CPSC 531F March 30,2021
Today:

- 2 other proofs that symmetric matrices are diagonalizable with an ON basis
- Perron-froberius the
$=$

some currently open reseautch problems

Important idea!
Let's say thot $A=A^{\top}, A \in h_{n}(\mathbb{R})$ say that A has distind eigenvelues,

$$
\lambda_{1}, \ldots, \lambda_{n} .
$$

(1) λ i are red:

Define otadord inner product on (1) ${ }^{n}$

$$
\begin{aligned}
\langle\vec{u}, \vec{v}\rangle & \left.=\underline{\vec{v}^{*} \vec{u}} \text { (Harre Lō̈ohron) }\right) \\
& =\vec{v}^{H} \vec{u} \\
& \left.=\begin{array}{l}
H=\alpha= \\
\text { conjugute } \\
\text { trinspose }
\end{array}\right)
\end{aligned}
$$

$$
\overline{a+i b}=a-i b, \quad a, b \in \mathbb{R},
$$

Warning? $\langle\alpha \vec{u}, \vec{v}\rangle, \alpha \in C$

$$
=\alpha\langle\vec{u}, \vec{v}\rangle
$$

but

$$
\langle\vec{u}, \alpha \vec{v}\rangle=\bar{\alpha}\langle\vec{u}, \vec{v}\rangle
$$

BUT, THERE IS NO UNIFORM CONVENTLON ON THIS: ELSEWHERE

$$
\begin{aligned}
& \langle\vec{u}, \vec{v}\rangle:=\bar{u}_{1} v_{1}+\ldots+\bar{u}_{n} v_{n} \\
& \text { then }\langle\alpha \vec{u}, \vec{v}\rangle=\bar{\alpha}\langle\vec{u}, \vec{v}\rangle \ldots
\end{aligned}
$$

We wont!

$$
\begin{aligned}
\langle\vec{a}, \vec{u}\rangle & =\left|u_{1}\right|^{2}+\ldots+\left|u_{n}\right|^{2} \\
\text { So } & u_{1} \bar{u}_{1}+u_{2} \bar{u}_{2}+\ldots \\
& =\bar{u}_{1} u_{1}+\bar{u}_{2} u_{2}+\ldots
\end{aligned}
$$

If $A=A^{\top}, A \in m_{n}(R)$, and

$$
A \vec{u}=\lambda \vec{u}, \quad \vec{u} \neq 0 \text { bot } \lambda \in \mathbb{C}
$$

(Since λs of rotation generally complex $)$

$$
\begin{aligned}
\langle A \vec{u}, \vec{u}\rangle & =\vec{u}^{H} A \vec{u} \\
& =\left(A^{H} \vec{u}\right)^{H} \vec{u} \\
& =\left\langle\vec{u},\left(A^{H} \vec{u}\right\rangle\right. \\
& =\langle\vec{u},(A \vec{u}\rangle
\end{aligned}
$$

Remark:

$$
\langle A \vec{u}, \vec{u}\rangle=\langle\vec{u}, A \vec{u}\rangle
$$

only really use $A^{H}=A \cdot K$

$$
(\bar{A})^{\top} \quad \text { Hermitian }
$$

If $A \in m_{n}(\mathbb{R}), A^{\top}=A$ or $A \in m n(\mathbb{C}), A^{H}=A$ then

$$
\langle\langle\vec{u}, \vec{u}\rangle=\langle\vec{u}, A \vec{u}\rangle
$$

also

$$
\langle A \vec{u}, \vec{v}\rangle=\langle\vec{u}, A \vec{v}\rangle\rangle
$$

es $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right], A=\left[\begin{array}{cc}3 & 1+7 i \\ 1-7 i & 2\end{array}\right]$
$A^{\top}=A$, red, $\quad A^{H}=A$
(1) $A \vec{v}=\lambda \vec{v}, \vec{v} \neq 0, \lambda \in \mathbb{R}$ if A redsymmatric (or Hermitian)

$$
\begin{aligned}
&\langle A \vec{v}, \vec{v}\rangle=\langle\vec{v}, A \vec{v}\rangle \\
&\langle\lambda \vec{v}, \vec{v}\rangle=\langle\vec{v}, \lambda \vec{v}\rangle \\
&\lambda \underbrace{\prime \prime}_{\neq 0} \vec{v}, \vec{v}\rangle=\bar{\lambda} \underbrace{\langle\vec{v}, \vec{v}\rangle}_{\neq 0} \\
& \lambda=\bar{l}, \text { sc } \lambda \in \mathbb{R}
\end{aligned}
$$

(2) If $A \vec{v}=\lambda \vec{v}$ a.

$$
A \vec{\omega}=\mu \vec{\omega}
$$

and $\lambda \neq \mu$, then $\vec{v} \perp \vec{\omega}$:

$$
\begin{aligned}
& \langle A \vec{v}, \vec{w}\rangle=\langle\vec{v}, A \vec{w}\rangle \\
& 1, \\
& \langle\lambda \stackrel{\rightharpoonup}{v}, \vec{\omega}\rangle=\langle\stackrel{\rightharpoonup}{v}, \mu \vec{\omega}\rangle \\
& \lambda\langle\vec{v}, \vec{w}\rangle \quad\langle\vec{v}, \vec{w}\rangle \bar{\mu} \\
& \langle\vec{v}, \vec{w}\rangle \mu
\end{aligned}
$$

$$
\begin{array}{r}
(\lambda-\mu)\langle\vec{v}, \vec{w}\rangle=0 \\
\lambda+\mu \Rightarrow\langle\vec{v}, \vec{w}\rangle=0
\end{array}
$$

So A has distinct eigenvalues

$$
\lambda_{n}<\ldots<\lambda_{2}<\lambda_{1}
$$

A has eigenvectors $A \vec{v}_{i}=\lambda_{i} \vec{V}_{i}$ and $\vec{V}_{i} \perp \vec{V}_{j}$ for $i \neq j$
So $\vec{V}_{1}, \ldots, \vec{v}_{n}$ are motuclty orthogonal Could take $\widehat{V}_{i}=\vec{V}_{i} /\left|\vec{V}_{i}\right|$

We've proved: $A=A^{\top}$ real
or

$$
A=A^{H}
$$

then
if A has distiral eigenvalues, then A has ON eigrnbusis.

Principle: If A is $A=A^{\top}$ real or $A=A^{H}$, there exist

$$
A_{1}, A_{2}, \ldots
$$

sit. (1) $\lim _{m \rightarrow \infty} A_{m}=A$
(2) A_{m} are $\left\{\begin{array}{l}\text { Hermitian } \\ \text { real symmetric }\end{array}\right\}$ if A is

consider

$$
\begin{aligned}
& A_{1}=A(1), A_{2}=A\left(\frac{1}{2}\right), A_{3}=A\left(\frac{1}{3}\right), \\
& \cdots \text { So } A_{m}=A\left(\frac{1}{m}\right) \rightarrow A \\
& m \rightarrow \infty
\end{aligned}
$$

Clam: $\hat{R}(\varepsilon), \varepsilon \in \mathbb{R}$ has distinct eigenvalues for all Lat at most finitely
uclues of ε :
Mareaver: $B \in m_{n}(\mathbb{N}), m_{n}(\mathbb{C})$,
B has distind eigenvalues

$$
\begin{gathered}
\Leftrightarrow \operatorname{pol}_{1 n}\left(b_{11}, b_{12}, \ldots, b_{1 n}, b_{21, \ldots}, b_{n n}\right) \\
=0
\end{gathered}
$$

$$
=
$$

\Leftrightarrow teher poly (λ) has distmod roots

$$
p(\lambda)=c_{0}+c_{1} \lambda+c_{2} \lambda^{2}+\ldots+c_{n} \lambda_{1}^{n}
$$

$c_{n} \neq 0$, p has dirtuct reds iff
$p^{\prime}(\lambda)$ and $p(\lambda)$ don't have a cenamen root
eig.

$$
A \lambda^{2}+B \lambda+C=0
$$

dalk-rod iff $\quad B^{2}-4 A C=0$
In partizutior

$$
A(\varepsilon)=A(1-\varepsilon)+\varepsilon\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& 3 & 0 \\
0 & \ddots & n
\end{array}\right)
$$

then $A(\varepsilon)$ has dirimet routs iff some poly ir entries of
is 0 . So distinct eigrountors
iff poly $q_{n^{\prime}}(\varepsilon)=0$.
Bot $A(1)=A(t-1)+1 \cdot\left[\begin{array}{lll}1 & & \\ & 2 & \\ & & \\ & & n\end{array}\right]$ this has distend routs. So $q_{A}(\varepsilon)$
is not the zere p-lynomual.
Herge $q_{A}(\varepsilon)$ has only fivitely many roots.

"homotapy $A(\varepsilon)=A \cdot(1-\varepsilon)+() \varepsilon$

$$
\begin{aligned}
& A(o)=A \\
& A(1)=\left[\begin{array}{ll}
l_{2} & 0^{\prime} r \\
0_{5}^{\prime} & n
\end{array}\right]
\end{aligned}
$$

(1) $A=A^{H} \quad\left(\right.$ or $A=A^{\top}$ real)
if A has dirtinet eigenulves, J ON eigenbusis f.r A
(2) There is $\left.\begin{array}{cc}A_{1}, A_{2}, & A_{m} \rightarrow A \\ d & \downarrow \\ A(1) & A\left(\frac{1}{2}\right) \\ A\left(\frac{1}{m}\right)\end{array}\right)$
threw eot any $A\left(\frac{1}{m}\right)$ wirl multiple cigenvilues.

So each A_{m} has av eigenbanis.
(3) If you have

Am have ON eigentesis

$$
\stackrel{\rightharpoonup}{V}_{m, 1}, \vec{V}_{m, 2}, \ldots, \stackrel{\rightharpoonup}{V}_{m, n}
$$

then a subsequence of

$$
\begin{aligned}
& m_{1}, m_{2}, m_{3} \rightarrow \infty \\
& \vec{V}_{m_{j}, i} \rightarrow \stackrel{V}{i}
\end{aligned}
$$

ad $\stackrel{\rightharpoonup}{V}_{1, \ldots,} \vec{V}_{n}$ is an ON eigchbsis
for A.

Rem!

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], \\
& A(\varepsilon) \\
& =\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right](1-\varepsilon)+\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \varepsilon \\
&
\end{aligned}=\left[\begin{array}{ll}
3-\varepsilon & 0 \\
0 & 3-2 \varepsilon
\end{array}\right] .
$$

get each $A(\varepsilon)$, ex

$$
3-\varepsilon=3-2 \varepsilon \quad(\varepsilon=0) \text { hes }
$$

distind eigenvalues, eigenvadus \vec{e}_{1}, \vec{e}_{2}

not necessarily limits to a sequence of AN vectors, bat there is a subsequence

That renverges \Rightarrow CompactNgess of set of ON-eigenvedus
i.e.
$O(n)=$ greup ner ortheganal metrices, this is compuet

4 minute brack

- Perrer-Frobenivs thm
- zrd Pruol involves
"nermal matries"

When dues $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ have multiple roots?

$$
\begin{aligned}
& \operatorname{char}_{A}(\lambda)=\operatorname{det}(\lambda \pm-A) \\
& =\operatorname{det}\left[\begin{array}{cc}
\lambda-a_{11} & -a_{12} \\
-a_{21} & \lambda-a_{22}
\end{array}\right] \\
& =\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right)-a_{21} a_{12} \\
& =\lambda^{2} c_{2}+\lambda c_{1}+C_{0} \\
& \frac{1}{l} \quad-\operatorname{trace}(A) \\
& \operatorname{det}(A)
\end{aligned}
$$

$$
=p_{A}(\lambda)
$$

When does this hare doling rets

I cunt be the zero poly:
$\left[\begin{array}{ll}1 & 5 \\ c & 2\end{array}\right]$ has roots in its char polly

$$
A(\varepsilon)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right](1-\varepsilon)+\varepsilon\left[\begin{array}{ll}
7 & 0 \\
0 & 8
\end{array}\right]
$$

$A(\varepsilon)$ has multipte eijefretues iff $P\binom{$ tow enthors }{1,}$=0$

$$
\begin{aligned}
& A(\varepsilon)=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]+\varepsilon\left[\begin{array}{cc}
1 c & c \\
c & 10
\end{array}\right]\binom{\because}{\ominus}
\end{aligned}
$$

$$
\begin{gathered}
(-\operatorname{truce}(A))^{2}-4 \cdot 1 \cdot \operatorname{det}(A)=0 \\
\Gamma \\
A(C)
\end{gathered}
$$

here $(4+10 \varepsilon)-2)^{2}-4 \cdot 1 \cdot(4+10 \varepsilon)^{2}$

$$
\begin{aligned}
& A(\varepsilon)=\underbrace{\text { any,thy }}(1-\varepsilon)+\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]} \varepsilon \\
& P\binom{\text { forr cintro }}{1,}=p(\varepsilon),
\end{aligned}
$$

any

$$
A(\varepsilon)=\left[\begin{array}{c}
\operatorname{soh}(\varepsilon) \widetilde{\operatorname{pd}}(\varepsilon)-- \\
1
\end{array}\right]
$$

Mere gereroly

thee is

$$
P\left(a_{\text {entries }}^{\int}\right)=0
$$

iff A has at least ore mutliple sifench

Cluss ends

