CPSC 421/501 Today! - Admin - Russell's Paradox - Cantor's Theorem no Some languages are 84-2 2 onreces nizable, Sip Instructor: Joel Friedman Course website: https://www.cs.ubc.ca/ n-f/courses/421. F2625/ index. html

"In mathematics, you don't understand things. You just get used to them."

- John von Neumann

In mathematics, it takes

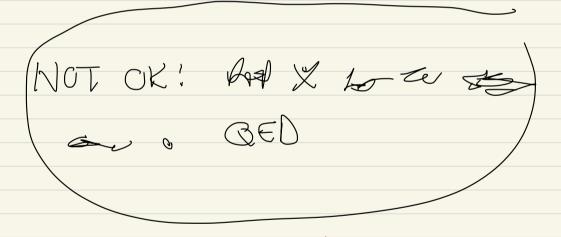
a while for things to

Sink in.

- A. Friedman

Admin:

Grade! 0.55 f + 0.35 max (f, m) + 0,10 max (f, m, h) f=final, m=midterm, h = homework (drop lowest 3).


Homework! Due on Thursdays, Il! Sapm, gradescope Midterm! Friday, Oct 31, in class time. Location! To be announced

Group Homework! Groups
of size & H., One
submission per group.

Individual Homework! One
submission per student;
most be your own work.

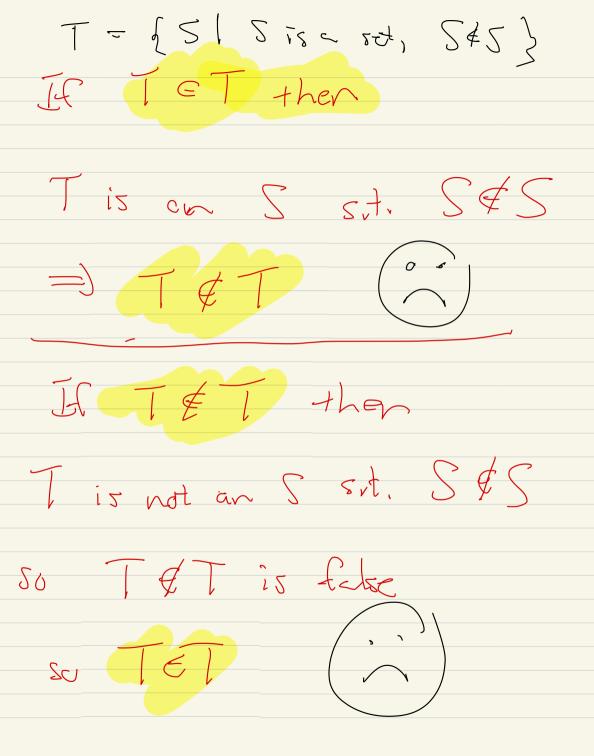
Some weeks we will not grade all homework parts.

[Homework must be legible.]

I will ement via

Workday today the picase ade

First 2 weeks! (1) Show the "halting problem" is "unsolvable, meaning... en "undecidable" (but it is recognizable) (2) Give you an idea of the typical level of difficulty in CPSC 421/501 3) Start with "Uncomposability in CPSC 421/501


Cantur's Theorem? The work in naire set theory - Preliminary definitions? - Power(S), S a set -Image (f)

f a

-"f is surjective" function - State Cantor's Theorem - Give examples, formal proof, remarks

Russell's Paradox! T= S S is a set such that S \$ 5 TET

TET?

If S is finite, e.g. 5 - { a, b, c, 2a, b} Then $\{c,b,c,\{c,b\}\}$ or otherwire 5 - { c, b, c, 2c, b} ---} So Tabove contains all finite sets

S is 2 set

S \$ 5] T = { 5 - self-reference - negation

- Percoloxes

-> Sometimes you get a theorem

Power (S) = the set of all subsets of S.

Set, and f: S > Power (S)

is a function, then f is

Not surjective; i.e.

$$\{\phi, \{1\}, \{2\}, \{3\}\}$$

f { {1,2,3} -> Power (21,2,3) cant be surjective clements

There is some

te Power (21,2,3)) s.t. $7 = \{1,2,3\} = 1.$