March 18, 2021 CSC 531F

- Problens up to now + a $f_{i w}$ added today \& tomorrow = Homework 2
- From here $\left\{\begin{array}{l}\text { Homework 3 } \\ \text { Presentation \& Notes }\end{array}\right.$

$$
\text { for Presentations - }\left\{\begin{array}{l}
\text { email me } \\
\text { speck to me }
\end{array}\right.
$$

- Homework - cite other references, bot write out any proofs in your own words (in class notation) rather then joust cite a theorem
- Homework! "Write down," give" (also explain or justify unless explicitly saying not to)

If you want, hand in $H_{\omega} 2$ for feed back, up to 2 weeks from today.

Hand in all homework 2 weeks after last problem assigned.

Most recent problems! I give ≈ 8 problems, alsked for at least 5

Last time!
"Variation Principle
We had inner product space $V_{\text {, }}$, ($\mathbb{R}=$ scalars, also $\mathbb{C}=$ as scalars wald also work).
No harm in thinker of $V=\mathbb{R}^{n}$, but everything goes through for n-dimensional vector spaces, with inner product: $($, or $(,)_{\bar{V}}$

Formolly $(,) \vec{V}$ is a map

$$
\begin{aligned}
& \bar{V} \times \bar{V} \rightarrow \mathbb{R}_{1} \text { write }\left(\vec{v}_{1}, \vec{v}_{2}\right)_{\bar{V}} \\
& \vec{v}_{1} \quad \vec{v}_{2} \longmapsto\left(\vec{v}_{1} \vec{v}_{2}\right)_{\bar{V}}
\end{aligned}
$$

E.g.
(1) $\left(\stackrel{\rightharpoonup}{V}_{1}, \vec{V}_{2}\right)=\stackrel{\rightharpoonup}{V}_{1} \cdot \vec{V}_{2}$
(2) Ma-kov matrices, P, revisille!

$$
(\vec{u}, \stackrel{\rightharpoonup}{v})_{\vec{\pi}}=\sum_{i=1}^{n} u_{i} v_{i} \pi_{i}
$$

and

$$
(P \vec{u}, \vec{v})_{\vec{\pi}}=(\vec{u}, P \vec{v})_{\vec{\pi}}
$$

we scy P is self-adjant
writ inner product $(,) \frac{\lambda}{\pi}$, where $\vec{\pi}=$ stationer distribution

$$
R_{\mathcal{L}}(\vec{v})=\frac{(\mathcal{L} \vec{v}, \vec{v})}{(\vec{v}, \vec{v})}
$$

$\mathcal{L}: \bar{V} \rightarrow V\left(\right.$ erg. $\bar{V}=\mathbb{R}^{h}$) $\mathcal{L}(\vec{v})=A \vec{v}$ for same $\left.A \in m_{n}(\mathbb{N})\right)$

Step (: Imagine that $R_{\mathcal{L}}(\vec{v})$ has its maximum at \vec{v}^{*}

Step 2! We take $\vec{\omega} \in \mathbb{R}^{n}$

$$
\stackrel{\rightharpoonup}{V}_{\varepsilon}=\vec{V}^{k}+\varepsilon \stackrel{\rightharpoonup}{\omega}
$$

$(\varepsilon \in \mathbb{R}$, think of ε small $)$

$$
f(\varepsilon)=R_{\mathcal{L}}\left(\vec{v}_{\varepsilon}\right)
$$

by assumption $\varepsilon=0$ is a maximum of $f(\varepsilon)$, ie. $f^{\prime}(0)=0$ (assuming f is differentiable near $\varepsilon=0$)

$$
\begin{array}{r}
R_{\mathcal{L}}\left(\vec{v}_{\varepsilon}\right)=c_{0}+c_{1} \varepsilon+c_{2} \varepsilon^{2} \\
=c_{0}+c_{1} \varepsilon+\operatorname{arder}\left(\varepsilon^{2}\right) \\
R_{\mathcal{L}}\left(\vec{v}^{*}\right) \\
c_{1}=\operatorname{messy} \ldots \\
c_{1}=0!!
\end{array}
$$

Rayleigh quotient - diagonalizing the $\Delta=$ Laplace operator

Then!
(1) The variational consideration shows

$$
\mathcal{L}\left(\stackrel{\rightharpoonup}{V}^{k}\right)=c_{1} \stackrel{\rightharpoonup}{V}^{k}
$$

this had to arefhegand to any vector orthogand to \vec{v}^{k}
$A_{\text {so }} \quad \stackrel{V}{k}^{\star} \rightarrow \vec{V}_{1}$

$$
c_{1} \rightarrow \lambda_{1}=R_{\mathcal{L}}\left(\vec{v}_{1}\right)
$$

Now we get $\vec{v}_{2} \ldots$

$$
\text { Consider } \quad \begin{aligned}
\text { to got intuition, } \\
\text { think of } \stackrel{\rightharpoonup}{v} \cdot \vec{V}_{1}
\end{aligned}
$$

Imagine \vec{V}_{2} maximizes

$$
R_{\mathcal{L}}(\vec{v}) \text { over all } \vec{v} \in\left(\vec{v}_{1}\right)^{\perp}
$$

$$
\left(\left.\vec{V}_{1}\right|^{\perp} \cap\left\{\stackrel{\rightharpoonup}{v} \mid v_{1}^{2}+\ldots t v_{m}^{2}=1\right\}\right.
$$

this set is also (sequentially) compact (i.e., closed and banded),

Similes calculation !

$$
\rightarrow\left\{\text { if } \stackrel{\rightharpoonup}{\omega} \perp \vec{v}_{1} \text { and } \vec{v}_{2}\right.
$$

then consider!
$R_{\mathcal{L}}\left(\stackrel{\rightharpoonup}{v}_{2}+\varepsilon \vec{w}\right)$ has max out $\varepsilon=0$

$$
\left(\mathcal{L}\left(\stackrel{\rightharpoonup}{V}_{2}\right), \vec{V}_{1}\right)=\left(\vec{V}_{2}, \mathcal{L} \stackrel{\rightharpoonup}{V}_{1}\right)
$$

$$
\begin{aligned}
& \mathcal{L} \text { is self-adjant }=\left(\vec{v}_{2}, \lambda \vec{v}_{1}\right) \\
& =\lambda\left(\vec{v}_{2}, \vec{v}_{1}\right)=0 \\
& \mathcal{L}\left(\vec{v}_{2}\right)=\hat{c}_{2} \vec{v}_{2} \\
& =
\end{aligned}
$$

Now (ode at

$$
\left(\vec{V}_{1}, \vec{V}_{2}\right)^{\perp}=\left\{\begin{array}{l|l}
\vec{V} \in V & \left.\begin{array}{ll}
\vec{V} & \text { is orthoy } \\
\text { to bout } \vec{V}_{1}, \vec{V}_{2}
\end{array}\right\}
\end{array}\right\}
$$

condsido max $R_{2}(\vec{v})$ over ${ }_{2}$, imagine its maximum is attained at \vec{v}_{3}, etc...

This gives us

$$
\stackrel{\rightharpoonup}{v}_{1}, \vec{v}_{2}, \ldots, \stackrel{\rightharpoonup}{v}_{n}
$$

with $\mathcal{L}\left(\vec{V}_{i}\right)=\lambda_{i} \vec{V}_{i}$ and
 $\vec{v}_{1, \ldots,} \vec{v}_{n}$ are a basis of \bar{V}

We have proven:

The! If (,) is ar inner product on \mathbb{R}^{n} or any n-dimension \mathbb{R}-vector space, V, and $\mathcal{L}: \bar{V} \rightarrow \mathbb{V}$ sit.

$$
(\mathcal{L} \stackrel{\rightharpoonup}{u}, \vec{v})_{\bar{v}}=(\vec{u}, \mathcal{L} \vec{v})_{\bar{v}}
$$

for all \vec{u}, \vec{v}, i.e. \mathcal{L} is
self-cdjoint, the \mathcal{E} has an orthonormal eligenbasios

$$
\left(\begin{array}{cc}
\text { replace } & \vec{V}_{i}=\vec{V}_{i} /\left\|\vec{V}_{i}\right\| \\
\text { here } & \|\vec{v}\|=\sqrt{(\stackrel{\rightharpoonup}{v}, \vec{v})}
\end{array}\right) \text {. }
$$

Question :
Any continues function on \vec{x} sit.

$$
x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=1 \text { (*) }
$$

has a maximum, why of

$$
\begin{aligned}
& \vec{x} \in\left\{\vec{x} \mid x_{1}^{2} r^{\ldots}+x_{n}^{2}=1\right\} \text { and } \\
& \left\{\begin{array}{l|l}
\vec{x} \mid & \left(\vec{x}, \vec{v}_{1}\right)=0 \\
& \left(\vec{x}, \vec{v}_{2}\right)=0
\end{array}\right\}
\end{aligned}
$$

Closed: $\quad a \leqslant x \leqslant b$ closed condition

$$
a<x<b \text { not }
$$

Singular -Valve Decomposition:
If $A=\left(a_{i j}\right) \in m_{m, n}(\mathbb{R})$
let

$$
\|A\|_{F_{r o b}}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}
$$

Some as viewing $A \in \mathbb{R}^{m \times n}$ view ct $\mathbb{R}^{m n}$ take usual Eaclien norm

$$
\|A\|_{\text {Frob }}^{2}=\sum_{i, j}\left|a_{i j}\right|^{2}
$$

for comptations

$$
\begin{aligned}
& \sum_{i, j}\left|a_{i j}\right|^{2}=\operatorname{Tr}\left(A A^{\top}\right) \\
&=\operatorname{Tr}\left(A^{\top} A\right) \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& = \\
& a_{11}^{2}+a_{12}^{2}+a_{12}^{2} \quad a_{21}^{2}+a_{22}^{2}+c_{23}^{2} \\
& \operatorname{Tr}()=\sum_{i, j} a_{i j}^{2} \\
& \text { = } \text { Córanke = dibon(imare) } \\
& \text { Consider } \\
& \text { rackl matrix } \\
& f(\vec{u}, \vec{v})=\|\mid A-\vec{u} \vec{v} T\|_{\hat{u}}^{2} \\
& \vec{u} \in \mathbb{R}^{m}, \vec{v} \in \mathbb{R}^{n} \quad m \times n
\end{aligned}
$$

$$
\begin{aligned}
& \vec{u} \leftrightarrow \mathbb{R}^{m \times 1}, \vec{v}^{\top} \leftrightarrow \mathbb{R}^{1 \times n} \\
& \vec{u} \vec{v}^{\top} \in \mathbb{R}^{m \times n}
\end{aligned}
$$

Considar

$$
\min _{\vec{u} \in \mathbb{R}^{m}}^{\vec{v} \in \mathbb{R}^{n}}
$$

why?
Imagive thet this minimem is attcined at $\vec{u}=\vec{u}^{*}, \vec{v}=\vec{v}^{*}$.

Now: Varictiaal principle \Rightarrow SVD

4 minute break
We consider
variation

$$
g(\varepsilon)=f\left(\vec{u}^{*}, \vec{v}^{k}+\varepsilon \vec{\omega}\right)
$$

we have $g^{\prime}(0)=0 \quad L$

$$
\begin{gathered}
c_{0}+\varepsilon c_{1}+\varepsilon^{2} c_{2} \ldots \\
\downarrow \\
c_{1}=0 \\
g(\varepsilon)=\left\|A-\vec{u}^{*}\left(\vec{v}^{*}+\varepsilon \vec{\omega}\right)^{\top}\right\|_{F}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Tran}\binom{\left(A-\vec{u}^{*} \vec{v}^{*}-\vec{u}^{k} \vec{\omega}^{\top} \varepsilon\right) \cdot}{\left(A-\vec{u}^{*}\left(\vec{v}^{k}\right)^{\top}-\vec{u}^{*}(\vec{\omega})^{\top} \varepsilon\right)^{\top}} \\
& =\operatorname{Trace}(\text { mess }_{0}+\underbrace{\varepsilon m \operatorname{mess}} 1+\varepsilon^{2} \text { mics }_{2}) \\
& =\text { mess, }=\vec{u} * \vec{W}\left(A-\vec{u}^{*} \vec{v}^{* T}\right)^{\tau} \\
& +\left(A-\vec{u}^{*} \vec{W}^{+\top}\right)\left(\vec{u}^{*} \vec{\omega}^{\top}\right)^{\top}
\end{aligned}
$$

Trace (mess,) must be 0

$$
\begin{aligned}
& \operatorname{Trace}(B)=\operatorname{Trace}\left(B^{\top}\right) \\
& \Rightarrow
\end{aligned}
$$

Trace (mess,)

$$
=2 \underbrace{\operatorname{Trace}(\underbrace{\left.A-\vec{u}^{*}+T\right) \vec{w} \vec{u}^{\top}}_{\text {mater }})}_{\text {must be } 0}
$$

$$
\left(\begin{array}{l}
\quad \operatorname{Tr}\left(A \vec{w} \vec{u}^{+\top}-\left(\vec{v}^{*} \cdot \vec{\omega}\right) \vec{u}^{+} \vec{u}^{\top}\right) \\
= \\
\operatorname{Tr}(C D)=\operatorname{Tr}(D C)
\end{array}\right.
$$

y

$$
\begin{aligned}
& \text { True }(\underbrace{\vec{u}^{+\top} A \vec{w}}-\left(\overrightarrow{v^{*} \times \vec{w}}\right)\left(\vec{u} \cdot \overrightarrow{u^{2}}\right)) \\
& =\vec{u}^{* \top} A \vec{w}-\left(\vec{v}^{2} \cdot \vec{w}\right)\left(\vec{v}^{2} \cdot \vec{u}^{2}\right) \\
& ==0 \text { for all } \vec{w} \in \mathbb{R}^{n} .
\end{aligned}
$$

Class ends..

Mixing times ${ }^{\text {L }} 4$

$$
\begin{aligned}
& d(t t s) s \vec{\partial}(s) J(t) \\
& d(t):=\max _{\vec{u}, \vec{v} \text { stachertic }}\left\|\vec{u} p^{t}-\vec{v} p^{t}\right\|_{T v}
\end{aligned}
$$

Slick Pf: Via coupling.
Pf! optimal coupling from Prop 4.7

$$
\begin{aligned}
& \|\mu-\nu\|_{T V}= \\
& \inf _{x, y}\left\{\begin{array}{l|l}
\operatorname{Prob}[x \neq V] & (x, y) \text { is } \\
\text { a couply } \\
\text { of } \mu \text { ad } \nu
\end{array}\right\} \\
& C
\end{aligned}
$$

§4.2 Couplyy \& TV distance
Scmetimes easier

$$
\begin{aligned}
& d(t)=\max _{\mu}\left\|\mu P^{t} \pi P^{t}\right\|_{i v} \\
& d(t) \leqslant \bar{d}(t) \leqslant 2 d(t) \\
& \$ 4.2,4.4,4.5
\end{aligned}
$$

Then prave gued upper bands ar mixuy times in

$$
\begin{array}{r}
\oint 5,3 \quad \text { Rerodon wadk a } \mathbb{B}^{n} \\
\text { ․ in cycletans }
\end{array}
$$

Fronccles Prod: 3,18

$$
\begin{aligned}
& A=\left(a_{i j}\right) \in m_{m_{1}, n_{1}}(\mathbb{R}) \\
& B=\left(b_{k l}\right) \in m_{m_{2} m_{2}(\mathbb{R})}
\end{aligned}
$$

$$
\underbrace{A \otimes B}_{(C, .)} \in m_{\underbrace{m_{1} m_{2}}, n_{1} m_{2}}(\mathbb{R})
$$

for
using B wink blocks of

$$
(j
$$ dime of A

- B

$$
\begin{aligned}
& a_{11}^{a_{12}} l^{1} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10
\end{array}\right]}
\end{aligned}
$$

on

$$
\begin{aligned}
& \left.\left(\frac{\begin{array}{l}
1\left[\begin{array}{ll}
7 & 8 \\
9 & 10
\end{array}\right] \\
\left.\frac{3\left[\begin{array}{l}
7 \\
9 \\
9
\end{array} 10\right.}{}\right] \\
5\left[\begin{array}{ll}
78 & 7 \\
9 & 10
\end{array}\right]
\end{array} 4\left[\begin{array}{ll}
7 & 8 \\
9 & 10
\end{array}\right]}{6} 10\right]\left[\begin{array}{ll}
7 & 8 \\
9 & 10
\end{array}\right] \quad\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { style with } \\
& z^{\text {id }} \text { mot } \\
& \text { as nos }
\end{aligned}
$$

$$
\left.\begin{array}{l}
A_{G}=a_{i j}=\begin{array}{c}
\# \text { edges } \\
v_{i} \rightarrow v_{j}
\end{array} \\
A_{W}=b_{k l}=\underbrace{w_{k} \rightarrow w_{l}}_{k \text { edges }}
\end{array}\right\}
$$

$$
v_{1} \xrightarrow[v_{2}]{v_{3}}{ }_{c}^{w_{1}}{ }^{w_{2}} w_{7}
$$

What is a goed definitestan of $G \otimes \underset{\substack{\text { tensor } \\ \text { sraphs }}}{ } \mid \lambda$ sit,

$$
\left.\begin{array}{l}
H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \frac{1}{\sqrt{2}} \\
\left.\begin{array}{c}
H \in h \\
\text { same } \\
\end{array}\right]
\end{array}\right]
$$

$H_{1} \otimes H_{2}$
fund
ding
 Squer drum

funt ers
Ew ergem

Scestatia of veriallos

$$
\begin{aligned}
\Rightarrow(u(x, y)= & \left.u_{1}(x) v_{1}(y)\right) \\
& +U_{2}(x) V_{2}(y)+\ldots
\end{aligned}
$$

functios o

$$
\text { ins \& } x, y=\frac{f(x) \rho(y)}{\left.k_{\text {reveconer pind }}\right)}
$$

