case $531 f$, feb 9

- HW already assigned "due" fab 26
(Ready Brock $=$ Feb $15-19$
I'll give comments, and y, ch <an work mere on them \& hand them in ct the end of course Upshot! It only matters what you can shew me by end af course

Inte: $\{4.3$ Homenork \& Supp Notes later return to exparder, via artitele by Hoory, Linial, Wiyderson Expender Grephs \& Their Applicctiens

Alsu ure these tack to study Markov chimins of varius classes

- Reversable MC \leftrightarrow "almost rymmetric"
- General $\because \leftrightarrow$ eigenvalves tell you $<$ lat, but not everythy

Last time:
gryh, d-reguler:

Thm! If G is d-rguler, an n vertices, if

$$
\lambda_{n}(G) \leq \cdots-\lambda_{2}(G) \leq \lambda_{1}(G)
$$

ate the eigenviles of A_{G}, then
$-d \leqslant \lambda_{n}(G)$

$$
\lambda_{1}(G)=d
$$

- the muluiplocity of d as an eigenvelve $=$ \# of ciennected compenents of G
- $\lambda_{n}=-d$ iff G is biportite
[The Expander Mixing Lemma]
$U, W \subset V_{G,} \in(U, W)=$ the sot of edges from U (i.e. its tail is in U) to W, then $\quad($ if ρ small compared $)$ $\underbrace{}_{\text {where }} E(u, w)-\frac{d}{n}|u||\omega| \leqslant \underbrace{\rho \sqrt{|u| \cdot|\omega|}}_{\text {ideally small| }}$

$$
\rho=\max _{i \geq 2}\left|\lambda_{i}(G)\right|=\max \left(\lambda_{2},-\lambda_{n}\right)
$$

=
Think of d as smell compared te $n \ldots$ "Exposer"' d (s fixed) $n \rightarrow \infty$

Well learn mare precise estimates. then

$$
|E(u, w)|=\text { ? roughly }
$$

Random d-reggroh
u has d.|u| edges

$$
\left[\begin{array}{rrr}
\text { " expect" } & \frac{|W|}{n} & \text { prob for a sink edge } \\
\text { to land in } W
\end{array}\right]
$$

tetzel "expected"

$$
|f(u, \omega)| \text { roughly } \frac{d}{n}|u| \cdot|w|
$$

Reccll!

(e) digreph (directe)

ete etc
conventen 1

$$
0
$$

digroh

Last time!
Clam! multiplicity of d as
eigenvalue $=$ \# connected components.
$A \overrightarrow{1}=d \overrightarrow{1} \quad \stackrel{\rightharpoonup}{1}=\left[\begin{array}{l}1 \\ 1 \\ i \\ 1\end{array}\right] \begin{aligned} & -d \text { is con } \\ & \text { i eigemalve }\end{aligned}$
Pf! Say $A \vec{u}=\lambda \vec{u}$
(1) $\lambda \leq d$, (2) $\lambda=d \Rightarrow$ somethy about connectivity
$\vec{u} \neq \overrightarrow{0}$, ur has same pos a neg entry, we can assume $\overline{4}$ has a positive entry (otherwise $\vec{u} \rightarrow-\vec{u}$)

Now fer $v \in \bar{V}$ sit.
$\vec{u}(v)$ is largest possible, $\dot{u}(v)=M$

$$
\tilde{u}(v)=m
$$

$$
\begin{aligned}
& \vec{u}\left(w_{1}\right) \leq m \\
& \vec{v}\left(u_{2}\right) \leq m \\
& \vdots \\
& \vec{\mu}\left(v_{d}\right) \leq m
\end{aligned}
$$

Wert to prove
(1) $\lambda \leq d$, E If $\lambda=d$, then...

$$
\begin{aligned}
& \left(A_{G} \vec{u}\right)(w)=\bar{u}\left(v_{1}\right)+\ldots+\vec{u}_{\cdot}\left(v_{d}\right) \\
& A_{G}=\left[\begin{array}{lll}
1 & 1 \\
\vdots & \vdots
\end{array}\right], \text { rest 0's }
\end{aligned}
$$

Sc

$$
\begin{aligned}
& c \underbrace{\left(A_{G} \vec{u}\right)(v)}_{\lambda}=\sum_{\substack{v_{i} \text { neighowr } \\
\text { of }}} \vec{u}\left(v_{i}\right) \\
& \lambda m \leqslant d \cdot m \\
& \Rightarrow \lambda \leq d
\end{aligned}
$$

what Leppere if $\lambda=d$:

$$
d m \leq d m
$$

but $\quad \overbrace{\sum \vec{u}\left(v_{i}\right)}$ equels $d m$
iff $\vec{u}\left(v_{1}\right)=\ldots=\vec{u}\left(w_{d}\right)=M$

If $A_{G} \vec{u}=d \cdot \vec{u}$
and $\vec{u}(v)=m$ mos value $d \vec{a}$

$$
\begin{aligned}
& \vec{u}(w)=m \quad \begin{array}{l}
\vec{u}\left(v_{1}\right)=M \quad \begin{array}{l}
\lambda=d \\
1
\end{array} \quad \text { implieg } \\
1
\end{array} \\
& \text { - Similut, }
\end{aligned}
$$

\Rightarrow any V^{\prime} connectc) to v has $\vec{u}\left(v^{\prime}\right)=m$

4 (cmects)
3- regulv
compenents,
maximum prireirk $\Rightarrow \quad A_{G} \vec{u}=d \stackrel{\rightharpoonup}{u}$, then \vec{u} is constant on any connecte) compenent.
Convorse! If $\vec{\sim}$ is constant or any conrectel comporent, then $A_{G} \vec{u}=d \stackrel{\rightharpoonup}{u}$.

Claim! Since

$$
\{\vec{u} \mid A \vec{u}=d \vec{u}\}=
$$

$\{\vec{a} \mid \vec{h}$ is censtant on all cenrected comporents of $G\}$
(I) eigenuclue d has multiplicity = conrecte) comparents.

5 min breek

Def! The multiplaity of λ as ar eijenazlue of A, if A is diganctizable!

$$
\begin{aligned}
& \text { "geam multiplicity" } \\
& \quad=\operatorname{dim} E_{\lambda,} E_{\lambda}=\{\vec{u} \mid A \vec{u}=\lambda \vec{u}\}
\end{aligned}
$$

(this equals "clgehraic multiplicity"
via charateristic polynamial when A is diganalizable)

Ed has basis:
"bcsip"
(Corrd) 10 c
$\begin{array}{llll}\text { cony }^{2} & c & 1 & 6 \\ \text { comy } 3 & 0 & 0 & 1\end{array}$

any other \vec{V}, cauld write

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{V}= \vec{r}_{1} c_{1}+\vec{\gamma}_{2} c_{2}+\vec{\gamma}_{3} c_{3} \\
&+\underbrace{\left(\text { crthegand to } \vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)}_{\text {leftour pert }=\vec{l}} \\
& \stackrel{\rightharpoonup}{l}+\vec{r}_{1}, \stackrel{V}{V}_{2}, \vec{r}_{3} \Rightarrow \sum_{\substack{v \in \mathrm{com} \\
\text { coms }}} \stackrel{\rightharpoonup}{l}(v)=0
\end{aligned}
$$

So if \vec{l} is not \vec{O}, then

$$
\vec{l}_{1} \vec{\gamma}_{1}: \vec{r}_{1}
$$

(comply) all l's,
$\sum \vec{l}(v)=0$, so \vec{l} has + entry
\checkmark in

- entry Gang
so \vec{l} is not constant on $\vec{\gamma}_{1}$

$$
\Rightarrow \vec{l} \neq \epsilon_{d}
$$

Explain in man detail, and prove Exp.M.x...

We chum! Let $\vec{u}_{1}, \ldots, \vec{u}_{m}$ be an orghtrganal set of vectors in \mathbb{R}^{n}

Grtheganal: $\vec{u}_{i} \cdot \vec{u}_{i} \notin 0$, ie $\vec{u}_{i} \neq 0$ and

$$
\stackrel{\rightharpoonup}{u}_{i} \cdot \vec{u}_{j}=0
$$

Then

$$
\operatorname{proj}_{\vec{u}_{i}}(\stackrel{\rightharpoonup}{a})=\stackrel{\rightharpoonup}{u}_{i}\left(\frac{\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{u}_{i}}{\stackrel{\rightharpoonup}{u_{i}} \stackrel{\rightharpoonup}{u}_{i}}\right)
$$

If $\vec{u}_{i} \cdot \vec{u}_{i}=1, \quad\left|\vec{u}_{i}\right|_{L^{2}}=1$
ther

$$
\begin{aligned}
& \operatorname{prc}_{\vec{u}_{i}^{\prime}}(\vec{a})=\vec{u}_{i}\left(\vec{a} \cdot \vec{u}_{i}\right) \\
& = \\
& \text { Eig. } \vec{u}_{i} \quad \vec{u}_{i} \cdot \vec{u}_{i}= \\
& G \text { conelt all I's } t \text { vert in } \\
& \text { compl } 1 \\
& \text { (comp } 2<\mathrm{C} \\
& \text { comy }{ }^{\text {com }} \leftarrow 0
\end{aligned}
$$

unit vector version of

$$
\vec{u}_{i}=\vec{u}_{i} / \sqrt{\mathbb{t}_{\substack{\text { vert in } \\ \text { comp }}}}
$$

If $\vec{a} \perp \vec{a}_{i}$ and
then

$$
\stackrel{\rightharpoonup}{a} \cdot \vec{u}_{i}=\sum_{\text {sum }} \stackrel{a}{a}(v)
$$

Remerk: If $\vec{a} \in \mathbb{R}^{n},\left(\begin{array}{c}\text { Craph, } \\ n=H_{\text {vertuec }} \\ A_{\epsilon}\end{array}\right)$
$\vec{u}=\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]=\overrightarrow{1}, \vec{u} \cdot \vec{u}=n$

$$
\operatorname{prg}_{\vec{u}}^{\prime}(\vec{a})=\vec{u} \frac{\vec{a} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}
$$

$$
\begin{array}{r}
\text { pró }_{\overrightarrow{1}}(\vec{a})=\overrightarrow{1} \quad \frac{\vec{a} \cdot \overrightarrow{1}}{n}=\frac{\overrightarrow{1}}{n} \sum_{i=1}^{n} a_{i} \\
\\
=\frac{\sum a_{i}}{n} \overrightarrow{\mathbb{1}}=\underset{\text { valiee }}{\operatorname{avg}}\left(a_{i}\right)\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
\end{array}
$$

$$
\bar{a}=\left(\begin{array}{l}
\operatorname{avg}\left(\overline{v a l u}_{i}\right)
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)+\overline{\operatorname{leftavr}}
$$

$$
\operatorname{proj}_{1}(a)
$$

What is
Ansler

$$
|\overline{\text { leftaver }}|=?
$$

Class Er)s
Taive an $\left.V=\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]\right\} \underline{\text { not linov }}$

$$
\begin{gathered}
{\left[\begin{array}{l}
9 \\
4 \\
1
\end{array}\right],} \\
v,(A-I) v,(A-I)^{2} v
\end{gathered}
$$

1 mearty indep

$$
\begin{aligned}
& 3.11:\left(\sigma_{-}-f\right)(n)=f(n-1) \\
& (\sigma f)(n)=f(n+1) \\
& (\sigma-f)(n)=f(n-1)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sigma^{+} f\right)(n)=f(n+1) \\
& \left(\sigma_{-} f\right)(n)=f(n-1) \\
& \left(\sigma_{-}\right)=(\sigma+)^{-1} \\
& \left(\bar{x}_{2} 26\right. \text { Bat Scn)}
\end{aligned}
$$

