CPSC 531 F, Jan 12 General Idea, Admin Stuff Focus of course: "spectral methods" for Graphs Spectral: eigenvalues/vector of large matrices, : Spectral : eigenvalues/vector of large matrices, focus on symmetric matrices... Idea: You have a large man real/complex matrix, want to infer some "global properties" of the matrix with a few eigenvalues/vectors computation. - Does a graph have "clusters", or does that graph "expand" well ? - Does a Markov cham "mix quickly"? e.g. Shuffling cards - how many shoffles of a deck of cards are needed to have a "randomly looking" deck? 52 conds mo 52! Passible decks of 52 cords... The above are examples where the top few eigenvalues tell you a lot.

- Say you have m points in IR", m,h = 103, 10; Want to represent the m points in a much smaller dimensional space. Arrange points in a matrix, man matrix, use SVD (singular-value decomposition) to get "low renk approximation to man metrix" reducing the m points in R to - Side remetets? symmetric matrices } common theory Unitary " of "normal Unitary matrices } during Textback (reference)! - Matrix Analysis, Harn & Johnson Gredny: - Homework divided Inte 3 sets 3rd homework \$ short survey < 80% unlikely article 95% and higher = extremely trong encouragement, and for a recommendation 90% in " = very ", ", ",

- Classes should be recorded

Start technical material ! - Why are symmetric matrices so prevalent? - Review the basic theory that we need. Examples of Symmetric Metrices! (1) Celculus ! $f(x) = f(x_0) + (x_0 - x) f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0)$ $+ O(X-X_0)^2$ in one variable, if f: IR -> IR, xo EIR, f twice differentiable. If finn-n, zenn $f(\vec{x}) = f(\vec{x}_{0}) + (\vec{x} - \vec{x}_{0}) \cdot [(\nabla f)(x_{0})] +$ $\frac{1}{2} \left(\vec{X} - \vec{X}_{G}\right)^{T} \left(\underbrace{D^{2}f(x_{0})}_{c}\right) \left(\vec{X} - \vec{X}_{G}\right) + o\left(\left|\vec{X} - \vec{X}_{0}\right|\right)$

Here Off is the Hessian

 $D^2 f \sim 2 - d m$ $\begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{bmatrix}$ is symmetric Since $f_{x_2x_1} = f_{x_1x_2} = 0$ Thm! If [a b] is real, symmetry, 2×2, b c] then after an "orthonormal change of basir" $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \longrightarrow \begin{bmatrix} d_1 \\ 0 \\ d_2 \end{bmatrix}$ () Review what this means (2) There is an N×N symmetric matrix analog to this theorem, Recommend to look at Harn & Johnson, Sections G.O - O.G. Chapter O = collection of useful facts throughout the toothad

2) Graph thy you have symmetric matrices: Directed graph ; formally! & directed graph $G = (V_G, E_F, t_G, h_F)$ VG = vertex cet of G E_G = (directed) colge set of G $\overline{V} = \{v_1, \dots, v_5\}$ tg: EG - VG "teils" $\left\{ = \left\{ \mathcal{C}_{1, \ldots, e_{5}} \right\}$ hg: Eg Ve "heads" t (e,) = V, , h (e,) = V2 AG = adjacency matrix = (AG) ij , i,jeV = # edges from i to j $V; V; \in V$ Hand Johnson! A matrix, entries Q:

 $A \in M_{m,n}(\mathbb{R}) = \mathbb{R}^{m \times n}$ n rows n clohums

A gives map
$$\mathbb{R}^{n} \to \mathbb{R}^{n}$$

 $V \longrightarrow A_{V}$
 $\begin{pmatrix} i & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{pmatrix} a + 2b + 3c \\ 4a + 5b + 6c \end{bmatrix}$
 $usucl linew als$
 $a \beta \begin{bmatrix} i & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = (g + 4\beta \ 2a + 5\beta \ 3g + 6\beta]$

usual boury directed graphs and Markov chains

Marker chain

V e IR is stechestic (or a probability) vector

 $i\{ \vec{v} = (v_1, - v_n) \text{ and } v_i \geq 0 \text{ for all } i,$ $V_1 + \dots + V_n = 1$

A Markov matrix : is an non matrix

whore rows are stochastic vectors.

 $\begin{array}{c} \left(\begin{array}{c} .99 \\ .02 \\ .02 \\ .02 \\ .02 \\ .03 \\ .03 \end{array} \right) = \left(\begin{array}{c} new & distibuted \\ class & ends \end{array} \right) \\ Class & ends \\ class & ends \\ class \\ .99 \\ \chi_1 + .02 \\ \chi_2 \\ .01 \\ .0$ (10)(.99.01)=(.99.01) $\begin{array}{ccc} (0 & 1 & 1 & = \begin{bmatrix} -02 & .98 \end{bmatrix} \\ \begin{array}{c} X_{1} = probchility of being in other l, \\ at some \end{array}$ at some time t $[X, X_2]$ time O, $X_1(0), X_2(d)$ (new new) time 1, $X_{1}(1), X_{2}(1)$

 $\therefore Z, X_{\mathbf{1}}(\mathbf{1}), X_{\mathbf{1}}(\mathbf{2})$ `' 3, -` 3 3

 $\left(\begin{array}{c} X(t+1) & X(t+1) \end{array} \right) = \left[X_1(t) & X_2(t) \right] \left(\begin{array}{c} .99 & .01 \\ .02 & .99 \end{array} \right)$

 $\left[\chi_{1}(t) \quad \chi_{1}(t) \right] = \left[\chi_{1}(0) \quad \chi_{2}(0) \right] \left[\right]^{t}$

52 cords : 52 states

shuffle . Think of A spids time t=0 (K '' Q '' J '' probability 2 clubs

People in Vincouser