CPSC 421/501 Sept 5, 2025 - Last time? Oltmete geal? 1) - How not to solve P vs. NP - How to (meybe) solve P vs. NP 2) First 2 weeks before the drop/withdrawl date: - Uncomputability in CPSC 421 3 {S | Sisaset s.t. S&S}

(4) Cantor's Theorem

Admin: (1) Honework # (group work) is due 11:59 pm (Pacific Time) September 11 (Thursday) on gradescope, via Canvas (?) Homework is "stand alone.] 2) New problem this year! class sizes! 3) Current 421 Canves 91 CS_UBC 102 Workday 3 92

Write to jf@cs.ubc.ca Subject: ___ 421-__i

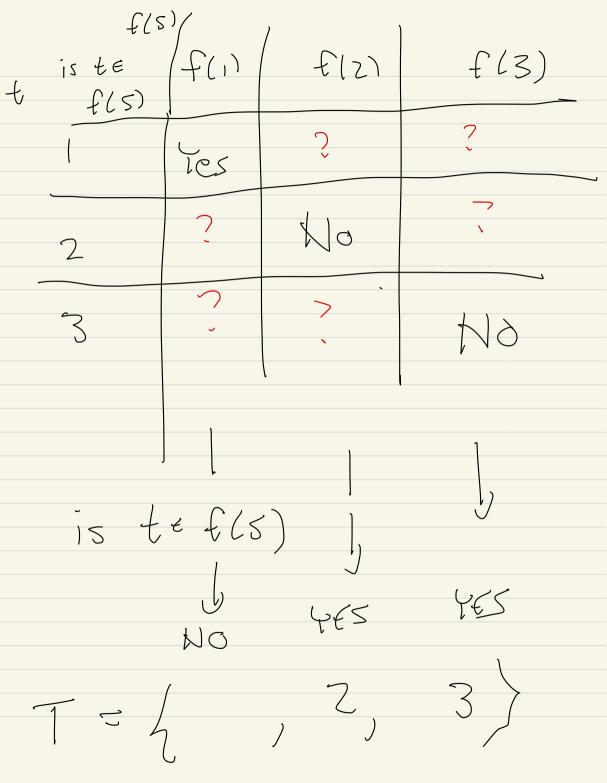
Joel Friedman
Campiter Science UBC

- Russell's Paradox is easy to gloss over. If the paradox is obvious, and obvious how to fix, then you might ask your favourite "AI" how long it took the planet's methematical community to come to a Standard way to resolve it.

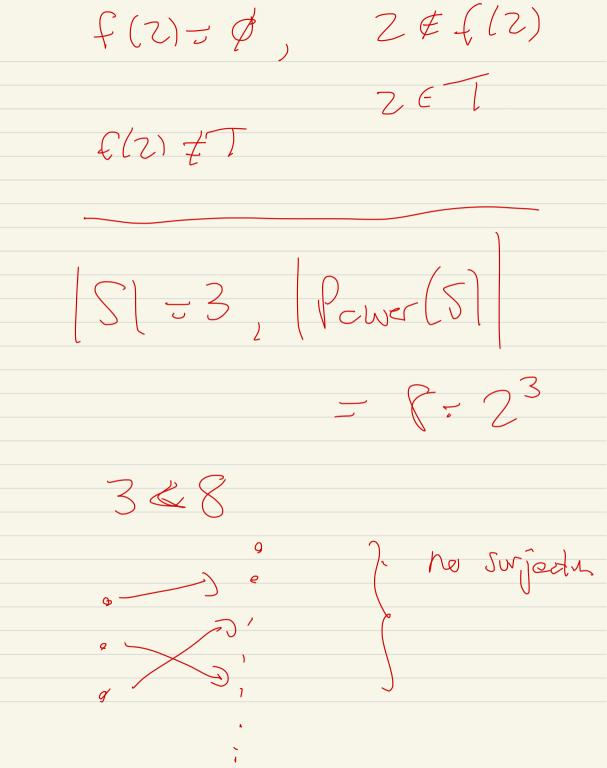
The burber structs each person who doesn't showe themself

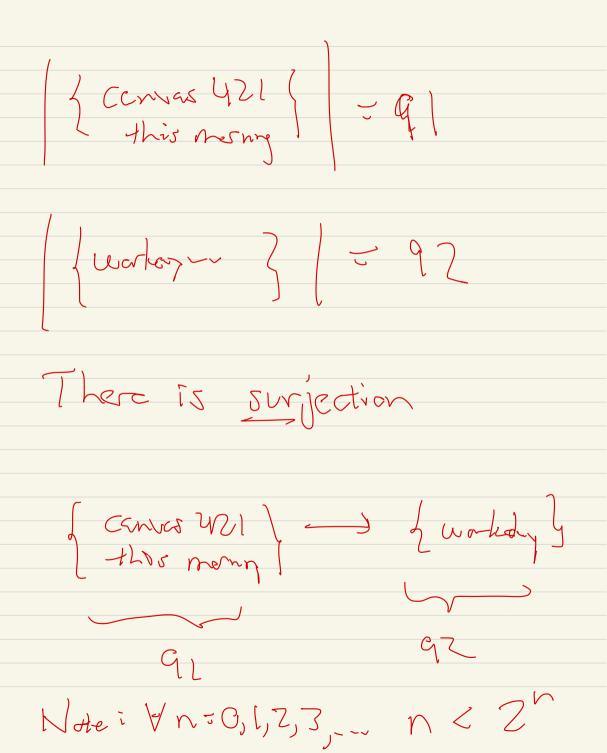
Cantor's Theorem: Let S be a set, and f:5 -> Power(S) a function. Then f is not surjective; namely $T = \{ s \in S \mid s \notin f(s) \}$ is not in the image of f. Namely, if you assume that t∈S satisfies f(t)=T, then you get a contraction.]

Review! Surjection injection bijection image Power (S) \in , \notin , \exists , \not st, = such that { blah | blahblahblah }


$$S = \{1, 2, 3\}$$
 $S = \{a, b, c\}$
 $S =$

Example of Cantor's Theorem:


Let S= {1,2,3} Pow (S) = \\ \phi, \langle 13, \langle 23, \langle 33, 21,27, 22,33, 21,3), 5


Let 4: 5 -> Powr(5)

$$f(1) = \{1,2,3\} = S$$
 $f(2) = \{1,2,3\} = \{1,2,$

Imegnan Student z 7 tall YES is not currently laceted in Vencour Se, by crebes, 7-2 2,33 [E(LI) condequal f(1): 4(1) 7

Let f: 5 -> Pawr(5), let T= { 5€ 5 | 5 € {(5)} there exist no t E 5 st. flt) = T fu the following reason: (Proof by contraduction)

Eigher:
$$t \in f(t)$$

or $t \notin f(t)$

If $t \in f(t)$!

 $t \in T$
 $t \notin T : f(t)$

If $t \notin f(t)$:

 $t \notin T$, $T : f(t) \mid f(t) \mid$