 = 0 we get a true eigenvector, but otherwise the first component of Av
is strictly larger than that of 3v.

Notice that we alter the above matrix A by making a21 positive, then v1 > 0
would imply that (Av)2 = a21v1 + a22v2 would be strictly larger than 3v2. In this
case λPF could no longer equal 3.

One can view one part of the Perron-Frobenius theorem as saying that if
λPF(A) > 0, then the geometric or algebraic multiplicity of λPF as an eigenvalue
can only be greater than one if A is reducible.

6.4. A Perron-Frobenius Pseudo-Eigenvector Exists.

Theorem 6.7. Let A ∈ Mn(R) have non-negative entries; then there exists a
Perron-Frobenius pseudo-eigenvector, v, of A.

The argument is a simple compactness argument.

Proof. The condition that nonzero v ≥ 0 satisfies Av ≥ λv for some λ is invariant
under a positive scaling of v. Hence we may assume that v is stochastic (instead
requiring |v|p = 1 for any p ≥ 1 would work equally well). By basic facts about
the least upper bound (usually discussed in Math 320 at UBC), there exist λm and
stochastic vm with Avm ≥ λmvm and λm → λPF as m → ∞. By compactness of
the set of stochasic vectors, by passing to a subsequence we may assume that vm
has a limit v. It then follows that as m→∞, Avm → Av and λmvm → λPFv, and
hence Avm ≥ λmvm implies that v is a Perron-Frobenius pseudo-eigenvector. �

6.5. The Aperiodic Perron-Frobenius Theorem. The Perron-Frobenius the-
orem is far simpler to state and prove for matrices, A, that are aperiodic, in which
case for some m ∈ N we have that Am has all positive entries. Notice that for
such m, Am+1 = AAm also has all positive entries, and hence also Am+2, Am+3, . . .
Notice also that Am1 has all positive entries, and hence setting w = Am1, we have
Aw ≥ δw for some δ > 0, and hence λPF(A) > 0.

Discussing this special case of aperiodic matrices illustrates most of the main
ideas of the Perron-Frobenius theorem. One constant fact that we will use is that
if A is any matrix with real, non-negative entries, and if x,y ∈ Rn with x− y ≥ 0,
then since A has non-negative entries we have A(x− y) ≥ 0; in other words,

(44) x ≥ y ⇒ Ax ≥ Ay.

Another useful fact is that the triangle inequality for x, y ∈ C,

|x+ y| ≤ |x|+ |y|

holds with strict inequality when x, y are nonzero, unless x, y have the same complex
argument, i.e., “they point in the same direction,” or more precisely x = αy where
α is a positive real number. It follows that for any x1, . . . , xn ∈ C,

|x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|
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when and only when all the nonzero xi have the same complex argument; in par-
ticular, if one of x1, . . . , xn is a positive real, then all of them must be real and
non-negative.

Theorem 6.8. Let A ∈Mn(R) have positive entries. Then

(1) any Perron-Frobenius pseudo-eigenvector of A, v, is an actual eigenvector
of A (with eigenvalue λPF);

(2) if v is an eigenvector of A with eigenvalue λPF, and if v is scaled so that
it has at least one, real, positive component, than all components of v are
positive reals;

(3) any eigenvector, v, of A with eigenvalue λPF is unique up to scaling;
(4) there exist C,C ′ > 0 such that for all k ∈ N and i, j ∈ [n] we have

C ′λkPF ≤ (Ak)ij ≤ CλkPF;

(5) λPF has algebraic multiplicity 1; and
(6) any other eigenvalue, λ, of A aside from λPF has |λ| < λPF.

Proof. To prove (1), say that (Av)i > λPFvi for some i ∈ [n], i.e., Av ≥ λPFv + εei
for some ε > 0. Then (44) implies

A(Av) ≥ λPF(Av) + εAei;

since Aei has all components strictly positive, for w = Av we have Aw is larger
than λPFw at every component, and hence Aw ≥ (λPF +δ)w for some δ > 0, which
contradicts the definition of λPF.

To prove (2), if Av = λPFv, and scale v so that one of its components is a
positive real number. Then for all i ∈ [n] we have

λPFvi = (Av)i =

n∑
j=1

aijvj .

Setting w to be the vector with wi = |vi|, we have that for each i ∈ [n]

λPFwi =

n∑
j=1

aijwj ≥

∣∣∣∣∣∣
n∑
j=1

aijvj

∣∣∣∣∣∣ = λPF|vi| = λPFwi,

and therefore equality holds the above inequality, i.e.,∣∣∣∣∣∣
n∑
j=1

aijvj

∣∣∣∣∣∣ =

n∑
j=1

aijwj =

n∑
j=1

aij |vj |.

But we have strict inequality ∣∣∣∣∣∣
n∑
j=1

aijvj

∣∣∣∣∣∣ <
n∑
j=1

aij |vj |

unless for all j, aijvj have the same complex argument; since one of vj is a positive
real, then they all must be non-negative reals. Furthermore since at least one vj is
nonzero, the equation

λPFvi =

n∑
j=1

aijvj

implies that all vi are positive reals.
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To prove (3), let v,w be two eigenvectors for λPF; after scaling both v,w have
all positive entries, and after a further scaling we have v ≤ w and the inequality
holds with equality at at least one of their components, i.e., vi = wi for some i ∈ [n].
But then v = w, for otherwise since A has all positive entries, A(w − v) has all
positive entries, which is impossible since then (Aw)i > (Au)i, which is impossible
since

(Aw)i = λPFwi = λPFvi = (Av)i.

To prove (4), let v be the Perron-Frobenius eigenvector scaled so that v ≥ 1;
then

Ak1 ≤ λkPFv,

and hence for any i, j ∈ [n] we have

(Ak)ij ≤ (Ak1)j ≤ λkPFvj

which establishes the upper bound on (Ak)ij for C = maxj vj . To obtain a lower
bound we write

(Ak)ij = eT
i A

k−1(Aej),

and since Aej has all positive components, we can scale v to get an eigenvector v′

such that v′ ≤ Aej for all j. Hence

(Ak)ij ≥ eT
i A

k−1v′ ≥ eT
i λ

k−1
PF v′ ≥ λk−1

PF v′i

which establishes the lower bound for C ′ = mini v
′
i/λPF.

To prove (5), we have that for any invertible M ∈Mn(C), MAkM−1 is bounded
by C ′′λkPF in view of the upper bound on the entries of Ak. But then the single
Jordan block corresponding to λPF has to be a 1× 1 block, since an m×m Jordan
block J = Jm(λPF has Jk having its immediate off diagonal entries equal to kλk−1

PF ,
which exceeds C ′′λkPF for k sufficiently large. Hence λPF has algebraic multiplicity
one.

To prove (6), let Av = λv be any eigenpair of A, and normalize v so that some
component of v is a positive real. Again, set w to be the vector with wi = |vi|.
The same argument used to prove (2) shows that Aw ≥ |λ|w, and strict inequality
holds at each component unless all non-zero components of v are positive. If strict
equality held at each component, then Aw ≥ (|λ|+ ε)w for sufficiently small ε > 0,
and hence |λ| < λPF. Otherwise v has all its components being non-negative reals;
but then λ is necessarily a positive real. So Aw ≥ |λ|w = λw implies that λ ≤ λPF

and hence either |λ| ≤ λPF unless λ = λPF. �

Corollary 6.9. Let A ∈ Mn(R) have non-negative entries and be irreducible and
aperiodic. Then all the conclusions of Theorem 6.8 hold for A.

Proof. Let m ∈ N be such that Am has all positive entries; then Am+1 does as
well since its entries are the dot products of the rows of A with the columns of
Am, and each row of A has at least one positive component. It follows that the
conclusions of Theorem 6.8 hold for both Am and Am+1. But the eigenvalues of
these matrices are those of A raised to the powers m and m + 1. Hence Am has
a unique largest eigenvalue in absolute value, λPF(Am), which equals λm0 for some
eigenvalue of A which is therefore the unique eigenvalue of A of largest absolute
value. The same reasoning shows that λPF(Am+1) = λm+1

0 for this same largest
eigenvalue in absolute value of A, λ0. But λm0 and λm+1

0 are both positive reals, and
hence so is λ0. If w is eigenvector of λ0 for A, then it also one of Am of eigenvalue
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λm0 . By Theorem 6.8, after scaling w has all positive entries. Since Aw = λ0w, we
have λ0 ≤ λPF.

It remains to show that λ0 = λPF(A) and any pseudo-eigenvector for A is propo-
tional to w. But if Av ≥ λPF(A)v with v ≥ 0, then Amv ≥ (λPF(A))mv. It then
follows that (λPF(A))m ≤ λPF(Am) = λm0 andhenceλPF(A) = λ0. It then follows
that v is a pseudo-eigenvector for Am, and hence v is proportional to v. �

6.6. The Full Perron-Frobenius Theorem.

Theorem 6.10. Let A ∈ Mn(R) have non-negative entries. If A is irreducible,
then

(1) any Perron-Frobenius pseudo-eigenvector of A, v, is an actual eigenvector
of A (with eigenvalue λPF);

(2) if v is any eigenvector of A with eigenvalue λPF, then if some component
of v is a positive real, then every component of v is a positive real;

(3) if A has period p and λ is any eigenvector of A, then |λ| ≤ λPF and equality
holds iff λ = ζλPF for some ζ with ζp = 1;

(4) the eigenvectors v with eigenvalue λPF are unique up to scaling;
(5) there is a C > 0 such that for any k ∈ N, all entries of Ak are at least 0

and at most CλkPF; and
(6) λPF has (algebraic) multiplicity one as an eigenvalue of A.

Finally, if A has period p, then for each ζ with ζp = 1, ζλPF is an eigenvalue with
multiplicity one, and these are the only eigenvalues of absolute value (at least) λPF.

One way to prove this theorem is to infer that Theorem 6.8 also holds if A
is aperiodic, and then if A has period p, then we note that Ap is aperiodic and
irreducible as it acts on any of the p parts into which [n] is partitioned by the
periodicity of A. Below we give a direct proof based on repeating the same type of
argument.

Proof. The proofs of (1), (2), (3), and (4) we give involve very similar arguments:
we show that if any of these fail to hold, then for some I ⊂ [n] there is no i ∈ I
and j /∈ I with aji > 0, and hence A is not irreducible. It can be helpful to keep
Example 6.6 in mind.

To prove (1), we will show that if Av has one entry strictly greater λPFv, then A
is not irreducible, as in Example 6.6. Indeed, in this case consider an I ⊂ [n] such
that I is as large as possible and for some pseudo-eigenvector we have (Av)i > λPFvi
for all i ∈ I. We cannot have I = [n], for then (Av)i > λPFvi for all i ∈ [n] and
hence (Av)i > (λPF + ε)vi for ε > 0 sufficiently small. We claim that there is no
positive aji with i ∈ I and j /∈ I; otherwise for small ε we have (Av)i > (λPF(vi+ε)
for some sufficiently small ε > 0, and hence if w is given by wi = vi + ε for i ∈ I
and wi′ = vi′ for i′ /∈ I we have

(Aw)i′ ≥ λPFvi′ = λPFwi′ .

Furthermore, we have

(Aw)j ≥ (Av)j + ajiε = λPFwj + aijε,

and so (Aw)i > λPFwi if i ∈ I or i = j, which contradicts the maximality of I.
Hence any pseudo-eigenvector is a genuine eigenvector. Now we prove (2), (3)

and (4) with similar arguments.
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To prove (2), let w be the vector given by wi = |vi|. Then since

(Av)j =

n∑
i=1

ajivi,

for any j, we have

λPFwj = λPF|vj | =
∣∣∣∣ n∑
i=1

ajivi

∣∣∣∣ ≤ n∑
i=1

aji|vi| = (Aw)j .

Hence w is a pseudo-eigenvector, and hence an eigenvector; and hence for each j,

λPFwj =

∣∣∣∣ n∑
i=1

ajivi

∣∣∣∣ ≤ n∑
i=1

aji|vi|

holds with equality. It follows that if I ⊂ [n] is the set of i ∈ [n] such that vi is
nonzero, then I = [n], for otherwise we have aji = 0 whenever j /∈ I and i ∈ I,
since

λPF|vj | =
n∑
i=1

aji|vi|.

To finish the proof of (2), we want to show that if I ⊂ [n] is the set of i ∈ [n]
such that vi is a positive real, then I = [n]; we argue similarly: the equality∣∣∣∣ n∑

i=1

ajivi

∣∣∣∣ =

n∑
i=1

aji|vi|

for all j shows that for all j, whenever aji, aji′ are nonzero, then vi, vi′ ∈ C have
the same argument (i.e., point in the same direction). The fact that

λPFvj =

n∑
i=1

ajivi

then implies that aji = 0 when i ∈ I and j /∈ I, for otherwise right-hand-side above
would involve a positive real ajivi, and hence would consist entirely of positive
reals, and hence vj would be a positive real. It follows that I = [n].

To prove (3), we let Av = λv and similarly define w via wi = |vi|. We similarly
see that if |λ| ≥ λPF, then |λ| = λPF and for any j, for all i with aji > 0 all the
corresponding vi have the same argument. So scaling v to have v1 real, and letting
V0, . . . , Vp−1 be the partition of [n] as in Proposition 6.3, we see that the argument
of λ is precisely that of vj/vj′ for any j′ ∈ V` and a j ∈ V`+1. Since there are paths
from any vertex to itself of any sufficiently large length divisible by p, we have the
argument of λ is a p-th root of unity. The converse holds by Proposition 6.3.

To prove (4), first we show that the space of eigenvectors with eigenvalue λPF

is one dimensional: indeed, if v,v′ are any such eigenvectors, then after scaling we
may assume they have all positive components. Then after scaling we may assume
that v ≤ v′, and that v,v′ are equal at one of their components. So let I be the
subset of i such that vi = v′i. We similarly show that if i ∈ I and j /∈ J , then
aji = 0. Hence, since I is nonempty, either I = [n] or A is reducible.

To prove (5), we need to find a C such that

(45) 0 ≤ (Ak)ij ≤ CλkPF.

The bound 0 ≤ (Ak)ij is immediate from the fact that A has non-negative entries.
To prove the other bound, let v be a Perron-Frobenius eigenvector, scaled so that
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v ≥ 1; then the non-negativity of A implies that for any k ∈ N we have Ak(v−1) ≥
0, and hence

Ak1 ≤ Akv = λkPFv,

and hence for any i ∈ [n] we have

λkPFvi ≥ (Ak1)i =

n∑
j=1

(Ak)ij .

This establishes (45) for C = maxi vi.
To prove (6), recall that the Jordan canonical form writes A as M−1JM where

M,J ∈Mn(R), M is invertible, and J is a block diagonal matrix of Jordan blocks;
(4) implies that the eigenspace of λPF is one-dimensional, hence J has a single
Jordan block associated to λPF; to show that λPF has algebraic multiplicity one,
we need to show that this Jordan block is of size one. But (5) implies that there is
a C ′ such that we have that the entries of (MAM−1)k = MAkM−1 are bounded
by C ′λkPF. It follows that A cannot have a Jordan blocks, J , of size 2× 2 or more

corresponding to the eigenvalue λPF, since these blocks have Jk equal to kλk−1
PF in

their immediate off-diagonal entries.
If A is p-periodic, then one can similarly prove that for ζp = 1, the eigenvalues

ζλPF have algebraic multiplicity one. Indeed, Proposition 6.3 implies that these
eigenvalues have geometric multiplicity one. Hence corresponding to ζλPF there is
a single Jordan block of A, and if this block were of size 2× 2 or greater, then its k
power would have entries of size kλk−1

PF in absolute value which is again impossible
in view of (45).

Finally, if Av = λv is any eigenvector, then taking w to be the vector with
wi = |vi| for all i, the triangle inequality as used in part (2) shows that Aw ≥ |λ|w.
Hence |λ| ≤ λPF, and hence either |λ| < λPF or λ = νλPF with |ν| = 1; it remains
to show that νp = 1. Since v 6= 0, we may scale v so that for some i, vi is a
positive real. Now let V0, . . . , Vp−1 be the partition of [n] given by the periodicity
of A. We have i ∈ Vj for some j, and Av = λv implies that all the i′ with ai′i > 0
vi′ 6= 0 have vi′ having the same complex argument, which is exactly that of λ.
Since A is irreducible and p-periodic, for some k there is a path from i to itself of
length kp, and another of length (k+ 1)p. It follows that λkp and λ(k+1)p have the
same argument, which are those of νkp and ν(k+1)p, and hence νp is a positive real.
Hence νp = 1. �

6.7. Application to Information Theory and Run-Length Constrained
Data. On April 6 and 8 we discussed (d, k) run-length constrained data, mean-
ing strings on {0, 1} such that between any two successive 1’s there are at least d
0’s and at most k 0’s. For certain values of d and k such strings are more reliable
stored and read from magnetic storage devices. Coding from general {0, 1} data
into run-length constrained data is a large topic, and has (at the time) surprising
connections to the field of Symbolic Dynamics.

In class we modeled (0, 1) run-length data by the Fibonacci graph, and similarly
modeled (d, k) run-length data by a graph with vertices v1, . . . , vk+1, with an edge
labeled 0 from vi to vi+1 for i = 1, . . . , k, and an edge labeled 1 from vi to v1 for
each i = d+ 1, . . . , k + 1.

If G is any digraph, we define the capacity of G to be log2 λPF, where λPF is
the Perron-Frobenius eigenvalue of AG, the adjacency matrix of G; we view this
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capacity as measured in bits (binary digits), given that the logarithm is taken in
base 2. For example, if G consists of a single vertex with d self-loops, then its
capacity is log2 d. If G[m] is the graph whose vertex set is that of G, and whose
edges are walks of length m in G, then AG[m] = AmG , and hence the capacity of
G[m] is m times that of G.

EXERCISES.

Exercise 6.1. Let A ∈ Mn(R) have non-negative entries and be irreducible. The
point of this exercise is to give a short proof that any Perron-Frobenius pseudo-
eigenvector of A is an actual eigenvector.

6.1(a) Show that each entry of B = I +A+A2 + . . .+An−1 is positive.
6.1(b) Show that if v is a pseudo-eigenvector of A, then if Av ≥ λv where strict

inequality holds at some component, then setting w = Bv, we have Aw ≥
λw where strict inequality holds at every component.

6.1(c) Explain why this implies that every pseudo-eigenvector is an eigenvector.

Exercise 6.2. Let A ∈ Mn(R) have non-negative entries and be irreducible. Let
B ∈Mn(R) satisfy bij ≥ aij for all i, j ∈ [n], and assume that bij > aij for at least
one value of i and one value of j. Show that λPF(B) is strictly larger than λPF(A).

Exercise 6.3. Let G,G′ be graphs be strongly connected graphs such that G is a
proper subgraph of G′ (i.e., G 6= G′). Show that the capacity of G′ is strictly larger
than that of G. (You may use Exercise 6.2.)

Exercise 6.4. Consider the graph, G, associated to (d, k) run-length constrained
data with vertex set v1, . . . , vk+1 as described in class and the previous subsection.
The point of this exercise is to show that λPF(G) is 1/z0 where z0 > 0 is the smallest
positive root of the equation

1 = zd+1 + · · ·+ zk+1.

6.4(a) For each m = 0, 1, . . ., let am denote the number of walks of length m that
begin and end at v1. Show that there is an equality of formal power series

∞∑
m=0

amz
m = 1 + p+ p2 + · · · , where p = p(z) = zd+1 + · · ·+ zk+1.

6.4(b) Conclude that if

f(z) =

∞∑
m=0

amz
m,

then f(z) converges for z < z0 above, and that f(z)→∞ as z tends to z0

from below.
6.4(c) Conclude that

lim sup
m→∞

(am)1/m = 1/z0.

6.4(d) Use (45) to conclude that λPF(G) = 1/z0.
6.4(e) Let G be any digraph such that there is a vertex, v1, of G such that any

walk of sufficiently long length passes through v1. Describe an analog of
the the above computation of λPF to this more general situation.
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Exercise 6.5. Let G be the graph associated to (1, 3) run-length constrained
data.

6.5(a) Use Exercise 6.4 to show that the capacity of this graph is larger than 1/2.
6.5(b) Show that one can give an encoding/decoding scheme to convert a general

{0, 1} strings to a string that is roughly twice as long that satisfies the (1, 3)
run-length constraint. (Base this scheme on the one given on April 6 to
convert a general string to a string of roughly 3/2 as long that satisfies the
(0, 1) run-length constraint.

Appendix A. Reference for Various Useful Facts

Here we gather some important tools that we will constantly use in some proofs
of our theorems and to gain intuition regarding matrices.

In CPSC 531F this year, we will only use this section as a reference, to be
consulted when needed.

[See the Table of Contents for the contents of this section.]

A.1. Norms on Rn. For any u ∈ Rn, we set

‖u‖1 = |u1|+ · · ·+ |un|
(the L1-norm of u). Note that if u 6= 0, then ‖u‖1 > 0 and u′ = u/‖u‖ is a (the
only) positive scalar multiple of u such that is an L1-unit vector, i.e., such that
‖u′‖1 =.

The reader has likely seen the idea of unit vectors with respect to the usual norm

‖u‖2 =
(
|u1|2 + · · ·+ |un|2

)1/2
.

Other useful norms include

‖u‖p =
(
|u1|p + · · ·+ |un|p

)1/p
for p ≥ 1, and the p→∞ limit of ‖u‖p, which is just

‖u‖∞ = max
i
|ui|.

All of these functions are norms, meaning functions Rn → R, written u 7→ ‖u‖,
such that for any u,w ∈ Rn and α ∈ R:

(1) ‖u‖ ≥ 0, with equality iff u = 0;
(2) ‖αu‖ = |α| ‖u‖;
(3) ‖u + w‖ ≤ ‖u‖+ ‖w‖.

A.2. Dot Products and Inner Products on Rn. For u,v ∈ Rn, as usual, we
set

u · v = u1v1 + · · ·+ unvn = uTv,

where the last term, uTv, is really a 1× 1 matrix, but we regard it as a scalar (i.e.,
a real). If A ∈Mn(R), then the equality

(Au)Tv = uTATv = uT(ATv)

is a convenient way to show (Au) · v = u · (AT).
More generally, an inner product on Rn is any map Rn × Rn → R, denoted

〈u,v〉 in [HJ85, HJ13](sometimes (u,v) in the literature, that is (1) bilinear, (2)
symmetric, and (3) positive definite (see an equivalent set of terms and definitions
in Section 5.1 of [HJ85, HJ13]). The dot product is the special case 〈u,v〉 = u · v.
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[Notice that in physics, i.e., relativity, one may want to work with an inner
product that is (non-degenerate but) not positive definite, such as the famous inner
product on tangent vectors expressed by dx2 + dy2 + dz2 − (c dt)2.]

If A ∈Mn(R), and 〈 , 〉 is any inner product then there is a unique A∗ ∈Mn(R),
called the adjoint of A (with respect to 〈 , 〉) such that

〈Ax,y〉 = 〈x, A∗y〉

for all x,y.

Example A.1. If P ∈ Mn(R) is an irreducible Markov matrix with stationary
distribution π, then P is reversible if for all i, j, πipij = πjpji, which is equivalent
to saying that the invariant measure that P induces on [n]Z is the same as the
reverse measure, i.e., the “time reversal” of this Markov chain is the same as the
original chain (see elsewhere in these notes and/or [LP17] for details). In this case
we have

〈Px,y〉π = 〈x, Py〉π,
where

〈x,y〉π =

n∑
i=1

xiyiπi

(which we easily see an inner product) and similarly

〈xTP,yT〉1/π = 〈xT,yTP 〉1/π,

where (we view Rn as row vectors, which is what P really operates on...), and

〈xT,yT〉1/π =

n∑
i=1

xiyi(1/πi).

It follows from the theory of symmetric operators—which is a straightforward gen-
eralization of the theory of symmetric matrices—that P has real eigenvalues with
a (real) orthonormal eigenbasis of eigenvectors with respect to 〈 , 〉π and of left
eigenvectors with respect to 〈 , 〉1/π.

A.3. Complex Dot Products and Inner Products. We follow the conventions
of [HJ85, HJ13], e.g., Section 0.6. Here the standard dot product on Cn is written
〈x,y〉 = y∗x, where ∗ is the conjugate transpose; it is more common to see H

written for the conjuage transpose elsewhere in the literature.
We say that A is Hermitian if AH = A; this is the usual way to extend the

notion of a symmetric matrix to Mn(C); indeed, it turns out that any Hermitian
matrix has real eigenvalues and a (generally complex) orthonormal eigenbasis with
respect to the complex dot product.

Similarly the usual way of generalizing the notion of an orthogonal matrix to
Mn(C) is a unitary matrix, meaning a matrix U ∈ Mn(C) for which U∗ = U or
UH = U , or, equivalently, a matrix whose rows (and therefore all its columns) form
an orthonormal complex eigenbasis of Cn.

A.4. Matrix Norms. (See [HJ85, HJ13], Section 5.6.)
By a matrix norm one means a norm on Mm,n(R) that—at the very least—

is a norm when we identify Mm,n(R) with Rmn (or the same with C). When
we are working on a context where it makes sense to multiply matrices, we want
‖AB‖ ≤ ‖A‖ ‖B‖.
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For example, when n is fixed and Mn(R) is viewed as operating on Rn, then
likely want this; in this way, for example, ‖Ak‖ ≤ ‖A‖k.

Example A.2. Let V1, V2 be vector spaces with respective norms ‖ ‖1, ‖ ‖2. Then
if L : V1 → V2, then

‖L‖ = max
v1 6=0

‖Lv1‖2
‖v1‖1

= max
‖v1‖1=1

‖Lv1‖2

measures the maximum amount that L “stretches the first norm with respect to
the second;” this is often called the induced operator norm. We easily see that if
L′ : V2 → V3 is a map to a vector space, V3, with norm ‖ ‖3, then ‖L′L‖ ≤ ‖L′‖ ‖L‖.

Example A.3. Concretely, if p ∈ [1,∞], and A ∈Mn(R), then we write ‖A‖p for
the above operator norm induced from ‖ ‖p on Rn. It turns out that ‖A‖∞ and
‖A‖1 are quite simple to compute directly, as they are the maximum row sum of
absolute values and, respectively, column sum.

A.5. The Resultant and Discriminant. Our approach to the next subsection
will use the notion of the discriminant which we now review.

Recall that two polynomials r(t), s(t) with real or complex coefficients7 have a
common factor t− α with α ∈ C,8 iff α is a common root of r(t), s(t), iff r(t)s̃(t) +
s(t)r̃(t) = 0 where deg(s̃) < deg(s) and deg(r̃) < deg(r); moreover, one can use
Euclid’s algorithm to find the greatest common factor of r and s. The condition
r(t)s̃(t) + s(t)r̃(t) = 0 is equivalent to the equation
(46)

[
s̃0 · · · s̃k−1 r̃0 · · · r̃k′−1

]


r0 r1 · · · rk
. . .

. . .
. . .

. . .

r0 r1 · · · rk
s0 s1 · · · · · · sk′

. . .
. . .

. . .
. . .

. . .

s0 s1 · · · · · · sk′


= 0T

in the coefficients of r, s, r̃, s̃ (i.e., r(t) = r0 + · · ·+ rkt
k, etc.) [In (46) we depict the

case k < k′, where deg(r) = k, deg(s) = k′; however, we may well have k = k′ or
k > k′.] The determinant of the square matrix in (46) is called the resultant of r, s.

If p(t) is any polynomial, then p(t) has a repeated root (i.e., at least one root
with multiplicity at least two) iff p(t) and its derivative p′(t) have a common factor.
Hence, setting r(t) = p(t) and s(t) = p′(t) (46), p(t) has a repeated root iff

(47) Det



p1 2p2 · · · (k − 1)pk
. . .

. . .
. . .

. . .

p1 2p2 · · · (k − 1)pk
p0 p1 · · · pk−1 pk

. . .
. . .

. . .
. . .

. . .

p0 p1 · · · pk−1 pk


7All this discussion works with coefficients in any field, provided that C is replaced by the

algebraic closure of the field.
8 which for polynomials over R implies that either α ∈ R or they have a common real polynomial

factor (t− α)(t− α)
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vanishes. For example, if p(t) = at2 + bt+ c, then

det

b 2a 0
0 b 2a
c b a

 = a(b2 − 4ac),

which expresses the fact that if p is truly of degree 2, i.e., a 6= 0, then p has repeated
roots iff b2 − 4ac (the discriminant of p) vanishes.

A.6. The Approximation of Matrices by Diagonalizable Matrices. In this
section we prove the following theorem very useful theorem.

Theorem A.4. Let A ∈Mn(R). Then there exists A1, A2, . . . with distinct eigen-
values such that Am → A as m→∞. Similarly if A is symmetric. Similarly with
C replacing R, and Hermitian replacing symmetric.

Here Am → A as m→∞ can be taken to mean that each entry of Am tends to
that of A; it is equivalent to say that ‖Am −A‖ → 0 in any matrix norm.

There are a number of ways to prove this theorem. We will give a proof based
on the following fact.

Lemma A.5. For any n ∈ R, there is a (nonzero) polynomial qn in the variables
aij with i, j ranging over [n], such that A = (aij) has a multiple eigenvalue iff
qn(aij) = 0.

Proof. We have

pA(t) = det(tI −A) = tn + r1(aij)t
n−1 + · · ·+ rn(aij)

where rk(aij) is a polynomial of degree k in the variables aij (i.e., given by (−1)k

times the sum of determinants of the k× k principal minors of A). Since pA(t) has
leading coefficient 1, pA(t) is of degree n, and hence we take qn(aij) to be as in
(47) with pi(aij) = rn−i(aij). Since there exist matrices inMn(R,C) with distinct
eigenvalues, qn is not the zero polynomial. �

Proof of Theorem A.4. Let D diagonal matrix with distinct diagonal elements.
Consider for ε ∈ R, Aε = A + ε(D − A). Then if qn is as in Lemma A.5, we
have r(ε) = qn(Aε) is a nonzero polynomial, since A1 = D so r(1) 6= 0. Hence
r(ε) has at most finitely many zeros, so for ε sufficiently close to 0 we have Aε has
distinct eigenvalues.

Moreover, if A is symmetric or Hermitian, then so is Aε. �

A.7. The Cayley-Hamilton Theorem. This theorem says that if A ∈
Mn(R,C), then pA(A) = 0, i.e., the characteristic polynomial of A applied to A is
the all 0’s matrix (understood in the context of n × n matrices, where a constant
represents this constant times the identity matrix)

There are two proofs that one typically sees first, in that they rely on important
general principles; however, there is a third proof that uses the Schur decomposition,
which is a nice way to view unitary matrices (e.g., from Quantum mechanics)—i.e.,
as a special case of normal matrices—which we will do in Subsection ??.

Proof 1: For any eigenvector, v, of A, pA(A)v = 0 since pA(t) has a factor of
t − λ for each eigenvalue λ. Hence pA(A) = 0 for any diagonalizable matrix, A,
since there is a basis of eigenvectors. In general there is a sequence of diagonalizable
matrices Am tending to A, and by continuity of the characteristic polynomial we
have pAm(Am) = 0 implies pA(A) = 0.
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Proof 2: It suffices to show that p(AT) = 0. Let I denote the n × n identity
matrix, and let M be the block n× n matrix

M =


a11I −AT a12I · · · a1nI
a21I a22I −AT · · · a2nI

...
...

. . .
...

an1I an2I · · · annI −AT

 .
We see that

(48) M


e1

e2

...
en

 = 0,

which is a bit more visible in an example, such as2I −
[
2 4
3 5

]
3I

4I 5I −
[
2 4
3 5

]



1
0
0
1

 = 0.

For any B ∈Mn(R,C) we have

adj(B)B =

detB
. . .

detB

 ,
where adj(B) is the the adjugate (see [HJ85, HJ13], Section 0.8, also called the
classical adjoint). Notice that this formula holds in any context where B = [bij ]
and the bij lie in any setting with a commutative addition and multiplication (with
certain standard properties, such as having additive inverses so it makes sense to
speak of −r for each element r, i.e., a commutative ring), we can use polynomials in
A as the entries of B (where the constant 1 polynomial is taken to mean A0 = I),
and multiply (48) by the adjugate of M and conclude that

pA(AT) 0 · · · 0
0 pA(AT) · · · 0
...

...
. . .

...
0 0 · · · pA(AT)




e1

e2

...
en

 = 0.

Hence pA(AT)ei vanishes for all i ∈ [n], and hence pA(AT) is the zero matrix.
Proof 3: The proof in [HJ85, HJ13]uses the Schur decomposition, see Section 2.4

there, or Subsection ?? of these notes). This technique is extremely useful when
we discuss normal matrices.

A.8. The Supremum and Compactness. When you prove Rolle’s Theorem in
calculus (used to prove the Mean-Value Theorem and Taylor’s Theorem), you need
to use the fact that any continuous function f : [a, b] → R attains its maximum
somewhere on [a, b]. It is easy to see that this is not true if [a, b] is replaced by
an open interval (a, b) or an unbounded interval such as (−∞, b). But how do you
prove this? In this subsection we will discuss the main ingredients of a standard
proof: supremum and compactness.
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[This is why you take a course like UBC’s Math 320, which is often called “real
variables,” which in the past was called “advanced calculus.”] In this class we will
see quite a few applications of these ideas; one can often circumvent the need for
these ideas, but they will provide valuable insight, especially when we consider
“perturbations” of matrices.

A.8.1. The Supremum or Least Upper Bound (and Infimum or Greateset Lower
Bound).

Lemma A.6. Let S ⊂ R be nonempty and have an upper bound B ∈ R, i.e, we
have s ≤ B for all s ∈ S. Then S has an upper bound M such that if M ′ < M ,
then M ′ is not an upper bound on M . Moreover, there is a sequence s1, s2, . . . of
elements of S (which are not necessarily distinct) such that si →M as i→∞.

The value M above is called the least upper bound or supremum of S. One
can prove this using bisection, repeatedly taking an element s ∈ S and the upper
bound B, and considering whether or not (s + B)/2 is an upper bound for S (see
Exercise ??.

Behind the scenes of any proof of Lemma A.6 you essentially need to know that
if s1, s2, . . . is a Cauchy sequence of real numbers, i.e., such that as i, j → ∞,
|si − sj | → 0, then s1, s2, . . . has a limit s ∈ R; at the very least—when using a
bisection argument—you need to know this in the case |si+1 − si| ≤ C/2i for a
constant C. This is not true if R is replaced with the set of rational numbers.

If S is unbounded from above, i.e., does not have an upper bound, then one
defines it supremum to be +∞; one defines the supremum of the empty set to be
−∞ (if one really needs to). One similarly defines the infimum or greatest lower
bound of a set S, which equals − sup(−S).

A.8.2. Compactness. The other idea we need to prove Rolle’s theorem is compact-
ness: any closed interval [a, b] ⊂ R is compact in the sense that any sequence,
s1, s2, . . . in [a, b] has a convergent subsequence. One can prove this using bisec-
tion: let s1 be the first element of the subsequence; consider m = (a + b)/2 is the
interval’s midpoint: infinitely many of s1, s2, . . . must lie in at least one of [a,m]
and [m, b]; if, say, [a,m] has infinitely many, then choose a new element of s1, s2, . . .
in [a,m] and consider the midpoint of this interval; etc.

From this it easily follows (EXERCISE) that the unit ball in any Lp-norm (in-
cluding p = ∞) is compact. More generally, a subset of Rn is compact iff it is
bounded and closed. We won’t explain this in detail, but if follows that if S is any
bounded set that is defined as the zero set of a number of continuous function, then
S is compact; this is another way to see that the unit ball in the norms above—or
any norm on Rn or Cn (defined similarly)—is compact.

From this it follows that for each m we have an orthonormal basis, xm1 , . . . ,x
m
n

of Rn or Cn, then by passing to a subsequence of m = 1, 2, . . . we may assume that
xmi has limit, xi, for i ∈ [n], and then by continuity of the dot product we have
that x1, . . . ,xm is orthonormal basis (EXERCISE).

[Now we can outline a proof of the above ingredient of Rolle’s Theorem, or leave
it for exercises.]

A.9. The Brouwer Fixed-Point Theorem. We are unlikely to need the Brouwer
fixed-point theorem in this course, but sometimes it can simplify proofs (at the risk
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of obscuring a more efficient algorithm for finding these fixed points than a general
algorithm for finding Brouwer fixed-points).

Theorem A.7. Let f : Bn → Bn be a continuous map from the closed unit ball in
Rn to itself. Then f has a fixed point.

Hence the same theorem holds with Bn replaced with any topological space
homeomorphic to Bn.

Proof. If not, consider the map g : Bn → Sn−1, where Sn−1 is the unit sphere
in Rn, and g(x) is given by the point on the ray from f(x) in the direction of x
(that intersects Sn−1, which is well-defined if f has no fixed point). Then g takes
Sn−1 ⊂ Bn to itself. Hence if h : Sn−1 → Bn is the inclusion, then g ◦ h is the
identity, which means that any homology, cohomology, and homotopy group on
Sn−1 factors through that on Bn. But for n ≥ 2, Sn−1 has non-trivial homology,
cohomology, and homotopy groups of degree greater than 0 (which Bn does not),
and for n = 1 Sn−1 has two connected components (and Bn has only one). �

[More generally, a map g from a topological space, X, to a subspace, Y , is
called a retraction if g is the identity when restricted to Y . Hence, as above,
if h : Y → X is the inclusion, then for any topological functor (or “functorial
topological invariant”), either covariant or contravariant, its value on Y factors
through that on X via g ◦ h.]

Replacing Bn with an n-simplex, and taking successively finer triangulations of
Bn, one can alternatively use Sperner’s lemma to find the fixed point; this seems
analogous to the above proof where one computes (co)homology via successively
finer triangulations, except that Sperner’s lemma identifies a particular triangle of
the triangulation (which can be arbitrarily fine) that must contain a fixed point.
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