CPSC 531F, Feb 25
Last time!

$$
s_{1}\left[\begin{array}{cc}
s_{1} & s_{2} \\
.99 & .01 \\
.02 & .98
\end{array}\right]
$$

Dolphon - "mare informutin "'
$S_{1}$ reall 2 states $S_{1}^{\prime}, S_{1}^{\prime \prime}$
In $S_{1}^{\prime}$ or $S_{1}^{\prime \prime} \xrightarrow{.02} S_{2}$

$$
\begin{array}{cc}
S_{1}^{\prime} S_{1}^{\prime \prime} \\
S_{1}^{\prime} \\
S_{1}^{\prime \prime}\left[\begin{array}{cc}
.98 & .01 \\
.01 & .98
\end{array}\right] \rightarrow .99 & \text { dolphm }
\end{array}
$$

Dolphin:

$$
\begin{array}{c}
s_{1}^{\prime} \\
s_{1}^{\prime \prime}
\end{array} \underbrace{.98}_{\text {Dolphin }} \cdot \begin{array}{ccc}
.01 & .01 \\
? & .98 & .01 \\
s_{2} & .98
\end{array}]
$$

say!

$$
\left[\begin{array}{rr}
- & - \\
- & - \\
.01 & .01
\end{array}\right]
$$

Dolphin sees a symmetric matrix

$$
\left[\begin{array}{ccc}
.98 & .01 & .01 \\
.01 & -98 & .01 \\
.01 & .01 & .98
\end{array}\right]
$$

This:


A point of view

- Dolphin refines the $t$ POW
- A pol is obtained from projecting the dolphin pow
$\Leftrightarrow$ reversible Markov chain

Goal! How can $\frac{Q}{\text { 六 sees Markov }}$ matrix, $f$, tell if you can view $P$ as symmetric?

When we rudy Markov chains we are typically interested in

- mixing times $\longleftarrow$ focus on
- other properties...

Last time: "expander mixing lemma"

We also want a lot of examples of Markov chains \& applications.

Textbook by Levin \& Meres
Markov chan as $\underbrace{}_{0,} X_{-1, \ldots}$
well marly talk about Markov matrices

Marlon matrix: $P \in m_{n}(\mathbb{R})$ with all rows being stochastic vectors.
=
Think about shuffling cards: 52 cards

$$
\begin{aligned}
& \text { (- top } \\
& I \quad\left(2^{\text {r) to top }}\right.
\end{aligned}
$$

$$
I \leftarrow \text { bottan card }
$$

Each (ard bras ane of 52 values A令 1 . 2 clubs

Each card, in are of 52 pposivians,
Shuffly! $52!\times 52!$ matrix $\binom{-0}{0}$
Fix some shuffles

- take top card, pat isth in random positim
- swap 2 cards at random
- riffle shuffle (randomness built in)

Cards! $!$ ! Set $\xrightarrow{\text { bijection }}$ Set
Asp, $k_{\text {spin }}, 2$ clubs Positions: top, -n, better
alternctuely

$$
\varphi^{-1}: \text { Positrons } \rightarrow \text { Card Labels }
$$

6, $\varphi^{41}$ maps $\begin{aligned} \text { Set size } \\ 52!\end{aligned} \begin{aligned} & \text { Setsize } \\ & 52!\end{aligned}$
Cayley graphs:
Frost define mixy time:

$$
\left.P \in m_{n}(\mathbb{R}) \text {, (thinking of } n=52!\right)
$$

Toke! You start entirely in same single state

$$
\begin{aligned}
& \vec{e}_{1}^{\top}=\left[\begin{array}{lll}
1 & 0 & \ldots 0
\end{array}\right], \vec{e}_{2}^{\top}=\left[\begin{array}{llll}
c & 1 & 0 & \ldots
\end{array}\right], \\
& \cdots, \\
& \vec{e}_{n}^{\top}=\left[\begin{array}{lllll}
c & 0 & \ldots & 1
\end{array}\right]
\end{aligned}
$$

Say someone hards you I decks of cards! $\vec{e}_{i}, \quad i \in[n] \quad(n=52!)$ for start shuffly! cuds

$$
=
$$

$$
\left.\begin{array}{rl}
\vec{e}_{i}^{T} p t \quad & \text { after applying } \\
& p+t \text { times } \\
& (\text { cards } p=\text { single } \\
\text { shuffle }
\end{array}\right)
$$

Want te claim that for some $t$ (that we can identify) $\vec{e}_{i}^{\top} p t$ pats the Marka chain into a "random order" to with $\varepsilon, \quad(\varepsilon>0$, real parameter $)$

Mearing:

- distrib close te chifarm:


What does it meen to sey thet $\mu$ ond $v$ are close to each other?

$$
\begin{aligned}
& -\operatorname{dist}(\mu, v) \leq \varepsilon \\
& \operatorname{drst}=? \\
& \mu, \downarrow \in \mathbb{R}^{n}
\end{aligned}
$$

$\underset{\rightarrow}{\rightarrow} \max _{i \in[r]}\left(\mu_{i}-\nu_{i} \mid\right.$
,

to eifenvectors/velues
$\left\|\|_{1} \longleftrightarrow\right.$ essentrally how iniong $L$ time is defined
$\left\|\|_{\infty_{0}} \leftrightarrow\right.$ max cempanent
$\left\|\|_{\text {T.V. }}(5)\right.$ total verientim
$\left\|\|_{p} \longleftrightarrow L^{r}\right.$ norm

$$
\begin{aligned}
& \|\vec{x}\|_{p}=\left(\sum_{i \in[n]}\left|x_{i}\right|^{p}\right)^{1 / p} \\
& \|\vec{x}\|_{2}=\| \|_{2},\| \|_{c s}=\operatorname{mcx} \\
& \\
& =\lim _{p \rightarrow \infty}\| \|_{p} \\
& \left\|\left\|_{1}=\right\| 1 \cdot\right\|_{p, p}=1
\end{aligned}
$$

Total Variation:
Jor:
Someone gives you $\vec{e}_{i}$, you shuffle as got $\vec{e}_{i}^{\top} p t$

Imagine that you had been given $\vec{e}_{j}$ instead

You allow one test to see if

$$
\vec{e}_{i}^{T} p^{t} \text { differs fran } \vec{e}_{j}^{T} \rho^{t}
$$

tests! $A \subset[n]$ an look at

$$
\underbrace{}_{\sum_{a \in A}\left(e_{i}^{T} \rho^{t}\right)(a) \text { vs } \sum_{a \in A}^{e_{i}^{T} \rho^{t} e_{A}} \text { vs. } \underbrace{e_{j}^{T} \rho^{t}}_{d} e_{A}}
$$

Define:

$$
\text { not } \sum_{c_{e} \in}\left|x_{a}\right|
$$

$$
\|\vec{x}\|_{T V}=\max _{A \subset[n]}\left|\sum_{a \in A} x_{\bar{a}}\right|
$$

If $\mu, v$ are stachootic vecters,

$$
\begin{aligned}
& \left.\operatorname{Totd} \operatorname{VLr}(\mu, \nu)=\max _{A \subset(r)} \mid \sum_{a \in A} \mu_{a}-\sum_{a \in A} V_{a}\right) \mid \\
& =\max _{A C[r]} \sum \mu_{a}-\sum \nu_{a} \\
& =\max _{B C(n)} \sum_{b \in B} \nu_{b}-\sum_{b \in B} \mu_{b} \\
& =\frac{1}{2}\|\mu-\nu\|_{1} \\
& \mu=\left(\begin{array}{l}
1 / 3 \\
113 \\
1 / 3
\end{array}\right], \nu=\left[\begin{array}{c}
112 \\
1 / 2 \\
0
\end{array}\right]
\end{aligned}
$$



Def 11 Eor $P$ stechucric metrix, the $\varepsilon$-mixing time of $P$ is the smellest $t=t(\varepsilon)$ s.t,

$$
\max _{i, j}\left\|\vec{e}_{i} p^{t}-\vec{e}_{j} p^{t}\right\|_{T V} \leqslant \varepsilon
$$

Claim: If

$$
\bar{d}(t)=\max _{\underline{\mu, \nu} \operatorname{stcch}+\operatorname{tic}}\left\|\mu P^{t}-\nu P^{t}\right\|_{T V}
$$

$$
=\max _{i, j \in[r]}\left\|\vec{e}_{i} \rho^{t}-\vec{e}_{j} p^{t}\right\|_{T V}
$$

Then for any $s, t \in \mathbb{N}$

$$
\bar{d}(s+t) \leqslant \bar{d}(s) \bar{d}(t)
$$

Ie, $t=t(\varepsilon)$ is the $\varepsilon_{\text {mixing time of } P}$

$$
t^{\prime}=t\left(\varepsilon^{\prime}\right) \quad \cdots \quad . \varepsilon^{\prime} \text { misery time } \delta P_{\text {, }}
$$

the $\varepsilon \cdot \varepsilon^{\prime}$-mixing time of $\rho$ is at most $t \cdot t^{\prime}$

Our goal! gwen $P \in M_{h}(\mathbb{R})$
Markov matrix, estimate the $E$-mixing time of $P$
$n=52!$, even to get to all states with prob close to $\frac{1}{52!}$ is difficult...

Nat task! define Cayley graphs... Y- min break

Cayley Grats:

$$
52 \begin{cases}\Sigma_{1} & n=52! \\ \sqrt{l} & p \in m_{52!}(\mathbb{R}) \\ \vdots & \end{cases}
$$

Shughls $\longleftrightarrow$
a singte shuffle
$\Leftrightarrow$ random piek same way of operatiof of the arder

Speak of

$$
A_{52}=\left\{\begin{array}{c}
\text { permulections } \\
\text { on }[52]
\end{array}\right\}
$$

$$
f_{3}=\{\text { permutations on }[3]\}
$$

Permutation on $[3]=\{1,2,3\}$

$$
f:[3] \xrightarrow{\text { bijed.in }}[3]
$$

e.g.

$$
\begin{aligned}
& \begin{array}{lll}
A_{3} \text { centars } & 1 \longmapsto 1 & 1 \longmapsto 2 \\
= & 2 \longmapsto 2 & 2 \longmapsto 1 \\
& 3 \mapsto 3, & 3 \longmapsto 3
\end{array} \\
& \text { Elt of } t_{52} \\
& 1 \mapsto 7 \\
& 2 \longrightarrow 17 \\
& 3 \rightarrow 1 \\
& 52 i \rightarrow
\end{aligned}
$$

If we toke a rendem 'tronsporition" on $[3]=\{4,2,3\}$

do this $\rho$

This gres a Matar cham:

$$
\cdots\left(\sqrt{\left(\begin{array}{ll}
T_{12} & 1 / 3 \\
T_{13} & 1 / 3 \\
T_{23} & 1 / 3
\end{array}\right)\binom{\text { Stent }}{\text { scmewhre }} .}\right.
$$

$$
\left(\begin{array}{l}
T_{12}
\end{array}\right)\left(T_{1,3}\right)\binom{\text { stat }}{\text { here }}
$$

new permutation
$=$
Formally, we generalise $n$ as a "group" $g_{1}, g_{2} \longmapsto{ }_{2} g_{1}$ times es $g_{2}$

Formally! A grep is a set $\mathcal{H}$, sit. there is a "multiplication" defined on $\mathcal{H}$

$$
\begin{aligned}
& \mathscr{g} \times \mathscr{H} \xrightarrow{\text { mutt }} \mathscr{y} \\
& \left(g_{1}, g_{2}\right) \rightarrow g_{1} \text { times } g_{2}
\end{aligned}
$$

(1) $\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$
(ie. $g_{1} g_{2} g_{3}$ is dfined indeperizent
of arder
(not generdly $g_{1} g_{2}=g_{2} g_{1}$ )
(2) there is an $e \in \mathscr{F}$ s.t.

$$
\begin{aligned}
& e g_{1}=g_{1} e=g_{1} \text { for all } \\
& g_{1} \in \mathscr{Y}
\end{aligned}
$$

(3) for everay $g$ g $d \theta$ there is a
$g^{-1}$ in st,

$$
g^{-1} g=g g^{-1}=e
$$

Section 2.6 of (LP)

Rem: Cyclic graphs are described by the group $\mathbb{E} / n \mathbb{D}$ or integer $\bmod n$




$$
\sum_{i \in[n]}\left|\mu-\nu_{i}\right|
$$


$\int \mu_{i}-v_{i} \mid$ count both spiLes

Claim: If $\hat{P}$ is any Marker matrix.' $\max \quad\|\vec{\mu} \hat{\rho}-\vec{\nu}\|_{\text {TV }}$ $\mu, \nu$ stael

This max is attained for $\vec{\mu}=\vec{e}_{i}, \vec{\nu}=\vec{e}_{j}$ for same $i_{i j} \in[n]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
112 & 1 / 2 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]=f}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{e}_{1}, 1 \frac{1}{\vec{e}} \vec{e}_{2}+\frac{9}{10} \vec{e}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mu \tilde{p}-\nu \tilde{p} \\
& \downarrow> \\
& \mu_{1} \text { he } \mu_{3} \quad V_{1} \nu_{2} \nu_{3} \\
& {\left[\begin{array}{lll}
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right] \tilde{p}-\left[\begin{array}{lll}
\nu_{1} & \nu_{2} & \nu_{3}
\end{array}\right] \hat{p}} \\
& =\left[\begin{array}{lll}
\mu_{1}-\nu_{1} & \mu_{2}-\nu_{2} & \mu_{3}-\nu_{3}
\end{array}\right] \hat{P} \\
& ==\left(\mu,-\nu_{1}\right)^{1 \text { st }} \text { row of } \tilde{p} \\
& +\left(\mu_{2}-\gamma_{2}\right) 2^{n d} \text { row of } \widetilde{p} \\
& { }^{t}\left(\mu_{3}-\nu_{3}\right) z^{\text {rom }} \text { vat of } \tilde{p}
\end{aligned}
$$

$$
\left|\begin{array}{cc}
\geq 0 & 30 \\
(\underbrace{}_{T} \mu_{1} \gamma_{1}) & \text { row }+\left(\mu_{2}^{\left.\left(\mu_{2}\right)_{2}\right)} \text { row } 2+\left(\mu_{3}-\nu_{3}\right) \text { row } 3\right.
\end{array}\right|
$$

all numbers between -1 , 1
Sum of any subset -1, 1
V.S. max row i - row ${ }_{i, j}$


$\mu_{s+1}-\nu_{s+1},-, \mu_{n}-\nu_{n} \leq 0$
sum $3-1$
If $x_{1, \ldots,} x_{3}=\frac{1}{5}, \quad y_{\Omega \pi}, \ldots, y_{n}=\frac{1}{5}$
then

$$
\begin{aligned}
& \left.\left.\leqslant \frac{1}{S} \sum \right\rvert\, \text { row }_{i}-\text { row }_{i t s} \mid\right) \\
& S=10^{10^{10}}
\end{aligned}
$$

$\|m\|_{1}$
have nice expressions

$$
\|M\|_{B}
$$

give HW a $\|\|\|,\| \|_{\text {G }}$ $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ eigenved $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ values $2^{-\lambda} 1$ $\left[\begin{array}{c}1 \\ -1\end{array}\right] \quad C^{-\lambda_{n}}$

$$
\begin{aligned}
& \left\|\left.\left[\begin{array}{l}
11 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right)\right|_{2}=2=l_{1}^{1} \begin{array}{l}
\|
\end{array}\right\|_{2} \\
& \| E l_{L^{2}}=\max \left(\left|\lambda_{2}, \ldots,\left|\lambda_{n}\right|\right)\right.
\end{aligned}
$$

