CPSC 531F, Jan 12
General Idea, Admin Stuff
Focus of course: "spectral methods" for $\left\{\begin{array}{l}\text { "complex systems" } \\ \text { graphs } \\ \text { markov chains }\end{array}\right.$
Spectral! eigervalves/vecter of large matrices, focus on symmetric matrices...

Idea: You have a large $m \times n$ real/complex matrix, want to infer some "global properties" of the matrix with a few eigenvalues/vecters computation...

- Does a graph have "clusters", or does that graph "expand" well ?
- Does a Marlzov chair "mix quickly"?
e.g. Shuffling cards - how many shoffles of a deck of cards are needed to have a "randomly looking" deck?

52 cards $\leadsto 52$! Possible decks of 52 cards...

- The above are examples where the top few eigenvalues tell you a lot.
- Sap you have m points in $\mathbb{R}^{n}, m, h=10^{3}, 10^{6} \ldots$ Wart to represent the m points in a much smaller dimensional space. Arrange points in a matrix, $m \times n$ matrix, use SVD (singulir-value decomposition) to get "low rank approximation to $m \times n$ matrix" reducing the m paints in \mathbb{R}^{n} to

$$
\text { " } \quad \text { " } \mathbb{R}^{(\text {much smaller })} \text {. }
$$

-Side remakes! symmetric matrices $\left.\begin{array}{l}\text { unitary } 11\end{array}\right\}$ common theory unitary " of "nomel matrices unitary matrices \sim Quantum computing

Textbook (reference)! - Matrix Anelysis, Horn QUohnson

Grading: - Homewate divided font 3 sets 1 ard homework $\stackrel{?}{=}$ shot survey $<80 \%$ unlike, artie

95\% and highs = extremely strong encourcyemeat, and for a reconmenditon

$$
90 \% \text { ". } \quad \text { very.. }
$$

$$
\begin{aligned}
& 85 \%-89 \%
\end{aligned} \quad=\begin{aligned}
& \text { encouraging walk in field, you'll } \\
& \text { have to develop more buchgruind } \\
& \text { - this is not your main field of } \\
& \text { research, fat you can apply this will }
\end{aligned}
$$ a Ph.D. student in computer science

- Ill past these ipad notes
- ". "s some rough and possibly chagrin notes
- Classes shall be recorded

Start technical material!

- Why are symmetric matrices so prevalent?
- Review the basic theory that we need.

Examples of Symmetric Matrices:
(1) Calculus:

$$
\begin{aligned}
f(x)=f\left(x_{0}\right)+\left(x_{0}-x\right) f^{\prime}\left(x_{0}\right) & +\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime \prime}\left(x_{0}\right) \\
& +c\left(x-x_{0}\right)^{2}
\end{aligned}
$$

in one variable, if
$f: \mathbb{R} \rightarrow \mathbb{R}, \quad x_{0} \in \mathbb{R}, \quad f$ twice differentiable.
If $f!\mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \vec{x}_{0} \in \mathbb{R}^{n}$

$$
\begin{aligned}
f(\vec{x})= & f\left(\vec{x}_{0}\right)+\left(\vec{x}-\vec{x}_{0}\right) \cdot\left(\left(\nabla f \mid\left(x_{0}\right)\right)+\right. \\
& \frac{1}{2}\left(\vec{x}-\vec{x}_{0}\right)^{T}\left(D^{2} f\left(x_{0}\right)\right)\left(\vec{x}-\vec{x}_{0}\right)+c\left(\left|\vec{x}-\vec{x}_{0}\right|\right)^{2}
\end{aligned}
$$

Here $D^{2} f$ is the "Hessian"

$$
D^{2} f \text { in 2-dim }\left[\begin{array}{cc}
f_{x_{1} x_{1}} & f_{x_{1} x_{2}} \\
f_{x_{2} x_{1}} & f_{x_{2} x_{2}}
\end{array}\right\} \text { is }
$$

Since

$$
f_{x_{2} x_{1}}=f_{x_{1} x_{2}} \Rightarrow
$$

Tho! If $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ is real, symmetric, 2×2, then after an "orthonormal change of basis"

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \sim\left[\begin{array}{ll}
d_{1} & c \\
0 & d_{2}
\end{array}\right]
$$

(1) Review whit this means
(2) There is an $n \times n$ symmetric matrix anolog to this theorem,

Recommend to look at Warn \& Johnson, Sections $0.0-0.6$. Chapter $O=$ collection of useful facts throughout the teatlaolh
(2) Graph thy ych have symmetric matrices: Drected graph: formally! at direded gragh

$$
\begin{aligned}
& G=\left(V_{G}, E_{G}, t_{G}, h_{G}\right) \\
& V_{G}=\text { verdex cet of } G \\
& E_{G}=(\text { directed }) \text { cege set of } G \\
& \bar{V}=\left\{v_{1}, \ldots, v_{5}\right\} \\
& t_{G}: \epsilon_{G} \rightarrow V_{G} \text { " tcils" } \\
& E=\left\{e_{1}, \ldots, e_{5}\right\} \\
& h_{G}: E_{G} \rightarrow V_{G} \text { "heads" } \\
& t_{G}\left(e_{1}\right)=V_{1}, \quad h_{G}\left(e_{1}\right)=V_{2} \\
& A_{G}=\text { adjacenc } \text { matrix: }\left(A_{G}\right)_{i j}, i, j \in V \\
& ={ }^{4} \text { edges from } v_{i}, v_{j} \in \bar{V} \\
& i \text { to } j
\end{aligned}
$$

Harn\& Johnsin! A motrix, entries Q:j

$$
\begin{aligned}
& A \in m_{m, n}(\mathbb{R})=\mathbb{R}^{m \times n} \quad \begin{array}{l}
m \text { rows } \\
n \text { colums }
\end{array} \\
& A=\left[\begin{array}{cc}
a_{11} a_{12} \ldots & a_{i n} \\
\vdots & a_{m n}
\end{array}\right]
\end{aligned}
$$

in this notation
N glves mep $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\begin{gathered}
V \longmapsto A_{V} \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+2 b+3 c \\
4 a+5 b+6 c
\end{array}\right]}
\end{gathered}
$$

usual linew als

$$
\left[\begin{array}{ll}
\alpha & \beta
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ll}
\alpha+4 \beta & 2 \alpha+5 \beta \\
3 \alpha+6 \beta
\end{array}\right]
$$

usual bocy directel grzohs and Markov chains

Markov chain

$\vec{V} \in \mathbb{R}^{n}$ is stochastic (or a probability $\frac{\text { vector }}{\text {) }}$
if

$$
\begin{aligned}
\stackrel{\rightharpoonup}{V}=\left(V_{1}, \ldots, V_{n}\right) \text { and } V_{i} & \geq 0 \text { for all, } \\
V_{1}+\ldots+V_{n} & =1 .
\end{aligned}
$$

A Markov matrix: is an non matrix whore rows are stochastic vectors.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
.99 & .01 \\
.02 & .98
\end{array}\right]=\left[\begin{array}{ll}
.99 & .01
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
.02 & .98
\end{array}\right]}
\end{aligned}
$$

$x_{1}=$ probchilitit of being in state 1, at some time t

$$
\left[x_{1}^{\prime} x_{2}\right] \text { time } 0, \quad x_{1}(0), x_{2}(0)
$$

$\left[\begin{array}{cc}\text { new } & \text { nev } \\ & x_{1} \\ x_{2}\end{array}\right]$ time $1, \quad x_{1}(1), x_{2}(1)$

$$
\begin{aligned}
& \cdots \quad \cdots \quad 2, \quad x_{2}(t), x_{2}(2) \\
& \because 3,-3 \\
& {\left[\begin{array}{cc}
x(t+1) & x(t+1) \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
x_{1}(t) & x_{2}(t)
\end{array}\right]\left[\begin{array}{cc}
.99 & .01 \\
.02 & .98
\end{array}\right]} \\
& {\left[x_{1}(t) x_{1}(t)\right]=\left[x_{1}(0) x_{2}(0)\right][]^{t}}
\end{aligned}
$$

52 coods! $52!$ states

People in Vmeaser
is in Teronto!

time t=o! 10^{6} ir Vm $10^{6} \cdot 1.2$ Torento

$$
t=1 \quad \text { ! }
$$

$$
\underbrace{\left[\begin{array}{ll}
10^{6} & 10^{6} \cdot 1.2
\end{array}\right]}\left[\begin{array}{ll}
.99 & . c 1 \\
. c 2 & .98
\end{array}\right]=\left[\begin{array}{l}
\text { Cne morth later }
\end{array}\right.
$$

Converient to muke this stochestis

$$
\begin{aligned}
& 10^{6}\left[\begin{array}{ll}
1.0 & 1.2
\end{array}\right] \\
& \text { G } \\
& {\left[\frac{1.0}{2.2} \quad \frac{1.2}{2.2}\right]=\text { stcechastic }}
\end{aligned}
$$

